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Abstract

A useful result when dealing with backward stochastic differential equations is the
comparison theorem of Peng (1992). When the equations are not based on Brownian
motion, the comparison theorem no longer holds in general. In this paper we present a
condition for a comparison theorem to hold for backward stochastic differential equations
based on arbitrary martingales. This theorem applies to both vector and scalar situations.
Applications to the theory of nonlinear expectations are also explored.
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1. Introduction

The theory of backward stochastic differential equations (BSDEs) is an active area of research
in both mathematical finance and stochastic control. Typically, we begin by defining processes
(Y, Z) through an equation of the form

Yt −
∫

(t,T ]
F(ω, u, Yu−, Zu) du +

∫
(t,T ]

Zu dMu = Q. (1)

Here Q is a square-integrable terminal condition, F a progressively measurable ‘driver’ func-
tion, andM anN -dimensional Brownian motion, all defined on a probability space with filtration
generated by M . Recent work has also allowed the presence of jumps and the use of other
underlying processes. However, these typically require the addition of another martingale
process, as a martingale representation theorem may not hold. See El Karoui and Huang
[13, Chapter 2] for some general results. In [5], we considered the situation where M is the
compensated jump martingale generated by a continuous-time, finite-state Markov chain and
showed that solutions existed for equations of this type.

A fundamental result, first obtained by Peng [24], is the ‘comparison theorem’ for BSDEs.
This result is connected to the Pontryagin maximum principle in optimal control, and, as is
explored in [29, Chapter 8] for the linear case, to the theory of no-arbitrage in a financial market.
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In [24], the comparison theorem was established for scalar BSDEs based on N -dimensional
Brownian motion. Various other works have extended this result, primarily through the addition
of jump terms. Barles et al. [2] gave a comparison theorem for BSDEs based on N -dimensional
Brownian motion and an independent Poisson random measure. Other particular cases, with
Poisson random measures and Lévy processes, can be seen in [16], [23], [28], [29, Section 8.11],
and [30]. Barles et al. [2] also included a counterexample, which shows that the conditions of
the comparison theorem for simple Brownian motion are insufficient when jumps are present.
In the context of continuous-time Markov chains, Cohen and Elliott [8] gave an appropriate
comparison theorem. To obtain these theorems, added conditions on the driver F , in particular
on its relation to the jump component of the underlying process, are needed. This paper
generalises these conditions, by expressing them in the language of equivalent measures.

In the vector-valued context, Hu and Peng [18] considered vector-valued BSDEs based on
N -dimensional Brownian motion, and, under a bounded stochastic viability property (or BVSP),
which degenerates into the classical requirements in one dimension, presented a comparison
theorem in this context. These conditions are considerably less intuitive than those in one
dimension, and do not as easily lead to a theory of multidimensional nonlinear evaluations
and expectations (as in [10], [28], and others). They also do not extend to the situation of
BSDEs generated by processes other than Brownian motion. The conditions we present in this
paper are different, and are a more natural componentwise extension of the scalar case. Various
comparison theorems for vector-valued BSDEs based on continuous-time Markov chains are
given in [8], however under restrictive conditions on the driver F . Our conditions are, in general,
more difficult to verify. However, these conditions are the natural extension of the conditions
derived in [6] in a discrete-time context, where it can be shown that they are the most general
conditions for the componentwise monotonicity of the BSDE solutions. A future extension of
this work would be to derive a BSVP for this more general class of BSDEs.

The above results are all in contexts where the simple BSDE (1), or its variants including
random measures, has a solution. In these cases, an orthogonal martingale, the dL term in (2),
below, is not required. This paper does not assume this, and the comparison theorem also
applies to the generalised BSDE (2) considered in [13].

In this paper we generalise these results, by making clearer the relationship between the
comparison theorem and the existence of equivalent (super)martingale measures. This high-
lights the relationship between the comparison theorem and no-arbitrage in a financial market,
by reference to the fundamental theorem of asset pricing (see [12, Section 1.6]). By expressing
the conditions for the comparison theorem in this way, the proofs become considerably simpler,
and also extend naturally to BSDEs based on any martingale process, as they do not depend on
a Lévy characterisation or on the Markov property.

As mentioned above, these conditions are also the natural extension of the conditions derived
in [6] for discrete-time BSDEs. This fact is demonstrated in [7, Theorem 3.2]. In this discrete-
time framework, we can show that the requirements of the comparison theorem are the most
general conditions for the monotonicity of the BSDE solutions (see [6, Theorem 7] and [7,
Theorem 4.1]). Given the general result of the fundamental theorem of asset pricing, we
could expect that an approach based on the existence of martingale measures is therefore an
appropriate characterisation of the general requirements for the comparison theorem.

Our general approach may also have implications for considering existence and convergence
results of BSDEs; however, we do not explore these here. For example, when considering
BSDEs with continuous coefficients, the comparison theorem plays a fundamental role in the
proof of uniqueness of solutions; see, for example, [20]. When considering convergence of
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discrete approximations of BSDEs in a non-Lipschitz setting, as in [4], the comparison theorem
again is an essential result.

We demonstrate the usefulness of this result in defining dynamically consistent nonlinear
expectations.

2. BSDEs with arbitrary martingales

Let M be an arbitrary RN -valued càdlàg martingale on a filtered probability space (�, F ,
{Ft }, P) satisfying the usual assumptions of completeness and right continuity. Let ‖ · ‖ denote
the Euclidean norm, and let L0(Ft ) denote the set of Ft -measurable random variables Q with
P(‖Q‖ = +∞) = 0.

For a fixed deterministic T ≤ +∞ and a given integrable, progressively measurable function
F : � × [0, T ] × RK × RK×N → RK , we shall consider equations of the form

Yr −
∫

(r,t]
F(ω, u, Yu−, Zu) du +

∫
(r,t]

Zu dMu +
∫

(r,t]
dLu = Q, (2)

where 0 ≤ r ≤ t ≤ T and Q is an RK -valued Ft -measurable terminal condition. A solution to
(2) is a triple (Y, Z, L), with Y a càdlàg, adapted, RK -valued process, Z a predictable RK×N -
valued process and L an RK -valued càdlàg martingale, with L0 = 0, which is orthogonal to
M , that is, the (K × N)-dimensional matrix process

〈L, M〉 = (〈e�
i L, e�

j M〉)j=1,...,N
i=1,...,K ≡ 0.

Here ei is the ith standard basis vector in RN (or RK , as appropriate). We here restrict our
attention to deterministic T ; however, through appropriate modification of the driver F , it is
easy to see that this extends to the case when T is a stopping time (see [8]). We know from [13]
that, under certain assumptions about M , F , and Q, this equation will always have a solution
(Y, Z, L). If we consider a space such that a martingale representation theorem holds for M , or
we allow M to become infinite-dimensional, as in [9], then, without loss of generality, L = 0.
We assume here that the driver F is integrated with respect to time (du); however, the general
case, considered in [13], where du is replaced with dCu for C a continuous, adapted, increasing
process, is a straightforward modification of the results given here. (The only slight difficulty
is in obtaining an appropriate version of Grönwall’s inequality.)

As the focus of this paper is on comparison results, rather than proving the existence of
BSDE solutions, we shall refrain from explicitly making the assumptions of [13] or [9], and,
in general, denote by QF

s,t ⊆ L0(Ft ) the set of values Q such that, for all r ∈ [s, t], (2) has a
unique solution, up to indistinguishability on [s, t] × � for the triple (Yr ,

∫
(s,r] Zu dMu, Lr).

This solution may be constrained to satisfy certain conditions, for example, in [5] and [13] it
is required that E[supr∈[s,t] ‖Yr‖2 | Fs] < +∞. In this case, the solution may only be unique
among those processes satisfying these constraints. We shall make the very weak assumption
that, for r ∈ [s, t], this solution satisfies the integrability assumption

E[‖Yr‖ | Fs] < +∞ P-almost surely (P-a.s.).

It is clear that this assumption will not, in general, be sufficient for a unique solution to exist;
however, it is sufficient to derive the comparison properties of interest here. We shall take any
other conditions necessary for uniqueness (for example, square-integrability of the solution) as
implicit.
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Lemma 1. The following properties of QF
s,t are immediately apparent.

1. For all s ≤ r ≤ t , QF
s,t ⊆ QF

r,t .

2. For all t ≤ T , without loss of generality, QF
t,t = L0(Ft ).

3. For s ≤ t , let Q ∈ QF
s,t and let Yr satisfy (2). Then, for all r ∈ [s, t], Yr ∈ QF

s,r .

4. QF
s,t ⊆ {Q ∈ L0(Ft ) : E[‖Q‖ | Fs] < +∞}.

Proof. Property 1 follows from the fact that, if we have a unique solution to (2) on [s, t]
then we have a unique solution on [r, t] ⊆ [s, t]. Property 2 is because (2) degenerates into the
tautology Yt = Q, which clearly has a unique solution up to indistinguishability. Property 3 is
simply due to a rearrangement of (2). Property 4 is due to the assumed integrability condition,
evaluated for Yt = Q.

3. Comparison properties

We now seek to derive conditions, similar to those in [24], such that a comparison property
holds with regard to BSDE solutions. For the sake of generality, we shall state these in a form
such that the conditions may depend on the solutions (Y, Z, L). We also allow our solution
processes to be multidimensional. In practice, the conditions imposed may be difficult to verify,
particularly in the multidimensional case; however, they allow us to unite, as special cases, the
various comparison results which have previously been obtained. We shall present, in Section 4,
examples of BSDEs where these conditions are satisfied for all solutions (Y, Z, L).

In the following, a vector inequality is assumed to hold componentwise.

Theorem 1. (Comparison theorem.) Suppose that we have two BSDEs corresponding to coeffi-
cients and terminal values (F 1, Q1) and (F 2, Q2), Q1 ∈ QF 1

s,t , Q2 ∈ QF 2

s,t . Let (Y 1, Z1, L1) and
(Y 2, Z2, L2) be the associated solutions. We suppose that the following conditions hold.

(i) Q1 ≥ Q2, P-a.s.

(ii) (du × P)-a.s. on [s, t] × �, F 1(ω, u, Y 2
u−, Z2

u) ≥ F 2(ω, u, Y 2
u−, Z2

u).

(iii) For each i, there exists a measure P̃i equivalent to P such that the ith component of X,
as defined for r ∈ [s, t] by

e�
i Xr := −

∫
(s,r]

e�
i [F 1(ω, u, Y 2

u−, Z1
u) − F 1(ω, u, Y 2

u−, Z2
u)] du

+
∫

(s,r]
e�
i [Z1

u − Z2
u] dMu + e�

i [L1
r − L2

r ],

is a P̃i-supermartingale on [s, t].
(iv) If, for all r ∈ [s, t],

e�
i Y 1

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 1

u−, Z1
u) du

∣∣∣∣ Fr

]

≥ e�
i Y 2

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 2

u−, Z1
u) du

∣∣∣∣ Fr

]
,

for all i, then Y 1
r ≥ Y 2

r for all r ∈ [s, t] componentwise.

It is then true that Y 1 ≥ Y 2 on [s, t], except possibly on some evanescent set.
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Proof. We omit the ω and u arguments of F for clarity. Then, for r ∈ [s, t],

Y 1
r − Y 2

r −
∫

(r,t]
[F 1(Y 1

u−, Z1
u) − F 2(Y 2

u−, Z2
u)] du

+
∫

(r,t]
[Z1

u − Z2
u] dMu +

∫
(r,t]

dL1
u −

∫
(t,T ]

dL2
u

= Q1 − Q2

≥ 0,

which can be rearranged to give

Y 1
r − Y 2

r −
∫

(r,t]
[F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)] du

≥
∫

(r,t]
[F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du +

∫
(r,t]

[F 1(Y 2
u−, Z1

u) − F 1(Y 2
u−, Z2

u)] du

−
∫

(r,t]
[Z1

u − Z2
u] dMu −

∫
(r,t]

dL1
u +

∫
(r,t]

dL2
u. (3)

We have
∫
(r,t][F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du ≥ 0 by assumption (ii). As e�

i Xr is a P̃i-
supermartingale, we know that the process given by

e�
i X̃r := e�

i Xr − EP̃i
[e�

i Xt | Fr ]
= EP̃i

[∫
(r,t]

e�
i [F 1(Y 2

u−, Z1
u) − F 1(Y 2

u−, Z2
u)] du

−
∫

(r,t]
e�
i [Z1

u − Z2
u] dMu −

∫
(r,t]

e�
i dL1

u +
∫

(r,t]
e�
i dL2

u

∣∣∣∣ Fr

]
(4)

is also a P̃i-supermartingale, with e�
i X̃t = 0, P̃i-a.s. Hence, e�

i X̃r ≥ 0.
For each i, taking a P̃i | Fr conditional expectation throughout (3) and premultiplying by

e�
i gives

e�
i Y 1

r − e�
i Y 2

r − EP̃i

[∫
(r,t]

e�
i [F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)] du

∣∣∣∣ Fr

]
≥ 0.

By assumption (iv), this then proves that Y 1
r ≥ Y 2

r componentwise P-a.s. for each r ∈ [s, t].
As Y 1 − Y 2 is càdlàg, Y 1 − Y 2 is indistinguishable from a nonnegative process and, therefore,
the inequality holds up to evanescence.

Corollary 1. Theorem 1 remains true if assumption (iii) and assumption (iv) are replaced by
the following.

(iii′) For each i, there exists a measure P̃i equivalent to P such that the ith component of X,
as defined for r ∈ [s, t]

e�
i Xr := −

∫
(s,r]

e�
i [F 1(ω, u, Y 1

u−, Z1
u) − F 1(ω, u, Y 1

u−, Z2
u)] du

+
∫

(s,r]
e�
i [Z1

u − Z2
u] dMu + e�

i [L1
t − L2

t ],

is a P̃i-supermartingale on [s, t].
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(iv′) For all r , if

e�
i Y 1

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 1

u−, Z2
u) du

∣∣∣∣ Fr

]

≥ e�
i Y 2

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 2

u−, Z2
u) du

∣∣∣∣ Fr

]

for all i then Y 1
r ≥ Y 2

r componentwise.

Proof. In this case, the decomposition in (3) and the definition of X̃ in (4) are correspondingly
changed. The rest of the proof remains valid.

Remark 1. In the scalar case (K = 1) when M is a Brownian motion generating {F } and
F 1(ω, u, Yu−, ·) is uniformly Lipschitz continuous in Zu, and in many other cases, we can use
the standard results of Girsanov’s theorem to show that Theorem 1(iii) holds.

Remark 2. A significant special case, particularly in the context of dynamic risk measures, is
when F is assumed not to depend on Y . (See, for example, [3], [6], [8], [27], and [28].) In this
case, Theorem 1(iv) is trivial.

The following backwards version of Grönwall’s inequality will be useful.

Lemma 2. Suppose that φ : [s, t] → R is such that, for constants α ≥ 0 and β ≥ 0,

φr ≤ α + β

∫
(r,t]

φu du

for all r ∈ [s, t]. Then φr ≤ αeβ(t−r).

Proof. Write ηr = α + β
∫
(r,t] φu du. Then

dηr

dr
= −βφr ≥ −βηr .

Hence, if νr = eβrηr ,
dνr

dr
= βeβrηr + eβr dηr

dr
≥ 0.

This implies that ν is nondecreasing, and so νr ≤ νt , which, by rearrangement, gives

ηr ≤ αeβ(t−r).

Finally, as φr ≤ ηr , we have the result.

Theorem 2. Consider the scalar (K = 1) case, where, for all u ∈ [s, t], F 1(ω, u, ·, Z1
u) is

uniformly Lipschitz continuous with respect to Y , that is, there exists c ≥ 0 such that, for any
Y 1 and Y 2,

|F 1(ω, u, Y 1
u−, Z1

u) − F 1(ω, u, Y 2
u−, Z1

u)| ≤ c|Y 1
u− − Y 2

u−|, (du × P)-a.s.

Then assumption (iv) of Theorem 1 can be omitted.
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Proof. As we are in the scalar case, we can omit the ei from the statement of the assumption.
Hence, we wish to show that, given, for all r ∈ [s, t],

Y 1
r − EP̃

[∫
(r,t]

F 1(ω, u, Y 1
u−, Z1

u) du

∣∣∣∣ Fr

]

≥ Y 2
r − EP̃

[∫
(r,t]

F 1(ω, u, Y 2
u−, Z1

u) du

∣∣∣∣ Fr

]
,

we must have Y 1
r ≥ Y 2

r . For simplicity, let δY := Y 1 − Y 2.
It is clear from the problem and the recursivity of BSDE solutions that we can replace t with

any stopping time τ ≤ t such that δYτ ≥ 0.
Suppose that on some nonnull set A ∈ F , δYu < 0 for some u ∈ [s, t]. As δY is adapted

and right continuous, this implies that there are stopping times σ and τ such that δYu < 0 for all
u ∈ [σ, τ), and σ < τ on A. Without loss of generality, let τ be the largest such upper bound.
Then, as δYt ≥ 0 and τ ≤ t , it follows that δYτ ≥ 0. Let IA denote the indicator function of a
set. Replacing t with τ in the above inequality, we know that

EP̃[Ir∈[σ,τ)|δYr |] = EP̃[−Ir∈[σ,τ)δYr ]
≤ EP̃

[
−Ir∈[σ,τ)

∫
(r,τ ]

(F 1(ω, u, Y 1
u−, Z1

u) − F 1(ω, u, Y 2
u−, Z1

u)) du

]

≤ EP̃

[
Ir∈[σ,τ)

∫
(r,τ ]

c|δYu−| du

]

≤ c

∫
(r,t]

EP̃[Iu∈[σ,τ)|δYu−|] du.

As δYu is càdlàg, we can omit the left limit inside the integral, and an application of Lemma 2
implies that EP̃[Ir∈[σ,τ [|δYr |] ≤ 0, that is, σ = τ a.s., and so A is a null set. By contradiction,
we see that δYu ≥ 0 for all u ∈ [s, t].
Remark 3. By Theorem 2 and Remark 1, we can see that the classical inequality of Peng [24]
is simply a special case of Theorem 1. Similarly, the scalar comparison in [8, Theorem 4.2]
also follows as a special case. However, as shown in the counterexamples presented in [8,
Example 5.1] for the vector case, Theorem 1(iv) remains nontrivial (cf. Remark 5 below).

Definition 1. The comparison between Y 1 and Y 2 will be called strict on [s, t] if the conditions
of Theorem 1 hold, and if, for any A ∈ Fs such that Y 1

s = Y 2
s , P-a.s. on A, we have Y 1

u = Y 2
u

on [s, t] × A, up to evanescence.

Lemma 3. If the comparison is strict on [s, t] then, for any A ∈ Fs such that Y 1
s = Y 2

s , P-a.s.
on A, it follows that

• Q1 = Q1, P-a.s. on A,

• F 1(ω, u, Y 2
u−Z2

u) = F 2(ω, u, Y 2
u−, Z2

u), (du × P)-a.s. on [s, t] × A, and

• for r ∈ [s, t], up to indistinguishability, on A,∫
(s,r]

Z1
u dMu =

∫
(s,r]

Z2
u dMu

and
L1

r = L2
r .
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Proof. We omit the ω and t arguments of F 1 and F 2 for clarity. Let X̃ be as in (4), and let
S be the process defined by

e�
i Sr := e�

i EP̃i
[Q1 − Q2 | Fr ]

+ e�
i EP̃i

[∫
(r,t]

[F 1(Y 2
u−, Z2

u) − F 2(Y 2
u−, Z2

u)] du

∣∣∣∣ Fr

]
+ e�

i X̃r . (5)

Then e�
i S is a P̃i-supermartingale, as the first term is a P̃i-martingale, the second is nonincreas-

ing in r by assumption (ii) of Theorem 1, and the third is a P̃i-supermartingale by assumption
(iii) of Theorem 1. Furthermore, each of these terms is nonnegative.

Taking a P̃ | Fr conditional expectation through (2), we have, for all r ∈ [s, t],
Y 1

r − Y 2
r = Sr + EP̃

[∫
(r,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fr

]
. (6)

If Y 1
r = Y 2

r on [s, t] × A up to evanescence then it is clear from (6) that Sr = 0, P-a.s. on
[s, t] × A. Hence, by nonnegativity, each of the terms on the right-hand side of (5) must be 0.
The first two points of the lemma immediately follow.

Consider the BSDE (2) satisfied by Y 2. As F 1(Y 2
u−, Z2

u) = F 2(Y 2
u−, Z2

u), (du × P)-a.s. on
[s, t] × A and Q1 = Q2, P-a.s. on A, we know that

Y 2
r −

∫
(r,t]

F 2(Y 2
u−, Z2

u) du +
∫

(r,t]
Z2

u dMu +
∫

(r,t]
dL2

u = Q2

is P-a.s. equal to

Y 2
r −

∫
(r,t]

F 1(Y 2
u−, Z2

u) du +
∫

(r,t]
Z2

u dMu +
∫

(r,t]
dL2

u = Q1.

Hence, in A, (Y 2, Z2, L2) is a solution at time r to the BSDE defining the triple (Y 1, Z1, L1).
By assumption, as Q1 ∈ QF 1

s,t , the solution to this BSDE is unique up to indistinguishability
for (Y,

∫
(s,·] Zu dMu, L) on [s, t] × �. It follows that, for each r , (Y 1

r ,
∫
(s,r] Z

1
u dMu, L

1
r ) is

unique up to equality P-a.s., and, therefore,
∫
(s,r] Z

1
u dMu = ∫

(s,r] Z
2
u dMu and L1

r = L2
r , P-a.s.

on A. As all of these processes are càdlàg, it follows from [14, Lemma 2.21] that they are
indistinguishable on [s, t] × A.

Theorem 3. (Strict comparison 1.) Consider the scalar (K = 1) case, where F 1 is such that
Theorems 1 and 2 hold. Then the comparison is strict on [s, t].

Proof. Again, as K = 1, we can omit ei from all equations, and we omit the ω and t

arguments of F 1 and F 2 for clarity. Let Sr be as defined in (5), and note that S is a nonnegative
P̃-supermartingale.

Taking a P̃ | Fs conditional expectation of (6) gives

EP̃[Y 1
r − Y 2

r | Fs] = EP̃

[
Sr +

∫
(s,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]

− EP̃

[∫
(s,r]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]

≤ Ss + EP̃

[∫
(s,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]

+
∫

(s,r]
EP̃[|F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)| | Fs] du
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≤ Ss + EP̃

[∫
(s,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]

+ c

∫
(s,r]

EP̃[|Y 1
u− − Y 2

u−| | Fs] du. (7)

We know, from (6) and the assumption that Y 1
s − Y 2

s = 0 on A ∈ Fs , that

IASs + IA EP̃

[∫
(s,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]
= IA(Y 1

s − Y 2
s ) = 0,

and so, as Y 1 − Y 2 is nonnegative by Theorem 1, premultiplication of (7) by IA and taking an
expectation gives

EP̃[IA(Y 1
r − Y 2

r )] ≤ c

∫
(s,r]

EP̃[IA(Y 1
u− − Y 2

u−)] du.

An application of (the forward version of) Grönwall’s lemma then yields

EP̃[IA(Y 1
r − Y 2

r )] ≤ 0,

which, by nonnegativity, implies that Y 1
r = Y 2

r , P̃-a.s. on A. Again, as Y 1 − Y 2 is càdlàg, this
shows that Y 1 = Y 2 on [s, t] × A, up to evanescence.

Remark 4. Theorems 2, 3, and 4 can also be modified in the same way as in Corollary 1; in
this case the assumptions of the theorems will refer to F 1(ω, u, ·, Z2

u).

Remark 5. In a vector setting, it is easy to see that, if the ith component of F 1 depends only
on the ith component of Y , that is, we can write

e�
i F 1(ω, t, Yt−, Zt ) = Fi(ω, t, e�

i Yt−, Zt )

for some Fi , and if Fi is uniformly Lipschitz in e�
i Yt−, then the proofs of Theorems 2 and 3

can be extended to cover these cases, simply by considering each component separately.
In this case, the strict comparison will apply componentwise, that is, if, for some A ∈ Fs ,

we have e�
i Y 1

s = e�
i Y 2

s , then e�
i Y 1

u = e�
i Y 2

u on [s, t] × A, up to evanescence.
If F 1 does not depend on Yt− then this is clearly the case (as F 1 is uniformly Lipschitz with

constant c = 0).

In some situations, particularly in the vector context, this result may be insufficient. The
following theorem addresses some such cases.

Theorem 4. (Strict comparison 2.) Suppose that we have two BSDEs satisfying the conditions
of Theorem 1. Suppose furthermore that Theorem 1(iv) is satisfied in such a way that, for all
A ∈ Fs ,

e�
i Y 1

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 1

u−, Z1
u) du

∣∣∣∣ Fr

]

= e�
i Y 2

r − EP̃i

[∫
(r,t]

e�
i F 1(ω, u, Y 2

u−, Z1
u) du

∣∣∣∣ Fr

]
(8)

P-a.s. on A for all i and all r ∈ [s, t], if and only if Y 1
r = Y 2

r , P-a.s. on A for all r ∈ [s, t].
Then the comparison is strict on [s, t].
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Proof. As in Theorem 1, the weak comparison holds, that is, Y 1
r ≥ Y 2

r , P-a.s. on [s, t].
Recall that the measures P and P̃i were assumed to be equivalent, and, hence, any statement up
to equality P̃i-a.s. could equivalently be made P-a.s.

As before, e�
i X̃, defined in (4), is a P̃i-supermartingale with e�

i X̃t = 0. We know that
Y 1

s = Y 2
s on A, and, hence, by (8),

Y 1
s − Y 2

s − EP̃

[∫
(s,t]

[F 1(Y 1
u−, Z1

u) − F 1(Y 2
u−, Z1

u)] du

∣∣∣∣ Fs

]
= 0.

As in (3), this implies that

0 ≥ EP̃i

[∫
(s,t]

[F 1(Y 2
u−, Z2

u) − F 2(Y 2
u−, Z2

u)] du

∣∣∣∣ Fs

]

+ EP̃i

[∫
(s,t]

[F 1(Y 2
u−, Z1

u) − F 1(Y 2
u−, Z2

u)] du

−
∫

(s,t]
[Z1

u − Z2
u]� dMu −

∫
(s,t]

( dL1
u − dL2

u)

∣∣∣∣ Fs

]
.

Premultiplying by e�
i , we have

0 ≥ EP̃i

[∫
(s,t]

e�
i [F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du

∣∣∣∣ Fs

]
+ e�

i X̃s .

Both of the terms on the right-hand side are nonnegative, and, hence, both must be 0 on A.
If e�

i X̃s = 0 on A then e�
i X̃r = 0 on A for all r ≥ s, as e�

i X̃ is a nonnegative P̃i-super-
martingale. Similarly,

EP̃i

[∫
(s,t]

e�
i [F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du

∣∣∣∣ Fs

]
= 0,

and, therefore, as e�
i [F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] is nonnegative, it must be 0 (du × P̃i )-a.s.

on [s, t] × A. Hence,

0 = e�
i [Y 1

s − Y 2
s ] − EP̃i

[∫
(s,t]

e�
i [F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)] du

∣∣∣∣ Fs

]

+ EP̃i

[∫
(s,t]

e�
i [F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du

∣∣∣∣ Fs

]
+ e�

i X̃s

= EP̃i
[e�

i (Q1 − Q2) | Fs].
We know that Q1 − Q2 is nonnegative P-a.s. and, therefore, combining these results for all i,

Q1 − Q2 = 0 P-a.s. on A.

Finally, we see that, for all i and all r ∈ [s, t],
0 = EP̃i

[e�
i (Q1 − Q2) | Fr ]

= e�
i [Y 1

r − Y 2
r ] − EP̃i

[∫
(r,t]

e�
i [F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)] du

∣∣∣∣ Fr

]

+ EP̃i

[∫
(r,t]

e�
i [F 1(Y 2

u−, Z2
u) − F 2(Y 2

u−, Z2
u)] du

∣∣∣∣ Fr

]
+ e�

i X̃r ,
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and, hence,

e�
i [Y 1

r − Y 2
r ] − EP̃i

[∫
(r,t]

e�
i [F 1(Y 1

u−, Z1
u) − F 1(Y 2

u−, Z1
u)] du

∣∣∣∣ Fr

]
= 0 P-a.s.

By the stronger version of Theorem 1(iv), this proves that, for all r ∈ [s, t], Y 1
r − Y 2

r = 0,
P-a.s. on A.

As Y 1 − Y 2 is càdlàg, this shows that Y 1 = Y 2 on [s, t] × A, up to evanescence.

Remark 6. Equation (8) clearly holds whenever F is monotone decreasing in each component,
strictly in at least one component, with respect to Y .

Remark 7. Theorem 1 helps distinguish between the understanding of dominance in the
classical case and in the nonlinear case generated by BSDEs. In the classical case, no-dominance
(or, in a financial setting, ‘no-arbitrage’) is loosely equivalent to the existence of an equivalent
martingale measure for the processes Y (see [12, Section 1.6] for more details). Here, we have
assumed the existence of an equivalent supermartingale measure for the processes e�

i X. One
key difference is that, in the classical linear case, the equivalent martingale measure P̃ is the
same for all terminal values Q. In this nonlinear context, Theorem 1(iii) states, in some sense,
that there exists an equivalent (super)martingale measure corresponding to each differenced
pair of terminal conditions Q1 − Q2.

4. Examples

We here present some examples of applications of these results to situations where the
classical results do not apply.

4.1. A simple single jump time

First consider the simplest situation, where the only randomness comes from a single random
time. We can then obtain concrete conditions for the comparison theorem to hold. These
are similar to those in [26], which also includes a Brownian motion. However, our results
are obtained through a different approach based on the existence of an equivalent martingale
measure.

Let τ be a random variable taking values in [0, T ], the law of which is absolutely continuous
with respect to Lebesgue measure. We consider the filtration generated by the indicator process
I{t≥τ }. If

H(t) = P(τ ∈ (t, T ]) =
∫

(t,T ]
hu du,

where h is the density of τ , then this space posesses a fundamental martingale Mt of the form

Mt = I{t≥τ } +
∫

(0,τ∧t]
dHu

Hu

= I{t≥τ } −
∫

(0,τ∧t]
h

Hu

du,

and there is a martingale representation theorem with respect to M for uniformly integrable
martingales. (See [11] for a general theory of stochastic integration in these spaces.) We
consider one-dimensional BSDEs with this martingale in the place of M in (2), and L ≡ 0. We
shall also assume that the driver F is uniformly Lipschitz continuous with respect to Y and,
therefore, assumption (iv) of the comparison theorem is trivial, by Theorem 2.
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Our BSDE will be of the form

Q = Yt −
∫

(t,T ]
F(ω, u, Yu−, Zu) du +

∫
(t,T ]

Zu dMu

= Yt −
∫

(t,T ]

[
F(ω, u, Yu−, Zu) + Zuhu

Hu

I{t<τ }
]

du + Zτ I{t≥τ }.

The quantity Xr from the comparison theorem is then

Xr = −
∫

(s,r]
[F 1(ω, u, Y 2

u−, Z1
u) − F 1(ω, u, Y 2

u−, Z2
u)] du +

∫
(s,r]

[Z1
u − Z2

u] dMu

= −
∫

(s,r]

[
F 1(ω, u, Y 2

u−, Z1
u) − F 1(ω, u, Y 2

u−, Z2
u) + (Z1

u − Z2
u)

hu

Hu

I{t<τ }
]

du

+ (Z1
τ − Z2

τ )I{t≥τ }.

This has an equivalent supermartingale measure if and only if there exists an equivalent density
h̃ for τ such that

h̃u∫
(t,T ] h̃u du

I{t<τ } ≤ F 1(ω, u, Y 2
u−, Z1

u) − F 1(ω, u, Y 2
u−, Z2

u)

Z1
u − Z2

u

+ hu

Hu−
I{t<τ }.

Assume that h > 0. For an equivalent supermartingale measure to exist for all Y and Z,
positivity of h̃ and changing the role of Z1 and Z2 shows we require that F 1 does not vary with
z for t ≥ τ , that is, for all y, z1, and z2,

I{t≥τ }F 1(ω, t, y, z1) = I{t≥τ }F 1(ω, t, y, z2).

Similarly,

g(u) := F 1(ω, u, Y 2
u−, Z1

u) − F 1(ω, u, Y 2
u−, Z2

u)

Z1
u − Z2

u

+ hu

Hu

(9)

must be strictly positive, in which case the function

h̃t = g(t) exp

(
−

∫
(0,t]

g(u) du

)

is a candidate for the density, with cumulative distribution function
∫

(0,t]
h̃t dt = 1 − exp

(
−

∫
(0,t]

g(u) du

)
.

If F 1 is Lipschitz continuous with respect to Z then the first term in (9) is bounded. However,
as

ht

Ht

= ht∫
(t,T ] hu du

= − d

dt
log

(∫
(t,T ]

hu du

)
,

and is therefore clearly not integrable on any neighbourhood of T , we see that g is not integrable
on (0, T ]. Hence, our candidate density h̃ satisfies

∫
(0,T ]

h̃t dt = 1 − exp

(
−

∫
(0,T ]

g(u) du

)
= 1.
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Therefore, h̃ is a valid density on [0, T ]. Consequently, whenever g is strictly positive, we
have constructed an equivalent martingale measure for our process. Clearly, g will be strictly
positive whenever

∣∣∣∣F
1(ω, u, Y 2

u−, Z1
u) − F 1(ω, u, Y 2

u−, Z2
u)

Z1
u − Z2

u

∣∣∣∣ <
hu

Hu

,

that is, whenever the Lipschitz constant of F 1 with respect to Z can be bounded above by the
(random) process hu/Hu, the instantaneous rate at which the jump occurs.

4.2. A general scalar example

Now consider a pair of general scalar (K = 1) BSDEs of the form of (2), with T finite.
Assume that M is an RN martingale with predictable quadratic variation 〈M〉t absolutely
continuous with respect to dt and increasing at a rate of at least εdt for some ε > 0. All
our functions and terminal conditions are, for simplicity, assumed to be bounded. Define
δZ = Z1 − Z2 and δ2f = F 1(ω, u, Y 2

u−, Z1
u) − F 1(ω, u, Y 2

u−, Z2
u). Suppose that F 1 is such

that there exists a process (δZ+) with values in RN , arranged as a column vector, such that

(δZt )
�(δZ+

t ) = 1, ‖(δ2ft )(δZ
+
t )‖ < C

d〈M〉t
dt

for some constant C, and

−d〈M〉t
dt

< (δ2ft )(δZ
+
t )�(�Mt) P-a.s.

Note that (δ2ft )(δZ
+
t ) can, in some sense, be thought of as a ‘derivative’ of F 1. (If N = 1,

this is precisely the ratio considered in (9), and we can see that there the conditions degenerate
into those above.) We then define, using the Doléans–Dade exponential,

t = 1 +
∫

(0,t]
s−(δ2fs)

dt

d〈M〉t (δZ
+
s )� dMs.

It is easy to verify that, under the stated conditions,  is a square-integrable martingale, and,
hence, defines an equivalent probability measure with dP̃/dP = T . Using the general form
of Girsanov’s theorem [19, p. 169], we see that the process

Mt −
∫

(0,t]
(δ2fs)

ds

d〈M〉s (δZ+
s ) d〈M〉s

is a P̃-local martingale, and, hence, as δL = L1 − L2 is orthogonal to M ,

Xt = −
∫

(0,t]
(δ2fs)(δZs)(δZ

+
s ) ds +

∫
(0,t]

(δZs) dMs + δLt

= −
∫

(0,t]
(δ2fs) ds +

∫
(0,t]

(δZs) dMs + δLt

is a P̃-local martingale, and, hence, a martingale by boundedness.
Note that this result allows for significant flexibility, due to the possibility of variation in

(δZ+). (In some sense, the drift can be allocated to any combination of the components of M ,
so that a new measure can be found under which each component with the associated drift is a
martingale.) Furthermore, when M is continuous, the conditions are trivially satisfied.
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4.3. A vector example with limited comparisons

We now present a vector example, which demonstrates some of the possibilities in the vector
setting. In general, a vector result will only hold in some special cases, but this may nevertheless
be of interest.

Consider a general BSDE with two components (K = 2), driven by a single Brownian
motion M . For a vector z ∈ R2, let z and z denote the first and second components of z.
Suppose that F 1 is of the form

F 1(ω, t, z) = |z||z|mt

for some bounded process m : �×[0, T ] → R2. Consider two BSDEs, with terminal conditions
Q1 and Q2, taking values in R2, where Q2 is deterministic. Again, for simplicity, we assume
that Q1 is bounded. We wish to be able to compare these solutions. This and similar special
cases may be of interest in risk management problems, where being able to compare BSDE
solutions against known quantities is of use.

We need to be able to verify when the components of X admit equivalent supermartingale
measures. Note that F 1 clearly does not depend on z in a componentwise way, that is, the first
component of F 1 depends on both components of z. For our comparison, as Q2 is deterministic,
the solution satisfies Y 2

t = Q2 and Z2
t = 0 for all t .

Consider, without loss of generality, the first component of the solution. We have

F 1(ω, t, Z1
t ) − F 1(ω, t, Z2

t )

Z
1
t − Z

2
t

= |Z1
t |

Z
1
t

|Z1
t |mt .

We can then again take a measure change using the exponential martingale

t = 1 +
∫

(0,t]
s−

|Z1
t |

Z
1
t

|Z1
t |mt dMt.

Under the measure thus defined, Girsanov’s theorem states that the first element of X is a local
martingale, and, hence, a martingale by boundedness. A similar result holds for the second
component. Hence, we can make a componentwise comparison between the solutions of our
BSDE and any deterministic terminal condition.

4.4. A vector example with rotation

We now consider a final vector example, where the solution to our BSDE depends only on
the component of Z lying on a given line. This example could also be considered using rotation
and a componentwise comparison theorem. We shall here consider it directly.

Consider a general BSDE with two components (K = 2), driven by a single Brownian
motion M . For a vector z ∈ R2, let z and z denote the first and second components of z.
Suppose that we have a driver of the form

F(ω, t, y, z) = f (ω, t, z − z)

[
1

−1

]

for some bounded function f : � × [0, T ] × R2×1 → R, Lipschitz continuous with respect
to z − z, with f (ω, t, 0) = 0. Now consider the subspace Q of the set of terminal conditions
such that, for any Q ∈ Q, Q = −Q, that is, the first component is the negative of the second.
We shall show that a comparison theorem holds between elements of Q. Note, however, that a
comparison need not hold between terminal conditions not in Q.
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We note that, for any Q ∈ Q, as f does not depend on y, the solution to the BSDE must
satisfy Z = −Z. Hence, in this subspace, the solutions are equal to those for

F(ω, t, y, z) = f (ω, t, 2z)

[
1

−1

]
= f (ω, t, −2z)

[
1

−1

]
.

The existence of an equivalent martingale measure for the each component is then a standard
application of Girsanov’s theorem.

5. Applications to nonlinear expectations

A useful consequence of these comparison properties is that they allow us to develop a theory
of nonlinear expectations, in the same way as Peng [25]. These are closely related to the theory
of dynamic risk measures, as in [1], [3], [27], and others, as each concave nonlinear expectation
E(· | Ft ) corresponds to a dynamic convex risk measure through the relationship

ρt (Q) = −E(Q | Ft ).

A further discussion of this relationship can be found in [27]. (In a similar way to [21], [22], and
others, we here write ρt (Q) = −E(Q | Ft ) rather than ρt (Q) = E(−Q | Ft ), as this draws a
closer conceptual connection between ρ as a convex risk functional, and E as a concave utility
functional.)

For simplicity, we shall, for the remainder of this paper, assume that the drivers F considered
are such that

QF
s,t = {Q ∈ L0(Ft ) : E[‖Q‖2 | Fs] < +∞, P -a.s.}.

That is, for any Ft measurable random variable with P-a.s. finite Fs conditional variance,
there exists a unique solution to the BSDE (2) on [s, t], satisfying certain conditions, such as
square integrability, which we shall leave as implicit. For simplicity, this set will be denoted
L2

s (Ft ). For consistency, this requires that, for all r ∈ [s, t], the solution Yr to (2) satisfies
Yr ∈ QF

s,r = L2
s (Fr ). Note that L0(Fr ) ⊆ L2

r (Ft ) ⊆ L2
s (Ft ) for all r ≤ s ≤ t .

As in [6], we make the following generalisation of a definition of [25].

Definition 2. For s ≤ t ≤ T , fix the sets Qs,t ⊆ L2
s (Ft ). A system of operators

Es,t : L2
s (Ft ) → L0(Fs), 0 ≤ s ≤ t ≤ T ,

is called an F -consistent nonlinear evaluation for {Qs,t } defined on [0, T ] if Es,t satisfies the
following properties.

1. For Q, Q′ ∈ Qs,t , if Q ≥ Q′, P-a.s. componentwise then

Es,t (Q) ≥ Es,t (Q
′) P -a.s.

componentwise, with equality if and only if Q = Q′, P-a.s.

2. For Q ∈ L0(Ft ), Et,t (Q) = Q, P-a.s.

3. For any r ≤ s ≤ t and any Q ∈ L2
r (Ft ),

Es,t (Q) ∈ L2
r (Fs)

and
Er,s(Es,t (Q)) = Er,s(Q) P -a.s.

4. For any s ≤ t , A ∈ Fs , and Q ∈ L2
s (Ft ), IAEs,t (Q) = IAEs,t (IAQ), P -a.s.
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Definition 3. Fix a driver F and time points s ≤ t . For any Q1, Q2 ∈ QF
s,t = L2

s (Ft ), let
(Y 1, Z1) and (Y 2, Z2) be the associated solutions of the BSDE (2).

Suppose that, for some set Qs,t ⊆ L2
s (Ft ) and all Q1, Q2 ∈ Qs,t ,

1. for each i, there exists a measure P̃i equivalent to P such that the ith component of X, as
defined for r ∈ [s, t] by

e�
i Xr := −

∫
(s,r]

e�
i [F(ω, u, Y 2

u−, Z1
u) − F(ω, u, Y 2

u−, Z2
u)] du

+
∫

(s,r]
e�
i [Z1

u − Z2
u] dMu + e�

i [L1
r − L2

r ],

is a P̃i-supermartingale on [s, t],
2. F is componentwise Lipschitz continuous in Y , in the sense of Remark 5. (This includes

the case when F does not depend on Y .)

Then F will be called balanced on Qs,t . Additionally, F will be called balanced on a family
{Qs,t } if it is balanced on each member of the family.

Remark 8. The distinction between the sets Qs,t and L2
s (Ft ) is that L2

s (Ft ) is the set on which
solutions to the BSDE exist, whereas Qs,t is the set on which a (strict) comparison theorem
holds. In many cases, these sets may be identical. However, we distinguish between them for
the sake of generality.

Remark 9. Again, it is possible to modify Definition 3 in the same way as in Corollary 1.

Theorem 5. Fix a driver F balanced on some family {Qs,t }. Define the ‘F -evaluation’, a
system of operators on L2

s (Ft ) for all s < t , by

Es,t (Q) = Ys, (10)

where Ys is the solution to the BSDE (2). Then Es,t is an Ft -consistent nonlinear evaluation
for {Qs,t }.

Proof. We verify that conditions 1–4 of Definition 2 are satisfied.
1. The statement Es,t (Q1) ≥ Es,t (Q2), P-a.s. whenever Q1 ≥ Q2, P-a.s. is simply the result

of the strict comparison theorem (Theorem 1 with Theorems 2 and 3 and Remark 5), which
holds as F is balanced on Qs,t .

2. The fact that Et,t (Q) = Q, P-a.s. for any Q ∈ L0(Ft ) is trivial, as we have defined Et,t (Q)

by the solution to a BSDE, which reaches its terminal value Q at time t by construction.
3. To show that Er,s(Es,t (Q)) = Er,t (Q), P-a.s. for any r ≤ s ≤ t , let Y denote the solution

to the relevant BSDE. Then a simple rearrangement of (2) gives

Ys = Yr −
∫

(r,s]
F(ω, u, Yu−, Zu) du +

∫
(r,s]

Z�
u dMu +

∫
(r,s]

dLu.

Hence, Yr is also the time r value of a solution to the BSDE with terminal time s and value Ys .
Therefore, it is clear that Ys ∈ L2

r (Fs), and, by the uniqueness of BSDE solutions,

Er,s(Es,t (Q)) = Er,t (Q) P -a.s.,

as desired.
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4. We wish to show that, for A ∈ Fs , IAEs,t (Q) = IAEs,t (IAQ), P-a.s. For Q ∈ L2
s (Ft ),

let Y 1 be the solution to the BSDE (2) with terminal condition Q. Premultiplying by IA,
we have a BSDE with terminal condition IAQ, driver IAF , and solution IAY 1

s = IAEs,t (Q).
If Y 2 is the solution to the BSDE with terminal condition IAQ then we similarly obtain
IAY 2

s = IAEs,t (IAQ). We can now write

Y 3
u = IAY 2

u + IAcY 1
u

for u ∈ [s, t]. It follows that

Y 3
s −

∫
(s,t]

[IAF (ω, t, Y 3
u , Z3

u) + IAcF(ω, t, Y 3
u , Z3

u)] du +
∫

(s,t]
Z3

u dMu

= IAQ + IAcQ,

which clearly implies that Y 1 and Y 3 are both solutions at s to the BSDE with driver F ,
terminal condition Q ∈ L2

s (Fs), and, hence, Y 1 = Y 3 up to indistinguishability. Therefore,
IAY 2

s = IAY 1
s , P-a.s., as desired.

With a slight modification, we also define nonlinear expectations.

Definition 4. For t ≤ T , fix the sets Qt ⊆ L2
t (FT ). A system of operators

E(· | Ft ) : L2
t (FT ) → L0(Ft ), 0 ≤ t ≤ T ,

is called an Ft -consistent nonlinear expectation for {Qt } defined on [0, T ] if

• the restriction Es,t = E(· | Fs)|L2
s (Ft )

of E to L2
s (Ft ) is a nonlinear evaluation for all

s ≤ t ,

• for all t , and any A ∈ Ft , Q ∈ L2
t (FT ),

IAE(Q | Ft ) = E(IAQ | Ft ) P -a.s.

Theorem 6. Consider a driver F balanced on a family {Qs,t } with

F(ω, u, Yu−, 0) = 0 (du × P)-a.s.

on [0, T ] × �.
For each Q ∈ L2

s (FT ), define
E(Q | Fs) := Ys,

where Ys is the solution to (2) with t = T .
Then E(· | Fs) is a nonlinear expectation on {Qs := Qs,T }. In this case it will also be called

an F -expectation.

Proof. From Theorem 5, we can see that the restriction of this operator is a nonlinear
evaluation.

We know that IAF (ω, t, Yt−, Zt ) = F(ω, t, IAYt−, IAZt ), (dt×P)-a.s. and IAQ ∈ L2
t (FT ).

Therefore, if (Y, Z, L) is the unique solution to the BSDE with driver F and terminal value
Q, then we can premultiply the BSDE (2) by IA to see that (IAY, IAZ, IAL) is the unique
solution to the BSDE with driver F and terminal value IAQ. That is, IAE(Q | Ft ) = IAYt =
E(IAQ | Ft ).
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5.1. Geometry of F -evaluations

The comparison theorem establishes various geometric properties of the BSDE solutions,
or, equivalently, of the F -evaluations. Some of these properties are explored in this section.

Theorem 7. Suppose that Qs,t is a convex set, with F a balanced driver on Qs,t . Suppose that
F is concave on Qs,t , that is, for any λ ∈ [0, 1] and any (Y 1, Z1), (Y 2, Z2) corresponding to
Q1, Q2 ∈ Qs,t , (dt × P)-a.s. on [s, t],

F(ω, t, λY 1
t− + (1 − λ)Y 2

t−, λZ1
t + (1 − λ)Z2

t )

≥ λF(ω, t, Y 1
t−, Zt ) + (1 − λ)F (ω, t, Y 2

t−, Z2
t ),

the inequality being taken componentwise.
Then, for any λ ∈ [0, 1] and any Q1, Q2 ∈ Qs,t , the F -evaluation is strictly concave, that

is, it satisfies
Es,t (λQ1 + (1 − λ)Q2) ≥ λEt,T (Q1) + (1 − λ)Es,t (Q

2),

with equality if and only if Q1 = Q2, P-a.s.

Proof. Taking a convex combination of the BSDEs with terminal conditions Q1 and Q2

gives the equation

λY 1
s + (1 − λ)Y 2

s −
∫

(s,t]
[λF(ω, u, Y 1

u−, Zu) + (1 − λ)F (ω, u, Y 2
u−, Z2

u)] du

+
∫

(s,t]
[λZ1

u + (1 − λ)Z2
u] dMu

= λQ1 + (1 − λ)Q2,

which is a BSDE with terminal condition λQ1 + (1 − λ)Q2 and driver

F̃ = λF(ω, u, Y 1
u−, Zu) + (1 − λ)F (ω, u, Y 2

u−, Z2
u).

Consider the BSDE with terminal condition λQ1 + (1 − λ)Q2 and driver F . Denote the
solution to this by Zλ. We can compare these BSDEs using Theorem 1. The assumptions are
all satisfied as F is balanced on Qs,t . Hence, the solutions satisfy

Yλ ≥ λY 1 + (1 − λ)Y 2.

By the strict comparison, which holds as F is balanced, we have equality if and only if the
terminal conditions are equal with conditional probability 1. The result follows.

Theorem 8. Consider a driver F balanced on a family {Qs,t } (which may be empty). Suppose
that, for some s < t and all deterministic λ in some set C where all products are assumed to
be well defined,

F(ω, u, λYu−, λZu) = λF(ω, u, Yu−, Zu) (du × P)-a.s.

on [s, t] × �. Then the nonlinear evaluation generated by F satisfies

Es,t (λQ) = λEs,t (Q)

for all Q ∈ L2
s (Ft ) and all λ ∈ C.
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Proof. Simply take the BSDE with terminal condition Q, premultiply by λ, and factor the
driver F term. It is clear that this is then the BSDE with terminal condition λQ, and that the
solution is (λY, λZ, λL).

Remark 10. Note that this theorem applies for both scalar and square matrix valued λ, and it
is clear that, with appropriate modifications to allow for dimensionality of F , would apply for
vector-valued λ as well.

Definition 5. For any time t , we define Ht(Q), the essential convex hull of Q at time t , to be
the smallest, Ft -measurable, convex set such that P(Q ∈ Ht(Q) | Ft ) = 1.

Definition 6. We denote by H ri
t (Q) the relative interior of Ht(Q), that is, the interior of Ht(Q)

viewed as a subset of the affine hull it generates.

Remark 11. The interested reader is referred to any good book on elementary stochastic finance
for a more detailed definition, for example, [15, p. 65] or [17, p. 27].

Theorem 9. Consider a nonlinear F -expectation E(· | Ft ) for {Qt }, with

L0(Ft ) ⊆ Qt

for all t . Then, for all Q ∈ Qt , each component e�
i E(Q | Ft ) satisfies

e�
i E(Q | Ft ) ∈ H ri

t (e�
i Q).

Proof. For a fixed t , define a random variable Qmin by

e�
i Qmin = inf Ht(e

�
i Q).

Note that Q > Qmin componentwise. As Qmin is Ft -measurable, the solution to the BSDE with
driver F and terminal condition Qmin is simply Ys = Qmin for s ≥ t . As Qmin ∈ L0(Ft ) ⊆ Qt ,
property 1 of Definition 2 implies that either Ht(Q) contains only a single point, in which case

Q = Qmin ∈ Ht(Q) = H ri
t (Q),

or
E(Q | Ft ) > Qmin

componentwise. We can repeat this argument with Qmax defined by e�
i Qmax = sup Ht(e

�
i Q),

which shows that either Ht(Q) contains a single point, or E(Q | Ft ) < Qmax componentwise.
Hence, in the latter case, e�

i E(Q | Ft ) lies strictly within the interior of Ht(e
�
i Q), which is the

same as H ri
t (e�

i Q). In either case this shows that

e�
i E(Q | Ft ) ∈ H ri

t (e�
i Q).

6. Conclusion

In this paper we have presented a comparison theorem for backward stochastic differential
equations (BSDEs) in which the stochastic term is given by an arbitrary martingale. This
result is a generalisation of the result of Peng [24], as it allows for martingales other than
Brownian motion, and also applies to the case of vector-valued equations. We have shown how,
under some conditions, for example, Lipschitz continuity, the conditions of this theorem can
be simplified.
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We have defined the concept of a balanced driver for a BSDE, which is essentially a condition
on the driver such that a comparison theorem holds. By expressing this condition in terms of
equivalent (super)martingale measures, the links with previous work on arbitrage theory are
more apparent.

Using these results, we have developed a theory of nonlinear expectations, which can now
lie in a general probability space. These are closely related to dynamic risk measures, as
emphasised in [27]. Various applications of this theory are possible, as we have not assumed
that the martingale M used to define the BSDEs will generate the filtration of the probability
space. We have also outlined some general geometric properties of these nonlinear expectations.
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