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The dynamics of irrotational shallow water wave turbulence forced at large scales and
dissipated at small scales is investigated. First, we derive the shallow water analogue
of the ‘four-fifths law’ of Kolmogorov turbulence for a third-order structure function
involving velocity and displacement increments. Using this relation and assuming
that the flow is dominated by shocks, we develop a simple model predicting that the
shock amplitude scales as (εd)1/3, where ε is the mean dissipation rate and d the
mean distance between the shocks, and that the pth-order displacement and velocity
structure functions scale as (εd)p/3r/d, where r is the separation. Then we carry out a
series of forced simulations with resolutions up to 76802, varying the Froude number,
Ff = (εLf )

1/3/c, where Lf is the forcing length scale and c is the wave speed. In all
simulations a stationary state is reached in which there is a constant spectral energy
flux and equipartition between kinetic and potential energy in the constant flux range.
The third-order structure function relation is satisfied with a high degree of accuracy.
Mean energy is found to scale approximately as E ∼

√
εLf c, and is also dependent

on resolution, indicating that shallow water wave turbulence does not fit into the
paradigm of a Richardson–Kolmogorov cascade. In all simulations shocks develop,
displayed as long thin bands of negative divergence in flow visualisations. The mean
distance between the shocks is found to scale as d ∼ F1/2

f Lf . Structure functions of
second and higher order are found to scale in good agreement with the model. We
conclude that in the weak limit, Ff → 0, shocks will become denser and weaker and
finally disappear for a finite Reynolds number. On the other hand, for a given Ff , no
matter how small, shocks will prevail if the Reynolds number is sufficiently large.

Key words: shock waves, turbulence theory

1. Introduction
The shallow water (SW) equations have been widely used to study basic

mechanisms occurring in geophysical flows (see for example Vallis 2006). The
equations are based on the hydrostatic approximation which is extremely well satisfied
for a very wide range of scales in the oceans and in the atmosphere. They also rely on
a stronger hypothesis regarding the density stratification. The fluid is assumed to be
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structured in a limited number of thin homogeneous layers, which leads to equations
involving only two-dimensional operators. The two-layer SW equations capture the
baroclinic instability which is of primary importance for the dynamics of the oceans
and of the atmosphere (Vallis 2006; Wirth 2013). The single-layer SW equations
are quite similar to the two-dimensional compressible Navier–Stokes equations. The
equations do not capture baroclinic instability but they constitute one of the simplest
hydrodynamic models with coexisting eigenmodes of the linearised operator with zero
linear frequency and with finite non-zero linear frequency, ω = ±

√
f 2 + c2k2, where

f is the Coriolis parameter, c the gravity wave speed and k= |k| the wavenumber.
Due to their relative simplicity, the SW equations have been used to study issues

like the projection on the balanced manifold (Lorenz 1980; Mohebalhojeh & Dritschel
2000) and the production of waves by balanced flows (Farge & Sadourny 1989;
Lahaye & Zeitlin 2012; Vanneste 2013). Balanced flows have a dynamics which is
very similar to two-dimensional turbulence, with an upscale energy cascade. Small
scale energy dissipation vanishes in the limit of zero viscosity. In contrast to this,
statistical mechanics indicates that wave energy should be transferred towards small
scales (Warn 1986). Numerical simulations have shown that long waves lose their
energy by transferring it to shorter waves (Sadourny 1975; Farge & Sadourny 1989).
Yuan & Hamilton (1994) showed that statistically stationary shallow water flows can
be obtained by forcing quasi-geostrophic modes at large scales and with dissipation
only at small scales. They suggested that the k−5/3 energy spectrum observed at
atmospheric mesoscales (Nastrom & Gage 1985; Li & Lindborg 2018) is generated by
a downscale cascade of gravity waves which may be captured by the SW equations.

The k−5/3 spectrum has been reproduced by some general circulation models
(GCMs) based on the primitive equations (Koshyk & Hamilton 2001; Skamarock
2004; Hamilton, Takahashi & Ohfuchi 2008). Augier & Lindborg (2013) formulated
a spectral energy budget of kinetic and available potential energy in terms of spherical
harmonics and used this formulation to investigate two GCMs. It was found that one
of the models – named the Atmospheric GCM for the Earth Simulator (AFES)
model – was able to reproduce a downscale energy cascade with realistic k−5/3

mesoscale spectra. The result was almost too good, since the AFES model simulation
only contained 21 vertical levels, while theoretical arguments based on stratified
turbulence theory (Lindborg 2006) suggest that a much finer vertical resolution would
be needed. This leads us to ask what number of vertical levels a model needs in
order to reproduce a downscale energy cascade. Was Yuan & Hamilton (1994) right
when they suggested that even a single-layer model, such as the SW equations,
could do the job? The original motivation for this study was to investigate this
suggestion. A first set of simulations of the SW equations, containing both balanced
and gravity wave motions, showed some encouraging results. Indeed, gravity waves
were transferring energy towards small scales. However, after a while it became clear
that the cascade was not as strong as in the GCM simulation. Moreover, in all the
SW simulations we observed shocks with an associated k−2-spectrum rather than a
k−5/3-spectrum. These observations lead us to dismiss the SW equations as a model
for the atmospheric downscale cascade. Based on the SW equations we developed
another two-dimensional toy model (Lindborg & Mohanan 2017) that is absent of
shocks and can reproduce the energy cascade in the GCM quite well, including a
k−5/3-spectrum.

The shocks we observed in the SW simulations left us in a state of curiosity. In
some simulations they appeared to be rather strong and in others rather weak. In some
simulations they were densely packed and in others sparsely distributed. In what way
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Shallow water wave turbulence 1171

do the input parameters regulate these variations? Will there always be shocks or will
they disappear in the limit of weak nonlinearities? Such questions made us to shift
our theoretical focus and pursue the investigation, despite the fact that the answer to
the question that originally motived it turned out to be negative.

Some predictions based on the weak wave turbulence formalism (Zakharov, L’vov
& Falkovich 1992; Nazarenko 2011) may be of relevance in the limit of weak
nonlinearities. In the case of inertia–gravity waves, Falkovich & Medvedev (1992)
showed that the exact solutions of the kinetic equation corresponding to a constant
downscale energy flux are associated with a spectrum scaling as E(k)∼ k−8/3, while
Zakharov & Sagdeev (1970) used the weak turbulence formalism to derive a spectrum
of the form E(k)∼ k−3/2 for three-dimensional acoustic turbulence. This prediction is
of particular interest, since the acoustic equations and the SW equations are similar to
the equations describing acoustic turbulence. However, it is questionable that the weak
turbulence formalism is applicable to acoustic and SW wave turbulence, no matter
how weak the nonlinearities are supposed to be. Kadomtsev & Petviashvili (1973)
argued that shocks always will always develop in acoustic turbulence, also in the
limit of weak nonlinearities, due to the fact that acoustic waves are non-dispersive.

Shocks have been observed in many simulations of the SW equations (Farge
& Sadourny 1989; Polvani et al. 1994; Lahaye & Zeitlin 2012). As shown by
Burgers (1948) in the one-dimensional case and Kuznetsov (2004) in the two- and
three-dimensional cases, the energy spectrum of a flow dominated by shocks will
scale as k−2, a prediction which has been confirmed by a great number of simulations
of the Burgers equation (for a review, see Frisch & Bec 2001). The shocks also lead
to very strong intermittency, as demonstrated by Bouchaud, Mezard & Parisi (1995)
and Weinan et al. (1997) for Burgers turbulence. Falkovich & Meyer (1996) simulated
acoustic turbulence dominated by shocks and reported spectra scaling as k−2. Yuan
& Hamilton (1994) carried out forced dissipative simulations of the SW equations
showing similar spectra. However, the resolution in both these studies was quite
coarse, (3862 and 1012 grid points, respectively) so that the scaling range was very
narrow. Moreover, Falkovich & Meyer (1996) used a very particular type of strongly
anisotropic forcing with waves in only one direction while Yuan & Hamilton (1994)
forced in geostrophic modes which severely complicates the interpretation. Clearly,
a new study of two-dimensional shock dominated wave turbulence can bring some
more light on the problem.

In this paper, we study SW wave turbulence as a generic case of a forced–
dissipative wave breaking system. Although there may not be any straightforward
meteorological or laboratory applications, we believe that the investigation has
interesting implications for a general understanding of wave turbulence and that there
may be long term applications in different fields, such as acoustics and cosmology.
To start with, we present some theory and then we report on a series of simulations
of irrotational SW wave turbulence.

2. Theory
In a non-rotating system of reference the SW equations for a thin layer of fluid

over a flat bottom and with a free surface can be written as (see for example Vallis
2006)

∂tu+ u · ∇u=−c2
∇h+

ν

h
∇

2u, (2.1)

∂th=−∇ · (hu), (2.2)
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where u is the horizontal velocity, h= 1+η the non-dimensional thickness of the fluid
layer, η being the surface displacement, ν the kinematic viscosity and c the gravity
wave speed. The SW equations conserve mass, h, and momentum J= hu. As a matter
of fact, we have constructed the viscous term in (2.1) in such a way that momentum
is conserved and energy dissipation is positive definite. This can only be accomplished
by permitting the term to be nonlinear in the flow variables. There are different forms
of nonlinear terms that fulfil both conditions and it may be disputed which is the best
one. However, in the simulations we will use diffusion terms in both (2.1) and (2.2)
that will not fulfil either of these two conditions in a strict sense and we will therefore
not discuss this matter further. The inviscid SW equations conserve a local quantity
along trajectories of the fluid particles, the Ertel potential vorticity Q= ζ/h, where ζ
is the vorticity, which in a rotating system should be interpreted as absolute vorticity.
This conservation law will be of no relevance in the present study in which we only
consider irrotational flows for which the velocity can be written as u=∇φ, where φ
is the velocity potential. In a domain with no net fluxes through the boundaries the
inviscid equations conserve energy, E=EK +EP, where EK = J · u/2 is kinetic energy
and EP = c2h2/2 is potential energy. The latter can be split into three terms as

EP = c2/2+ c2η+ c2η2/2, (2.3)

where the first term corresponds to the potential energy of a state with no surface
displacement. The third term, which is quadratic in the surface displacement, may be
named available potential energy (APE), EA= c2η2/2, a concept introduced by Lorenz
(1955). As a consequence of mass and energy conservation the SW equations also
conserve the sum of kinetic and available potential energy, EK + EA. The velocity
potential and the displacement of the linearised inviscid SW equations both satisfy
the wave equation,

∂2η

∂t2
= c2
∇

2η, (2.4)

with equipartition between kinetic energy (KE) and APE over a wave period in each
Fourier mode.

In order to analyse the spectral flux of energy, we derive the spectral energy
budget, i.e. the governing equations for spectral KE and APE functions. This is not
as straightforward as in incompressible turbulence since the expression of the kinetic
energy is not quadratic. To define the spectral KE function, we use the relation

〈EK〉 =
∑

k

(u, J)k/2, (2.5)

where
(a, b)k ≡Re{â(k)∗ · b̂(k)}, (2.6)

and Re denotes the real part, k is the wavenumber and the hat denotes the Fourier
transform. The spectral KE function can therefore be defined as

EK(k)≡ (u, J)k/2. (2.7)

Similarly, the APE can be written as the sum over all wavenumbers of the spectral
APE function

EA(k)= c2(η, η)k/2. (2.8)
The inviscid equation for the spectral KE and APE functions can be written as

∂tEK(k)= TK(k)−C(k), (2.9)
∂tEA(k)= TA(k)+C(k), (2.10)
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where

TK(k)=−(∇ · u, EK)k − (u,∇EK)k, (2.11)
TA(k)=−c2(∇η, J)k − c2(η,∇ · J)k, (2.12)

are the spectral transfer functions of KE and APE, respectively, and

C(k)= (u,∇EP)k (2.13)

is the spectral KE–APE conversion function. The spectral energy flux functions of KE
and APE are defined as

ΠK(k)=
∑
|k′|>k

TK(k′), ΠA(k)=
∑
|k′|>k

TA(k′). (2.14a,b)

We will now derive an analogue of the so called ‘four-fifths law’ (Kolmogorov
1941) for the third-order velocity structure function of incompressible isotropic
turbulence. In the case of irrotational SW wave turbulence the analogous law contains
a third-order structure function involving both velocity and displacement increments.
In order for such a law to exist it is necessary that the velocity field is either
non-divergent (incompressible) or irrotational. To derive the law it is convenient to
start from the following equations

∂tu=−∇(u · u/2)− c2∇h (2.15)
∂tJ=−∂j(uj J)−∇Ep, (2.16)

∂th=−∇ · J, (2.17)

where we have used the assumption that the velocity field is irrotational in (2.15). We
consider two points, positioned at x and x′, separated by the vector r= x′ − x. Using
Cartesian tensor notation we denote derivates with respect to x as ∂i and derivatives
with respect to x′ as ∂ ′i . Treating x and x′ as independent variables we find

∂t(J′iui)=−∂i(J′i |u|
2/2)− ∂ ′i (ujJ′ju

′

i)− ∂i(J′ic
2h)− ∂ ′i (uiE′p), (2.18)

and
∂t(h′h)=−∂i(h′Ji)− ∂

′

i (hJ′i), (2.19)

which gives

∂t(J′ · u+ J · u′ + 2c2h′h) = −∂i(J′i |u|
2/2)− ∂ ′i (Ji|u′|2/2)− ∂ ′i (ujJ′ju

′

i)− ∂i(u′jJjui)

− c2∂i(J′ih)− c2∂ ′i (Jih′)− ∂ ′i (uiE′p)− ∂i(u′iEp)

− 2c2∂ ′i (J
′

ih)− 2c2∂i(Jih′). (2.20)

We then assume homogeneity and take the average denoted by 〈 〉. For every function
g(x, x′), we have ∂ ′i 〈g〉 =−∂i〈g〉 =∇r〈g〉|i. We thus obtain

∂t〈J′ · u+ J · u′ + 2c2h′h〉 = +∇r · 〈J′|u|2/2− J|u′|2/2〉
−∇r · 〈ujJ′ju

′
− u′jJju〉

−∇r · 〈uE′p − u′Ep〉

− c2
∇r · 〈J′h− Jh′〉. (2.21)
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We then introduce the structure functions and the operator δ returning the increment
of a variable between two points separated by r, for example δh(x, r)=h(x+ r)−h(x).
Using homogeneity again, we obtain

〈(δh)2δu〉 =−〈h′2u〉 + 〈h2u′〉 + 2〈hh′u〉 − 2〈hh′u′〉, (2.22)

and
〈|δu|2δJ〉 = 〈|u|2J′〉 − 〈|u′|2J〉 + 〈uju′jJ

′
〉 − 〈uju′jJ〉, (2.23)

which gives

2∂t〈J′ · u+ J · u′ + 2c2h′h〉 =∇r · (〈|δu|2δJ〉 + c2
〈(δh)2δu〉). (2.24)

For separations that are considerably larger than dissipative scales of motion and
considerably smaller than forcing scales a standard argument (see for example Frisch
1995) gives that the left-hand side is approximately equal to −8ε, where ε is the
mean dissipation rate. It is interesting to note that a factor of 8 appears in the case
when the velocity field is irrotational while a corresponding factor of 4 appears in
the case when the velocity field is non-divergent. Assuming isotropy and integrating
yield the Kolmogorov law for irrotational shallow water wave turbulence

〈|δu|2δJL〉 + c2
〈(δh)2δuL〉 =−4εr, (2.25)

where JL ≡ J · r/|r| and uL ≡ u · r/|r| are longitudinal increments.
We will now use (2.25) together with straightforward geometrical and statistical

arguments to construct a model for velocity and displacement structure functions
of any order above a certain minimum. Our analysis has some similarities with the
analyses by Bouchaud et al. (1995), Weinan et al. (1997) and Weinan & Eijnden
(1999) for Burgers equation. We consider a domain with total area A occupied by
shocks which we consider as smooth lines. We denote the total length of all shocks
by Ls. The mean distance between the shocks within the domain can be estimated as

d'
A
Ls
. (2.26)

A structure function of a flow variable is defined as the area average of increments
between two points separated by a distance r. Assuming that the contribution from
increments where the two points are not separated by a shock is negligible for higher-
order structure functions we obtain

〈|δh|p〉 =
1
A

∫
A

d2x|δh(x)|p '
r
A

∫
shocks

ds|cos θ | |1h(s)|p, (2.27)

where θ is the angle between the shock normal unit vector and the separation vector
r and 1h(s) is the shock displacement amplitude. Assuming isotropy, the integral can
be split and we get

〈|δh|p〉 ' r
Ls

A
〈|cos θ |〉θ 〈|1h|p〉s '

2
π
〈|1h|p〉s

r
d
, (2.28)

where 〈 〉θ is the mean over θ and 〈 〉s is the mean over all shocks.
For velocity increments, we can also use a characteristic of the velocity singularities.

The step in velocity is confined to the component perpendicular to the shocks, which
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Shallow water wave turbulence 1175

implies that the longitudinal and transverse increments can be written as δuL= δu cos θ ,
δuT = δu sin θ . Applying the same averaging method, we obtain

〈|δuL|
p
〉 ' 〈|cos θ |1+p

〉θ 〈|1u|p〉s
r
d
, (2.29)

and
〈|δuT |

p
〉 ' 〈|cos θ | |sin θ |p〉θ 〈|1u|p〉s

r
d
, (2.30)

where 1u is the shock velocity amplitude. These assumptions completely determine
the ratio between the longitudinal and transverse structure functions, which can be
computed as

Rp(r)≡
〈|δuL|

p
〉

〈|δuT |
p〉
=
〈|cos θ |1+p

〉θ

〈|cos θ | |sin θ |p〉θ
, (2.31)

giving the numerical values R2 = 2, R3 = 6π/8 and R4 = 8/3. Interestingly, for an
isotropic and irrotational velocity field, the longitudinal and transverse second-order
structure functions are exactly related by 〈(δuL)

2
〉 = ∂r(r〈(δuT)

2
〉) (Lindborg 2007). If

we further assume than both second-order structure functions follow the same scaling
law 〈(δuL)

2
〉 ∝ 〈(δuT)

2
〉 ∝ rα, then we have 〈(δuL)

2
〉 = (1 + α)〈(δuT)

2
〉, which gives

R2 = 2 for α = 1. In the limit r→ 0 we have α = 2 and R2 = 3.
In order for (2.28)–(2.30) to match with the third-order structure function law (2.25)

the shock amplitudes should scale as

|1u| ∼ |c1h| ∼ (εd)1/3, (2.32)

and the structure functions of order p will consequently scale as

〈|δu|p〉 ∼ 〈(c|δh|)p〉 ∼ (εd)p/3
r
d
. (2.33)

Assuming that (2.33) is valid for second-order moments and that the non-quadratic
contribution to the KE spectrum is negligible the corresponding scaling law for the
energy spectra reads

EK(k)∼ EA(k)∼ ε2/3d−1/3k−2. (2.34)

The model provides the following predictions for the flatness factors of velocity
increments

FL =
〈|δuL|

4
〉

〈|δuL|
2〉2
∝
〈|cos θ |5〉θ
〈|cos θ |3〉2θ

d
r
=

9π

15
d
r

(2.35)

FT =
〈|δuT |

4
〉

〈|δuT |
2〉2
∝
〈|cos θ | |sin θ |4〉θ
〈|cos θ | |sin θ |2〉2θ

=
9π

10
d
r
. (2.36)

The ratio between the two flatness factors is equal to FT/FL = 3/2 according to the
model.

We now turn to the question of how the shock width, δx, can be estimated. One
suggestion would be that δx is equal to the Kolmogorov length scale, ν3/4/ε1/4.
However, exact solutions of Burgers equation (see for example Whitham 1974)
suggest that δx ∝ ν rather than δx ∝ ν3/4. The scaling of the energy spectra (2.34)
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1176 P. Augier, A. V. Mohanan and E. Lindborg

also suggests that d should enter into the expression for δx, apart from ν and ε.
Dimensional analysis thus gives

δx∼
ν

(dε)1/3
, (2.37)

which is considerably smaller than the Kolmogorov length scale. This result can also
be derived in the following way. Assuming that all dissipation takes place at the
shocks, whose total area is equal to Lsδx, and remembering that ε is defined as the
mean over the domain area A, we find

ε ∼ ν
|1u|2

δx2

Lsδx
A
∼ ν

ε2/3

δxd1/3
, (2.38)

again giving (2.37). Applying the same averaging method we obtain the following
estimates for the skewness and flatness of the velocity derivative, ∂xu,

S∂xu ∼

(
d
δx

)1/2

∼
d2/3ε1/6

ν1/2
, (2.39)

F∂xu ∼
d
δx
∼

d4/3ε1/3

ν
, (2.40)

where the skewness is negative. For Kolmogorov turbulence observations indicate
that F∂xu ∝ ν

−1/6 (Atta & Antonia 1980), a dependence which is well capture by the
multifractal model of Meneveau & Sreenivasan (1987). In SW wave turbulence there
is a much stronger increase of the flatness factor with decreasing ν, which can be
explained by the fact that dissipation takes place only at the shocks.

Finally, we estimate the Mach number, M=U/c, where U is the shock propagation
velocity in the frame of reference where the fluid velocity in front of the shock is zero.
Mass and momentum conservation give (see Baines 1998)

M =

√
h+
h−

h+ + h−
2

, (2.41)

where h− and h+ are the non-dimensional layer thickness before and after the shock,
respectively. Noting that h+ − h− =1h, expanding in small 1h and using (2.32) the
Mach number can be estimated as

M ∼ 1+
3
4
(εd)1/3

c
, (2.42)

and is only slightly larger than unity for all relevant applications.
The analysis we have developed has, of course, some limitations. First, it is obvious

that the linear scaling of the structure functions only can be valid for separations
that fulfil the condition δx� r� d. Second, it is obvious that it cannot be valid for
low-order moments or structure functions. According to arguments given by Bouchaud
et al. (1995) and Weinan & Eijnden (1999), it should be valid for structure functions
of all orders p > 1, in the asymptotic limit of large scale separation. It is quite
easily argued, however, that the shocks cannot determine the scaling of the structure
functions of order p= 1. To see this, consider the first order moment of the absolute
value of δuL. The longitudinal velocity increment is always negative over a shock,
that is to say that the difference of the projection of the velocity on the direction over
which the shock is crossed is always negative. In a domain with periodic boundary
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conditions the mean value of δuL is zero. The negative values of δuL for separations
where a shock is crossed must therefore be compensated by positive values for
separations where no shock is crossed. There is no reason to believe that these values
are all positive, but they are only positive on average. Thus, 〈|δuL|〉s< 〈|δuL|〉ns, where
the left-hand side is the mean value over all separations where a shock is crossed
and the right-hand side is the mean value over separations where no shock is crossed.
Therefore, the analysis is not valid for first-order moments. In the following, we
will compare the predictions with structure functions of second and higher orders
calculated from simulations.

3. Simulations

We have carried out a set of twenty forced–dissipative simulations of the SW
equations in a quadratic domain with periodic boundary conditions using the standard
open-source pseudo-spectral code FluidSim (Augier, Mohanan & Bonamy 2019;
Mohanan, Bonamy & Augier 2019a,b). In these twenty simulations we used an
eighth-order diffusion operator to act as the agent of dissipation. On the request from
the reviewers we have also carried out a set of nineteen simulations with Laplacian
diffusion. The results from the latter set, which are similar to the results from the
first set, are presented in appendix A.

The simulations were started from zero initial conditions and were run till a
statistically stationary state was reached. The equations were reformulated in terms
of the three eigenmodes of the linearised equations in Fourier space. One of these
eigenmodes is zero for an irrotational flow. We first carried out a few test simulations
in which all three eigenmodes were allowed to evolve in time. However, when
only the two wave modes are forced vorticity remains very small throughout the
simulations and does not affect the wave dynamics. Therefore, we chose to solve the
equations only for the two wave modes. As discussed in the previous section, a linear
viscous term in (2.1) will not conserve momentum exactly and does not give a strictly
positive definite expression for energy dissipation. We have relaxed the requirements
of exact momentum conservation and positive definite energy dissipation. Instead of
using the nonlinear form of the viscous term in (2.1) we have used a higher-order
linear operator ν8∇

8 both in (2.1) and (2.2), where ν8 is a ‘hyperdiffusion’ or a
‘hyperviscosity’. There is no strong physical motivation for this modification but, as
discussed by Farge & Sadourny (1989), a molecular viscous operator of the form
ν∇2 is not necessarily a relevant model of the actual small-scale dissipation for
SW flows, which should rather be described as a transition from two-dimensional
to three-dimensional motions before reaching the scales where dissipation actually
occurs. From a numerical point of view it is very beneficial to introduce a direct sink
of APE of equal magnitude as the sink of KE. The addition of a hyperdiffusion term
in (2.2) will provide such a sink without seriously affecting mass conservation, which
will be extremely well fulfilled, even when a high-order hyperdiffusion term is added.

Time advancement is carried out by a classical fourth-order Runge–Kutta scheme
for the nonlinear term and an exact integration for the linear and dissipative terms.
This explicit integration is especially useful at very high resolution and very large
c when the shortest waves are very fast. We use an adaptable time step method
which maximises the time step over a standard Courant–Friedrichs–Lewy condition
(Lundbladh et al. 1999; Augier, Chomaz & Billant 2012). Most of the aliasing
is removed by truncating 8/9 of the modes along each direction (for a detailed
discussion on the issues of the non-conservation of the non-quadratic energy and the
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aliasing errors in the truncated one-layer shallow water model, see Farge & Sadourny
1989). The resolution is characterised by the number of nodes, n, in each direction
and has been varied from 960 to 7680. The wave speed c has been varied over almost
two orders of magnitude from 10 to 700. The wave modes are forced in a shell in
spectral space corresponding to relatively small wavenumbers, 5δk< |k|< 8δk, where
δk = 2π/L and L is the length of the side of the quadratic domain. We define the
forcing wavenumber as kf = 6δk. To obtain as broad scaling range as possible it is
preferable to choose the forcing scale, Lf = π/kf , as large as possible. On the other
hand, if Lf is too large, there is a risk that standing waves will be induced by the
periodic boundary conditions and also that isotropy will be broken due to alignment
of the shocks with the boundaries. We have found that Lf /L = 1/12 is sufficient to
avoid these two problems. The forcing is white noise in time and designed so that
the energy injection rate is normalised to unity at each time step. Therefore, when
the flow has reached a stationary state, dissipation should be equal to unity. The
strength of the stratification is characterised by a Froude number, defined as

Ff =
(εLf )

1/3

c
, (3.1)

a parameter that can be determined from the start of each simulation. Energy is
dissipated at the smallest resolved scales by hyperviscosity. An intricate question is
how the value of ν8 should be chosen so that the shocks are resolved. The standard
resolution requirement in turbulence simulations of this type is that the hyperviscosity
analogue to the Kolmogorov scale

η8 =

(
ν8

3

ε

)1/22

, (3.2)

should be resolved. However, our estimate (2.37) of the shock width suggests that this
may not be a sufficient condition, since d is likely to enter the expression for δx also
in the case when we use hyperviscosity. A similar estimate as in (2.38) gives

δx∼ η8

(η8

d

)1/21
. (3.3)

Thus, the shock width dependence on d can be expected to be extremely weak when
hyperviscosity is used. Therefore we simply use the standard resolution requirement
that (3.2) should be resolved. We have found that setting kd ' kmax/2.5, where kd =

1/η8 and kmax = (8/9)πn/L is the maximum wavenumber, is sufficient to resolve the
shocks. Since the energy injection rate is normalised to unity and all simulations reach
a stationary state in which dissipation is equal to the injection rate, ν8 can be chosen
already from the start so that this condition will be fulfilled in the stationary state.
The simulation parameters are listed in table 1.

The time evolution of mean energy is shown in figure 1 for all twenty simulations.
After an initial period of growth, mean energy is levelling out at different values
for different runs. This is not the same picture as we see in simulations of three-
dimensional incompressible turbulence or stratified turbulence, where all curves would
have levelled out more or less at the same value. We find that mean energy in the
stationary state is a function of both c (or the Froude number) and resolution n and
that the functional dependence can be approximately written as

E∼
√
εLf cnα. (3.4)
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FIGURE 1. Space averaged energy, E= EK + EA, versus time for all simulations.

n c ν8 ε
kdiss

kf
Ff tmax

W1 960 10 1.56× 10−10 1.04 28.8 0.16 50.0
W2 1920 10 9.68× 10−13 1.06 57.7 0.16 49.9
W3 3840 10 6.00× 10−15 1.10 115 0.17 50.0
W4 7680 10 3.72× 10−17 1.20 231 0.17 25.2
W5 960 20 1.56× 10−10 1.00 28.8 0.08 50.0
W6 1920 20 9.69× 10−13 1.02 57.7 0.081 120
W7 3840 20 6.01× 10−15 1.08 115 0.082 120
W8 7680 20 3.72× 10−17 1.21 231 0.086 120
W9 960 40 1.56× 10−10 0.996 28.8 0.040 49.9
W10 1920 40 9.68× 10−13 0.998 57.7 0.040 49.9
W11 3840 40 6.00× 10−15 1.06 115 0.041 49.9
W12 960 100 1.56× 10−10 0.999 28.8 0.016 49.9
W13 1920 100 9.69× 10−13 1.01 57.7 0.016 120
W14 3840 100 6.01× 10−15 1.06 115 0.016 120
W15 7680 100 3.72× 10−17 1.22 231 0.017 95.9
W16 960 400 1.56× 10−10 1.14 28.8 0.0042 120
W17 1920 400 9.69× 10−13 1.15 57.7 0.0042 120
W18 3840 400 6.01× 10−15 1.12 115 0.0042 120
W19 960 700 1.56× 10−10 1.27 28.8 0.0025 49.9
W20 1920 700 9.68× 10−13 1.05 57.7 0.0023 49.9

TABLE 1. Parameters for all simulations. n, number of nodes in each direction, c, wave
speed, ν8, hyperviscosity, ε, time averaged mean energy dissipation in the stationary state,
kd/kf , ratio between dissipation wavenumber and forcing wavenumber, Ff , Froude number,
tmax, end time of simulation.
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FIGURE 2. (Colour online) (a) Mean energy in the stationary state versus c for different
resolutions. The lines have slope 0.5, corresponding to E ∝ c1/2. (b) Normalised mean
energy in the stationary state versus resolution n for different c.

In figure 2(a), we see E/
√
ε as a function of c for different resolutions n. For each

resolution the points are approaching a power law Cnc1/2 with increasing values of
Cn for increasing n. In figure 2(b) we see E/

√
εLf c for different values of c. For

each c the points follow a power law nα, where α is becoming slightly larger with
increasing c, approaching almost the same value α≈ 0.33 for the three highest values
of c. The relation (3.4) can be reformulated as

ε

(E3/2/Lf )
∼

E1/2

c
n−2α. (3.5)

Since the simulations are well resolved the dependence on resolution should not be
interpreted as consequence of the numerics but rather as a Reynolds number effect,
although it is not hundred per cent clear how a Reynolds number should be defined
in our case. We may note, however, that n∼ Lf /δx and in the case of Navier–Stokes
viscosity we should have δx∝ ν, according to (2.37). Therefore, n may be substituted
by a Reynolds number. The normalised energy dissipation on the left-hand side of
(3.5) will thus go to zero in the limit of large Reynolds number. This is very different
from three-dimensional turbulence where there is a local Richardson–Kolmogorov
cascade, in which energy is successively transferred from large to small scales of
motion. That the cascade is local means that eddies of a particular scale are not
directly influenced by eddies of widely different scales. As a consequence, the
normalised dissipation is of the order of unity independent of Reynolds number
(Tennekes & Lumley 1972; Pope 2000). A review of the experimental evidence and
theoretical implications of this fundamental law of Kolmogorov turbulence is given
by Vassilicos (2015). Our result (3.5) suggests that SW wave turbulence does not fit
into the paradigm of a local Richardson–Kolmogorov cascade. Moreover, it is not
only in the limit of large Reynolds number the normalised dissipation will go to
zero but also in the limit of strong stratification, E1/2/c→ 0. This is different from
three-dimensional stratified turbulence where the ratio on the left-hand side of (3.5) is
of the order of unity in the limit of strong stratification (Lindborg 2006; Brethouwer
et al. 2007).
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FIGURE 3. (Colour online) (a) Time averaged normalised spectral energy fluxes versus
k/kf . (b) Time averaged normalised third-order structure functions versus r/Lf . From run
W7.

That the energy transfer is not local in a system where the agent of dissipation is
wave breaking or shock formation may be expected. According to the theory of ocean
waves by Phillips (1965), ‘wave interactions are usually incapable of transferring
energy from a given wavenumber band as rapidly as it is supplied by the wind’.
Instead, energy is fed into each wave mode by the wind field and sucked out from
the same mode in ‘intermittent patches of foaming’ or ‘white horses’. This may be a
too simplified picture of SW water turbulence, since a broad band energy spectrum
develops between the forcing and the dissipation wavenumbers. Nevertheless, shock
formation suggests that there is a considerable direct energy transfer from large to
very small wavelengths, without any intermediate steps.

The ‘four-fifths law’ for the third-order structure function of Kolmogorov turbulence
is often derived using the assumption of a local cascade (Vassilicos 2015) or the
assumption that dissipation stays finite in the limit of large Reynolds number (Frisch
1995). As we just discussed, these assumptions seem to be violated in the case of
SW wave turbulence. Nevertheless, the analogous law (2.25) is satisfied with a high
degree of accuracy in our simulations. In figure 3 we see the spectral energy flux
from run W7 to the left and the third-order structure function to the right. There
is a broad constant flux range with equipartition between KE and APE flux and an
almost equally broad range where (2.25) is satisfied, with equipartition between the
two third-order structure functions associated with KE and APE. The assumptions of
a local cascade and finite dissipation do not seem to be necessary in order for the
third-order structure function law (2.25) to be valid.

The equipartition of the KE and APE spectral fluxes suggests that the flow to
leading order may be described as a collection of linear gravity waves with energy
equipartition in each mode. To investigate this further we have collected time series
of the flow variables from Fourier modes whose magnitudes fall within certain shells,
|k| ∈ [k − δk/2, k + δk/2], and computed temporal power law spectra from these
time series and averaged over all wavenumbers in each shell. In other words, we
have computed KE and APE frequency spectra corresponding to different magnitudes
of modes. Figure 4 presents such spectra plotted as functions of the normalised
frequency ω/ωl, where ωl = ck is the linear wave frequency. The spectra are strongly
dominated by peaks at ω=ωl. As can be seen, there is equipartition between KE and
APE in each shell. Although the widening of the peaks around the linear frequency
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FIGURE 4. (Colour online) Frequency spectra of KE and APE for different k= |k|, from
run W7. The spectra are plotted as functions of ω/ωl, where ωl= ck. From top to bottom:
k/δk= 12, 27, 62, 143, 327 and 746.

most likely is an effect of nonlinearities, we can quite safely conclude that the time
evolution of the flow variables in each Fourier mode to leading order can be described
as a linear wave.

Visualisations of the flow field give a completely different picture from what may be
expected from a collection of linear gravity waves. They are totally dominated by the
appearance of shock waves. In figure 5 we see the divergence, ∇ ·u, to the left and the
velocity component in the y-direction, uy, to the right. Note that the total area of the
computational domain is sixteen times larger than the area of the outcuts shown in the
figures, since the side of the figures is 3Lf , while the side of the computational domain
is 12Lf . The two figures at the top are from run W6 while the two figures at the
bottom are from run W17. The difference between the two runs is that c is larger by
a factor of 20 in W17 as compared to W6. To the left we see the shocks displayed as
elongated bands of negative divergence. That the divergence is negative at the shocks
can be understood from the fact that the velocity component perpendicular to the
shock always has a negative jump in the direction of shock propagation. Apparently,
the mean distance between the shocks is considerably smaller in run W17 with the
larger value of c compared to run W6 with the smaller value of c. The shocks are
also visible in the figures to right where uy is displayed. It may be interesting to note
that the shocks along the x-axis appear as extra sharp in this plot, since there is a
strong jump of uy over these shocks, while the shocks along the y-axis are hardly
visible, since there is no jump of uy over these. In the two figures to the right we
see a variation of the flow field over the length scale Lf which is not seen in the
two figures to the left. This variation is evidently a footprint of the random forcing.
Although the forcing length scale Lf is the same in the two simulations the mean
distance, d, between the shocks is much smaller in run W17 than in run W6, which
may come as a surprise. Another interesting observation is that the shocks in run W17
(lower figures) appear to have smaller curvature on average than the shocks in run
W6 (upper figures). In both runs, the shocks are weak in the sense that the Mach
number is close to unity and the interaction between the shocks should therefore be
weak (see Apazidis & Eliasson 2018). However, as measured by the Mach number
(2.42), the shocks are much weaker in run W17, where c is larger by a factor of 20
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FIGURE 5. (Colour online) (a,c) Divergence ∇ · u. (b,d) Velocity component in the
y-direction: uy. (a,b) Run W6. (c,d) Run W17.

as compared to run W6 and d also is smaller. The shock interaction should therefore
be weaker in run W17, which may explain the observation that the curvature of the
shocks is smaller in run W17 than in run W6. We have calculated the mean distance,
d, between the shocks by counting the number of negative spikes of the divergence
along two hundred lines parallel to the x-axis and equally many parallel to the y-axis
and then divided total length of all the lines by the number of spikes. Generally, we
found that d∝ c−1/2, or

d∼ Lf F
1/2
f , (3.6)

independent of resolution n. In figure 6 we have plotted d/Lf versus Froude number
for all twenty runs. As can be seen, the points follow the F1/2

f -curve quite well,
although there seems to be a slight systematic deviation at the highest Ff .

We will now present the results for the structure functions. Substituting (3.6) into
(2.33) we find that the structure functions are expected to scale as

〈|δu|p〉 ∼ 〈(c|δh|)p〉 ∼ (Lf F
1/2
f )p/3−1εp/3r, (3.7)

for separation distances that fulfil the condition δx � r � d. The scaling (3.7) is
expected to become better and better fulfilled with decreasing c (or increasing Ff ).
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FIGURE 6. (Colour online) Mean distance between the shocks as function of
Froude number.

According to (3.6) d is increasing with Ff , and the scaling range is therefore becoming
wider for decreasing c, if δx or the resolution is kept constant. The scaling (3.7) is
also expected to become better and better fulfilled with increased resolution n, since
δx is decreasing with increasing n.

As expected, we have found that the displacement structure functions scale
exactly in the same way as the velocity structure functions, and for this reason
we only plot velocity structure functions. In figure 7 we see the compensated and
normalised second-, fourth- and sixth-order longitudinal structure functions from the
five simulations with n = 3840 to the left and the three simulations with n = 7860
to the right. At small separation, r< δx, the structure functions have the dependence
∼rp, which is characteristic of a smooth velocity field, indicating that the shocks
are reasonably well resolved. There is a small bump around the shock width, r≈ δx,
and at r> δx, there is a range where the compensated structure functions are flat, or
almost flat. As expected, this range is becoming broader for smaller c (or larger Ff ).
The range is also broader in the higher resolution runs to the right as compared to
the lower resolution simulations to the left. There is clearly a better collapse of the
curves for the sixth-order structure functions compared to the second-order structure
functions. This is not surprising, since the shock contribution to the structure functions
should become increasingly dominant with increasing order. Plots of the transverse
structure functions are very similar to the plots of the longitudinal structure functions,
with the difference that the transverse structure functions are somewhat smoother at
r ≈ δx. In figure 8 we see the ratio Rp(r) = 〈|δuL|

p
〉/〈|δuT |

p
〉 for p = 2, 3, 4, 5, 6

from run W8, together with dotted straight lines, indicating the values predicted by
(2.31). As can be seen, there is a quite good agreement with the predicted values in
a limited range of separations, r > δx. Somewhat unexpectedly, the range in which
there is a good agreement becomes more narrow with increasing p, an observation
that we cannot explain. It may also be noted that R2 → 3 in the limit of small r,
which is the theoretical single point limit for an irrotational isotropic field. In figure 9
we see the flatness factor, FT , of the transverse structure functions at the top and the
ratio, FT/FL, at the bottom. The figures to the left show the results from the five
simulations with n= 3840 and the figures to the right show the results from the three
simulations with n = 7860. The flatness factor shows increasingly large values for
decreasing r with a dependence that is rather close to but somewhat steeper than r−1.
At small r the curves are levelling out at very large values. For n= 7869 and c= 10
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FIGURE 7. (Colour online) From top to bottom: second-, fourth- and sixth-order
compensated and normalised longitudinal structure functions. (a,c,e) Runs with n= 3840;
W3, W7, W11, W14 and W18. (b,d, f ) Runs with n= 7860; W4, W8 and W15.

we see that FT ≈ 400 at small r. The degree to which the flatness factor is increasing
with decreasing scale is by some authors defined as the most appropriate measure
of spatial intermittency (see for example Frisch 1995). If this measure is used, SW
wave turbulence is, indeed, extremely intermittent. In the two figures at the bottom
we see that FT/FL≈ 1.5 in a limited range of separations, r> δx, which is becoming
somewhat broader as c is increasing and is also somewhat broader in the higher
resolution runs shown to the right as compared to the lower resolution runs shown
to the left. This is in accordance with the shock model predictions (2.35) and (2.36).

Finally, we present energy and dissipation spectra. As expected, we found that APE
and KE spectra were almost identical, Therefore, we only plot the total spectra. In
figure 10 we see compensated and normalised energy spectra from the three highest
resolution runs. The compensated spectra are almost flat in a broad range. At the high
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FIGURE 8. (Colour online) Ratio of the structure functions Rp(r)= 〈|δuL|
p
〉/〈|δuT |

p
〉 from

run W8, for p= 2, 3, 4, 5, 6. The dotted straight lines indicate the values predicted by
(2.31): R2 = 2, R3 = 3π/4, R4 = 8/3, R5 = 15π/16 and R6 = 16/5.
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FIGURE 9. (Colour online) (a,b) Flatness factor of transverse velocity increments.
(c,d) Ratio between transverse and longitudinal flatness factors. (a,c) Runs with n= 3840;
W3, W7, W11, W14 and W18. (b,d) Runs with n= 7860; W4, W8 and W15. The dotted
straight lines indicate the value 1.5 predicted by the shock model.

wavenumber end the compensated spectra show a ‘bottleneck’, which we interpret as
a signature of the shocks. The k−2-dependence and the associated scaling predicted
by (2.34) are very well satisfied in a limited range of high wavenumbers close to
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FIGURE 10. Time averaged compensated and normalised energy spectra from runs with
n= 7680: W4, W8 and W15.
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FIGURE 11. (Colour online) Time averaged normalised dissipation spectra. (a) Constant
c= 20 and varying n, runs W5, W6, W7 and W8. (b) Constant n= 1920 and varying c,
runs W2, W6, W10, W13, W17 and W20. The vertical lines indicate the wavenumbers
of the maxima.

the bottleneck. At smaller wavenumbers the spectra are becoming somewhat steeper
than k−2 and the spectrum from the run with largest c does not collapse perfectly
onto the other two spectra. In figure 11 we see normalised dissipation spectra for
fixed c = 20 and different n to the left, and fixed n = 1920 and different c to the
right. First, we note that the spectra go to zero quite nicely for large k, indicating
that the shock width δx is well resolved. Second, we note that there is a slight shift
of the maximum in both figures, even though we have normalised the wavenumber by
kd = 1/η8. These shifts may be explained by the estimate (3.3) predicting that δx
should vary slightly with d. If the maximum of the dissipation spectra is associated
with δx, there should be a shift of the maximum to the right with increasing n
and to the left with increasing c, since d ∝ c−1/2. The ratio between the maximum
and the minimum n in the left figure is equal to 8 and according to (3.3) the
corresponding ratio between the wavenumbers at which the maxima are observed
should be 81/21

≈ 1.1, which is exactly the value we observe. The ratio between the
maximum and minimum c in the right figure is equal to 70. Assuming that d∝ c−1/2
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the ratio between the wavenumbers at which the maxima are observed should be
701/42

≈ 1.1, while the observed ratio is equal to 1.16. In the latter case, there is no
exact quantitative agreement between the predicted trend and the numerical results.

4. Conclusions and discussion
We have carried out a theoretical and numerical investigation of SW wave

turbulence. First, we derived the SW analogue (2.25) of the ‘four-fifths’ law
of Kolmogorov turbulence. Using this relation and straightforward statistical and
geometrical arguments we developed a simple shock model predicting that the shock
amplitude scales as (εd)1/3, where d is the mean distance between the shocks, and
that the pth-order structure function above a certain minimum will scale as (εd)p/3r/d.
Then, we carried out a series of forced-dissipative simulations, varying the Froude
number and the resolution. In all simulations, a statistically stationary state was
reached and in all simulations we observed shocks. The flow variables in each
Fourier mode were found to evolve in accordance with linear wave dynamics, with
equipartition between APE and KE over a period. The third-order structure function
relation was fulfilled with a high degree of accuracy. From the simulations we made
two interesting observations that fall outside the predictive scope of the model. The
first observation was that mean energy in the stationary state approximately scales as
(3.4), suggesting that the normalised dissipation (3.5) will go to zero both in the limit
of small viscosity and large wave speed. A similar observation was made when we
used a second-order diffusion operator instead of hyper diffusion (see appendix A).
This is different from three-dimensional Kolmogorov turbulence as well as strongly
stratified turbulence, where, in both cases, dissipation is finite in the limit of small
viscosity, and in the latter case also is independent of the degree of stratification.
This observation suggests that SW wave turbulence does not fit into the paradigm
of a local Richardson–Kolmogorov cascade. It remains a theoretical challenge to
give a quantitative explanation of the growth of energy with increased Reynolds
number. As far as we can see, such an explanation would require a completely novel
theoretical development. The second observation we made was that the mean distance
between the shocks scales as c−1/2, if the other parameters are held constant. As we
increased c, the shocks were thus becoming denser. Using this observation we tested
the shock model by plotting the normalised and compensated structure functions of
different orders. Generally we found that there was a quite good agreement between
the simulation results and the model predictions, becoming better with decreasing
wave speed and increasing resolution.

Combining the model and the observations we can get a quite good picture of
the dynamics in the limit of weak nonlinearities, Ff → 0. The picture may become
more vivid if we say ‘wave breaking’ where we previously have talked about shock
formation, and also say ‘wavelengths’ were we previously have talked about length
scales. We identify the longest wavelength, λl, with the forcing scale Lf and the
breaking wavelength, λb, with the mean distance, d, between the shocks. There are
two dynamically different regimes, the short wave regime, [δx, λb], and the long
wave regime, [λb, λl]. We first consider the latter, whose width scales λl/λb ∼ F−1/2

f .
Identifying the amplitude of the breaking waves with the shock amplitude, (εd)1/3,
we find that the ratio between the amplitude of the longest waves and the breaking
waves scales as E1/2/(εd)1/3∼F−5/12

f nα/2, where we may substitute n with a Reynolds
number. Thus, for small Ff and large Reynolds numbers the longest waves are
not directly influenced by wave breaking. The Reynolds number dependence of
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the amplitude ratio makes it unlikely that a general similarity theory can be easily
formulated for this range. Therefore, predictions from weak turbulence theory (for
example Zakharov & Sagdeev 1970) are not likely to hold for this range, although
it is not directly influenced by wave breaking. The exact values of the power law
exponents in the argument leading to this conclusion are, of course, not important.
As for the short wave regime, the width scales as λb/δx∼ F1/2

f for fixed δx or fixed
Reynolds number. As Ff → 0 the range will eventually become so narrow so that
breaking will disappear. As argued in appendix A, the condition λb� δx leads to a
wave breaking condition involving both the Reynolds number, Re ≡ ε1/3L4/3

f /ν, and
the Froude number. If λb ∝ Fm

f we obtain the condition Re F4m/3
f � 1 and in the

special case when m= 1/2, the condition is

Re F2/3
f � 1. (4.1)

Thus, for a given Reynolds number, no matter how large, wave breaking will be
absent provided that Ff is sufficiently small. On the other hand, if (4.1) not only
is a necessary but also a sufficient condition, wave breaking will be present for any
given Ff , no matter how small, provided that Re is sufficiently large. The condition
(4.1) is analogous to the condition for the presence of turbulence in a stratified fluid,
also involving both the Reynolds number and a Froude number (Brethouwer et al.
2007). The horizontal and vertical length scales of stratified turbulence scale as lh ∼

u3/ε and lv ∼ u/N, respectively, where u is a characteristic horizontal velocity and N
is the Brunt–Väisälä frequency. As stratification becomes stronger (N is increasing), lv
is becoming smaller. However, in order for turbulence to be present lv must be much
larger than the Kolmogorov scale, ν3/4/ε1/4, which leads to the condition ReF2

h � 1,
where Fh = u/(lhN) is a Froude number based on the horizontal length scale.

The present study makes some advancement of the understanding of compressible
turbulence. Previously, energy flux relations have been derived for a compressible and
barotropic fluid by Falkovich, Fouxon & Oz (2010) and Galtier & Banarjee (2011).
Unlike (2.24) these flux relations are not exclusively expressed in terms of third-order
structure functions, i.e. third-order moments of increments of flow variables. As is
clear from our analysis, in the general case of a compressible and irrotational fluid
the KE flux can be expressed in this way. It seems to be more of a specific property
that the APE flux also can be expressed in terms of a third-order structure function, a
property that the SW system shares with the Boussinesq system with constant Brunt–
Väisälä frequency, in which case APE also is quadratic in buoyancy (Augier, Galtier &
Billant 2012). In this context, a comparison between our analysis and the analysis by
Galtier & Banarjee (2011) of isothermal compressible turbulence is revealing. In the
latter case, the pressure is linear in density, p= c2

t ρ, where ct is the isothermal speed
of sound, and the internal energy per unit volume is equal to c2

t ρ ln(ρ/ρ0), where ρ0 is
an ambient reference density. Due to this logarithmic dependence, the internal energy
flux is not expressible in terms of a structure function. However, an equation system
which is equivalent to the SW equations can be obtained by replacing the pressure
term, ρ−1∇p= ρ−1c2

t∇ρ, in the isothermal momentum equation, by ρ−1
0 c2

t∇ρ, which
may be motivated if density fluctuations are small. The expression for the internal
energy per unit volume of the modified system is c2

t ρ
2/2ρ0, which is equivalent to

the SW potential energy. (To see how the logarithmic and quadratic expressions for
the internal energy are related, write ρ = ρ0(1+ η), expand in η and keep terms up
to second order: c2

t ρ ln(ρ/ρ0)≈ c2
t ρ0(1+ η)(η− η2/2)≈ c2

t ρ
2/2ρ0 − c2

t ρ0/2. For small
density fluctuations the two expressions only differ by a constant.) As a consequence
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of this quadratic dependence, the internal energy flux is expressible in terms of a
structure function. It may be conjectured that the modified equation system is a good
model for isothermal acoustic turbulence and that a flux relation which equivalent to
(2.24) also should hold for this case. In the three-dimensional case we then obtain

〈δ(ρuL)|δu|2〉 + c2
t 〈δuL(δρ)

2
〉/ρ0 =−

8
3εr, (4.2)

where ε here is the mean energy dissipation rate per unit volume.
While isothermal acoustic turbulence may have some interesting application for a

radiating gas (Stein & Spiegel 1967), standard text book acoustics is not isothermal
but isentropic. The condition of constant entropy puts us in a dilemma when we
analyse an acoustic field as a forced–dissipative system, since dissipation inevitably
is associated with entropy production. According to arguments of Kadomtsev &
Petviashvili (1973), an acoustic field is always dissipated by weak shocks if the
Reynolds number is sufficiently large, and this should be true in two as well as in
three dimensions. Given the numerical results of the present study such a hypothesis
seems reasonable, since shock waves have similar stability properties in two and
three dimensions (Liverts & Apazidis 2016; Apazidis & Eliasson 2018). The shock
wave hypothesis offers an elegant way out of the isentropic dilemma, since it implies
that entropy production is concentrated at the shocks, while the rest of the field can
be treated as isentropic. In a companion paper (Lindborg 2019), scaling relations for
such an acoustic field are derived, using the weak shock relations and the entropy
equation. It turns out that these scaling relations are analogous to the relations for
shallow water wave turbulence, with the difference that the mean energy dissipation
rate, ε, is replaced by ε+χ , where χ is a quantity associated with entropy production
due to heat conduction. If the Prandtl number is of the order of unity, χ is of the
same order as ε. The shock amplitude scales as 1u∼ (ε + χ)1/3d1/3, where d is the
characteristic distance between the shocks and the third-order longitudinal structure
function scales as 〈δu3

L〉 = −C(ε + χ)r, where C is a constant of the order of unity,
which can be determined exactly in the weak shock limit.

Acoustic turbulence is an example of a wave breaking system where the concepts
and methods we have developed to analyse SW water turbulence can be applied in a
fruitful way. We believe that there may be other such examples.
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Appendix A. Simulations with Laplacian diffusion
On the request from the reviewers we have carried out a set of simulations using

Laplacian diffusion, ν∇2, to check that similar results are obtained in this case as
when we use higher-order diffusion ν8∇

8. A number of test simulations with resolution
n= 960 and c= 10 were first carried out using different values of the viscosity, until
we determined a value which was sufficiently large for the shocks to be resolved, but
not unnecessarily large. This value was then used for all simulations with n = 960.
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n c ν2 ε
kdiss

kf
Ff Re Re F2/3

f tmax

WL1 960 10 0.0985 0.998 22.6 0.161 68.0 20.1 25
WL2 1920 10 0.0492 0.985 45.3 0.160 136 40.0 25
WL3 2880 10 0.0328 0.984 67.9 0.160 203 59.9 25
WL4 3840 10 0.0246 0.993 90.5 0.161 272 80.3 25
WL5 7680 10 0.0123 1.00 181 0.161 545 161 25
WL6 960 20 0.0985 0.994 22.6 0.0803 68.0 12.6 25
WL7 2880 20 0.0328 0.982 67.9 0.0800 203 37.7 25
WL8 3840 20 0.0246 0.983 90.5 0.0800 271 50.3 25
WL9 7680 20 0.0123 1.00 181 0.0805 545 102 25
WL10 960 40 0.0985 0.985 22.6 0.0400 67.7 7.93 25
WL11 2880 40 0.0328 0.981 67.9 0.0400 203 23.7 25
WL12 3840 40 0.0246 0.978 90.5 0.0399 270 31.6 25
WL13 7680 40 0.0123 0.991 181 0.0401 543 63.6 25
WL14 960 100 0.0985 0.976 22.6 0.0160 67.5 4.28 25
WL15 2880 100 0.0328 0.961 67.9 0.0159 202 12.7 25
WL16 3840 100 0.0246 0.972 90.5 0.0159 270 17.1 25
WL17 960 200 0.0985 0.988 22.6 0.00801 67.8 2.72 25
WL18 2880 200 0.0328 0.928 67.9 0.00785 199 7.87 25
WL19 3840 200 0.0246 0.934 90.5 0.00786 266 10.5 25

TABLE 2. Parameters for all the simulations executed with Laplacian viscosity. n, number
of nodes in each direction, c, wave speed, ν, viscosity, ε, time averaged mean energy
dissipation in the stationary state, kd/kf , ratio between dissipation wavenumber and forcing
wavenumber, Ff , Froude number, Re, Reynolds number, tmax, end time of simulation.

For the more highly resolved simulations the viscosity was then set as ν ∝ n−1, in
accordance with the prediction (2.37) for the shock width. We define the Reynolds
number as Re≡ ε1/3L4/3

f /ν, which is proportional to n, since ν∝ n−1. The simulations
are listed in table 2.

The dynamics of the runs with Laplacian diffusion was similar to the runs with
higher-order diffusion. In figure 12 we see mean energy in the stationary state versus
c to the left and versus n to the right. The variation of mean energy with c seems
to be a little bit weaker for these runs as compared to the runs with hyper diffusion.
However, the higher resolution runs are relatively close to approaching the c1/2-scaling.
The variation of mean energy with resolution, or Reynolds number, is quite similar to
what is seen in the corresponding figure 2. For each c there is a monotonic increase of
mean energy with resolution, and the increase is becoming stronger as c is increased,
with comparable but not equal values of the exponent α.

In figure 13 we see the mean distance between the shocks as a function
of Ff , together with a straight line indicating F1/2

f . As compared to the runs with
hyperviscosity there is a larger spread of the points and the F1/2

f scaling is not
as clear. The lower Reynolds number series (Re ≈ 70 blue dots) falls below the
higher Reynolds number series. This may be explained by the fact that the shock
detection algorithm is much more sensitive to the threshold value which is used for
∇ · u in these simulations than in the simulations with hyperviscosity. In particular,
this is true in the lower Reynolds number runs. In figure 14 we see the flatness
of the divergence, multiplied by ν, versus Ff . According to (2.40) we should have
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FIGURE 12. (Colour online) (a) Mean energy in the stationary state versus c for different
resolutions. The lines have slope 0.5, corresponding to E ∝ c1/2. (b) Normalised mean
energy in the stationary state versus resolution n for different c.
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FIGURE 13. (Colour online) Mean distance between the shocks as function of
Froude number.

F∂uν ∝ d4/3 and if d ∝ Fr1/2, the points should collapse on a single line, F2/3
f . For

the three largest Ff , there is a relatively good collapse of the points from the three
highest Reynolds numbers series, supporting both the ν−1-scaling and the F2/3

f -scaling.
The lower Reynolds number runs (blue dots) fall below the higher Reynolds number
runs, which we interpret as a low Reynolds number effect. The points corresponding
to the two lowest values of Ff fall below the prediction F2/3

f . This can be explained
by the fact that the shocks are on the verge of fading away in these runs. Clearly, a
necessary condition for shocks to be present is that the mean distance between them
is much larger than their width, that is

d
δx
� 1. (A 1)

Since F∂u∝ d/δx, this means that the flatness of divergence must be much larger than
unity. Substituting (2.37) into (A 1) and assuming that (3.6) is valid we can formulate
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FIGURE 14. (Colour online) Flatness of divergence ∇ · u times viscosity ν, versus Ff .
Dotted straight line indicates F2/3
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FIGURE 15. (Colour online) Value of ∇ · u for four different runs. (a) WL1, Re = 68,
Ff = 0.16; (b) WL3, Re = 203, Ff = 0.16; (c) WL17, Re = 68, Ff = 0.008; (d) WL18,
Re= 199, Ff = 0.008.

the condition as
Re F2/3

f � 1. (A 2)

If this condition is not fulfilled the shocks will fade away. In figure 15 we have plotted
the divergence for four different runs with different Re and Ff . It should be pointed
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out again, that the area of the computational domain is sixteen times larger than area
of the outcuts shown in the figures. (a,b) are from simulations with Ff = 0.16 but
different Re (Re = 68 (a) and Re = 203 (b)). As can be seen, the shocks are wider
in the lower Reynolds number run (a) than in the higher Reynolds number run (b),
as expected. (c) is from a simulation with the same Re as in (a), but with a much
smaller Ff . In this simulation we have Re F2/3

f = 2.7, so the condition (A 2) is not
fulfilled, and the shocks have almost faded away. (d) is from a simulation with the
same Ff as in (c), but with a higher Re= 199. Here, Re F2/3

f = 7.8 and the shocks are
clearly discernible. Comparing (b) and (d) with each other, they have approximately
the same Re, while the lower one has a considerably lower Ff . In this run the shocks
are denser and straighter as compared to the higher Ff -run.
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