
PARTITION RINGS OF CYCLIC GROUPS OF 
ODD PRIME POWER ORDER1 

K. I. APPEL 

A ring R over a commuta t ive ring K, t h a t has a basis of elements gu g2, . . . , gn 

forming a group G under multiplication, is called a group ring of G over K. 
Since all group rings of a given G over a given K are isomorphic, we may 
speak of the group ring KG of G over X . 

Let 7T be any part i t ion of G into non-empty sets GA, GB, . . . . Any subring 
P of i£G t h a t has a basis of elements 

A = X) tfZfg» . . . , w , 5* 0 in 2£, 

is a partition ring of G over K. 
If P is a part i t ion ring of G over Z, the ring of integers, then the basis 

A, B, . . . for P clearly serves as a basis for a part i t ion ring P' = <2 0 P of 
G over Q, the field of rationals. If, in addition, for each A, B, . . . the coeffi
cients mg, all g G GA, have no common factor, we shall call A, B, . . . a reduced 
integral basis for P ' . 

LEMMA. Every partition ring P over the rationals has a reduced integral basis. 
By hypothesis, the ring P has a basis of elements 

where w ,̂ ^ are non-zero integers. We can write A = (uA/vA) 2rn9g where 
the mQ ?£ 0 are integers wi thout any common factor. Then the A' = 2 w ^ 
forms a basis for P , and it remains to show tha t in the multiplication table, 

A\Afj = ^2 bi3
lA'k, 

the rationals 6*/ are in fact all integers. Fix i, j , and k, and consider g Ç GA . 
Since all coefficients on the left are clearly integers, the same is t rue on the 
right, and bijkmg is an integer for each g Ç GA . Since the mQ have no common 
factor, this requires t ha t bi* be an integer. 

Henceforth, by part i t ion ring we mean integral part i t ion ring over the 
rationals, and by basis, we mean reduced integral basis, We will also adopt 
the convention t ha t basis elements be chosen such t h a t for each GA a t least 
one mg is positive. 
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374 K. I. APPEL 

Let G be a finite abelian group. For each integer y prime to the order of G, 
define (y) to be the map g —» gv for each g in G. Then (y) is an automorphism 
of G, and we will call the automorphisms of this type the power automorphisms 
of G. 

THEOREM 1. Let G be a finite abelian group, and y an integer prime to the 
order n of G. Let A be a basis element of a partition ring P of G. Then there 
exists an element B, of the same basis, such that 

Proof. First, we show thatGA
(2/) = {gy\g G GA} is a union of partition classes 

under the partition induced by P . Assume not. Then there exists a basis 
element D = agov + bgi + . . . where go £ GA, gi 5^ gv for any g in GA. (Here 
we use . . . in a special sense meaning that a and b are the full coefficients 
of gov and gi respectively, that is, the elements occurring in the remaining 
terms of the sum are distinct from goy and g\. In similar contexts the same 
convention is employed.) 

Now we employ the theorem of Dirichlet that if j and k are relatively 
prime there exist infinitely many primes congruent to j modulo k. Since 
(y* n) = 1, by Dirichlet's theorem, we may choose q = y (mod n) such that 
q > \mQ\, all g G GA, q > \b\, q prime. But, modulo q, 

Aq = AiQ) = A{v) = £ mQg\ 
fftGA 

Since (y) is an automorphism of G, gi 9^ g2 implies giv 7^ g2
y. 

Aq must be a sum of basis elements of P. Therefore Aq = ug^ + . . . , 
AQ = kD + . . . = kagov + kbgi + . . . . However, gi 9^ gv for any g in GA so 
q\kb, and since q > \b\, q\k. But 

ka = mg (mod q) 
and 

\m90\ < °> mff0 ?* 0 so q \ ka, 

which is a contradiction. 
Next, we show that GA

(y) is a partition set of the partition induced by P. 
Suppose not. Let GA

{y) = G B U G C U . . . . Let yz= 1 (mod n). Then 
GB

{Z) C GA
(yz) = GA. Since by the above, gB

(z) is a union of partition classes 
while GA is a single partition class this implies that GB

(Z) = GA and GA
(y) = GB> 

Write 

B = E ngg
y 

9*GA 

for the basis element corresponding to the partition class GA
(y\ If q is a 

prime with q= y (mod n), 

A* = ( S ™>ag)q = YJ MçgV (mod g). 
\ gtGA / geGA 
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PARTITION RINGS OF CYCLIC GROUPS 375 

It follows that B appears in the product AQ with non-zero coefficient, say 

A« = \(q)B + . .. = Z Hq)nsg
v + ... 

S*GA 

for some integer X(g) ^ 0 (mod q). If GA has only a single element g0, then 
mg = ± 1 , ng = ± 1, and the conclusion follows. Otherwise, let g, h £ GA, 
g 7^ h. From the above we have \{q)ng = mg (mod q), \{q)nh = mh(mod q) 
whence mhng^ mgnh (mod q). This holds for infinitely many primes q= y 
(mod n), whence mhng = rngnh, and there exists X such that mg = \ng for all 
g Ç GA. Let X = r/s, (r, s) = 1 and suppose |s| ^ 1. Then some prime t 
divides s, and therefore t divides each ng, contrary to the fact that the greatest 
common divisor of the ng = 1. Hence \s\ = 1. Now each mh is divisible by r, 
so \r\ = 1, and hence X = ± 1. 

If G is cyclic, every automorphism is a power automorphism. We assume 
henceforth that G is a cyclic group of odd prime power order pe. Then its 
automorphism group is cyclic and contains an automorphism mapping g 
into g2. 

Let 

z(a)=Gpa= {g*a\g ÇG) . 

The lattice of subgroups of G is a chain of characteristic subgroups: 

G = Z(0) D Z(l) D...DZ(e-l)D Z(e) = 1. 

Define C(a) to be the set difference Z(a) — Z(a + 1) for e > a, and 
C(e) = Z(e) = 1. We could alternatively define C(a) as the set of gl such that 
g is a generator of G and £= 0 (mod£a), and t^ 0 (mod^>a+1). We refer to 
the C{a) as the levels of G. 

Since the Z(a) are characteristic subgroups of G, each Z(a) and conse
quently each Cia) is fixed under every automorphism of G. 

If we define GA(a) as the intersection of GA and C(a), then by Theorem 1, 
if gi and gi are elements of GAip) it follows that m^ = ± m^2, for we can 
find an automorphism (y) which maps g\ into gi. 

Let Y be the group of automorphisms of G. \i A is a basis element of P, 
let YA be the subgroup of F which leaves GA fixed, that is 

Y A = {(y)£ Y\AW = ±A}. 

We define the spectrum of the set GA of the partition induced by P as 
Sp(G^) = {a\GA(a) ^ 0}. Thus, the spectrum of a set is the collection of 
integers corresponding to levels intersected by the set. We define two basis 
elements B and D to be conjugate if B = D(w) for (w) G Y. 

If two basis elements are conjugate, their induced partition sets have the 
same spectra. Also, if two partition sets have intersecting spectra, there is 
an automorphism (y) of G mapping an element of one into an element of 
the other, and hence mapping the sets into each other. Thus, we can state: 

LEMMA 1.1. If the spectra of GA and GB intersect, then Sp(GA) = Sp(GjB). 
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Now we will prove a corollary to Theorem 1. 

COROLLARY. Let G be a cyclic group of odd prime power order, and let P be 
a partition ring of G. There exists a basis for P such that if A is an element of 
this basis so is A(v) for any y prime to the order of G. 

Consider any basis for P. Choose Ah . . . , Ak a maximal set of elements 
of this basis such that no At is conjugate to db Aj for i ^ j . Let B be the 
set of all distinct A^ for (y) Ç F. Clearly, if no A^ = - A^ for (w)> 
0) 6 F, then B is a basis for P. Suppose that A ^w) = - A^ior (w), (z) G F. 
Then 

A . ^ 2 _ 1 ) - — A 

We will now show that this is impossible. 
First, we introduce the following notation. If W is any expression of the 

form 

Z ™>gg 
QtGW 

where Gw is a subset of the elements of G and the mQ are integers, we define 
\W\ as 

Z m9> 
SeGw 

If K is a set of elements, we let \K\ be the cardinal of the set. For 0 < z < e, 
we define 

W(a) = £ K g ) . 
geGwHCia) 

Let basis element 

A = Z m,g. 

By Theorem 1, there exist integers ma, and integers ag = zfc 1 such that 

-4 = Z wa Z <xgg. 
aeSv(GA) gtGA(a) 

Assume Aw = —A, (u) Ç FA . First, we note that (u) and hence YA have 
even order, and second that for g (z GA, precisely half of the ag are — 1. 

Let b be the smallest integer in the spectrum of GA. We may write A = D -\-E 
where D is a linear combination of elements of C{b) while E is a linear com
bination of elements of Z(b + 1). We note that \D\ = |E| = 0. 

Since A2(b) is a linear combination of conjugates of D, \A2(b)\ = 0. Thus 

\{D + E)*(b)\ = \D*(b)\ + 2(\(DE)(b)\) + \E>(b)\ = 0. 

Since Z(b + 1) is a group, E2(b) = 0. Since no element of C(b) is an element 
of Z(b + 1), every product gh for g £ C(#), A Ç Z(6 + 1), is an element of 
C(b) and DE{b) = DE, so \(DE)(b)\ = \DE\ = 0. Thus |£>2(6)l must equal 
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zero. By computation, we will obtain a contradiction to this statement and 
hence show that A{u) = — A is impossible. 

We have 

D = A(b) = mb J2 agg-
g*GA{b) 

Since YA acts transitively on GA(b), all the subgroups Ug leaving fixed an 
element g G GA(b) have the same order u, and, for chosen g, each gf G GA(b) 
appears as gv for exactly u elements (y) G YA. For each (y) G YA, A(y) = pyA 
where (3y = db 1. For (;y) G 6^, any g, comparison of the coefficients of g in 
A and A{v) shows that fiv = + 1. Thus the /^ are equal for all those (y) 
carrying g into a given gf = gy, and comparison of coefficients again shows 
that cig = fiyoig. It follows that the term oyg' occurs exactly u times in the 
sum 

(2/) «Yi 

Hence, for any g G GA(b), we have 

Now we may write 

\ oeGA(b) / 

&̂ Z )«<£̂ 7 Z) /W?( 

2 

U geGA(b) (y)eYA 

2 

= ? Z d E ~*+1 

For g G C(6), we have gy+1 G C(ô) if and only if ;y + 1 =EÉ 0 (mod/)), and 
thus 

P2(ô)|=^|GA(6)| Z ' f t 
W 

with summation over all (y) G FA such that y ?é — 1 (mod/?). To obtain a 
contradiction it will suffice to show that this sum is not zero. 

The kernel of the natural map from the group F, of order pe~l(p — 1), onto 
the multiplicative group, of order p — 1, of residues modulo p, has odd order 
pe~l. Hence the intersection of this kernel with YA has odd order p6' dividing 
pe~l. Since YA has even order, it contains elements mapping into — 1, and 
hence exactly pe' of them. But S'ft,, as a sum of an odd number \YA\ — pe' 
of terms fiy = =t 1, cannot vanish. 
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We define the spectrum S(B) of an element B of P as the sum of its distinct 
conjugates. We let (7(a) be the sum of the elements of C{a) and let Z(a) be 
the sum of the elements of Z(a). We note that, since each Z(a) is a group, 
for b > a, Z(a)Z(b) = (|Z(ô)|)Z(a), and since C(a) = Z(a) - Z(a + 1) 
(where we define Z(y) empty for y > e), 

C{a)C(b) = (Z(a) - Z(a + 1))(Z(6) - Z(b + 1)). 

If b > a, this is (\C(b)\)C(a), while 

C(a)2 = (|Z(a)| - |(Z(a + l)|)Z(a) - (Z(a) - Z(a + l ))( |Z(a + 1)|) 
= (|C(a)|)Z(a) - (|Z(a + l) |)C(a). 

Thus, if 5 is an element of the form 
e 

J2 ntxC(x) 

then 

52 = E (mlC(x)2 + 2 E m,m,C(x)C(;y)) 
z=0 \ y=x+l / 

= £ ^ ( |C (x ) | )Z (x ) - ml(\Z(x + l) |)C(x) + 2 £ mxmy{\C {y)\)C (x) 

= £ hzC(x) 

where 

(1) ft» = É ml{\C{y)\) -mit, \C(y)\ + 2 £ «^(ICOOI). 
2/=0 y=x+l y=x+l 

An immediate result of this computation is the following lemma. 

LEMMA 1.2. / / 

5 = X) mxC(x) 

the 

where, if mx = 0, //ze^ 

s2 = X A,C(*) 

LEMMA 1.3. If A is a basis element of P , then SP(GA) = {x\a < x < d) for 
some d > a. 

Suppose not. Then there exists a smallest a such that there exists GA with 
a Ç Sp(GA) and such that there exist d and c such that d > c > a with 
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d £ Sp(GA) and c$Sp(GA). Then c Ç Sp(G#) for some basis element B, and 
by minimality of a, the minimal element of Sp(Gs) is greater than a. But, by 
previous calculations, if 

S(B) = E mxCx, 
x=0 

(S(B))2 = £ ^C(x) 
z=0 

where hx is given by (1). Thus, since a is less than the minimal integer of 
Sp(GB), K = 0. However, by Lemma 1.2, 

d - l 

hd= E wJ|CCv)| > 0 
y=o 

since rac
2 > 0. Hence the partition set of (S(B))2 contains part but not all 

of the partition set of A, which contradicts the assumption that A is a basis 
element. 

We have shown that the spectrum of a basis element is a set of consecutive 
integers. Now we will examine coefficients of the levels of the basis elements. 

First, we note that if 5 = S (A), S2 and 5 have intersecting partition sets. 
For if b is the maximal integer in Sp(GA), 

S2 = Z hxC{x), 
x=0 

hx given by (1), and ma = 0 unless a £ Sp(G^). Thus 

h = £ ml\C(a)\+ml[C(b)\ - \Z(b + 1)|]. 
a e Sp G A 

a<b 

If e = b, hb > 0 since Z(b + 1) = 0, otherwise |Z(6)| = £|Z(ô + 1)| and 
C(b) = Z(b) - Z(b + 1), and hence 

h= Z ma
2|C(a)| + w * ( p - 2 ) | Z ( 6 + l ) | > 0. 

aeSpG^ 

If Sp(GA) = a, a + 1, . . . d, d > a we may write 
d+l 

5(4) = S = E «*%) 
z=a 

where nx = mx — mx-i, mx = 0 for x < a or x > d, but since for x < y, 

Z(x)Z(y) = (\Z(y)\)Z(x) = p-'Z{x), 
d / d+1 \ 

S2 = E U « £ M + 2 E n»/»*"") nxZ(x) + n^p*-*-1 Z(d + 1). 
x=a \ w=z+l ' 

Since the spectra of 5 and S2 intersect, S2 = kS + . . . , where & is a non
zero integer. So for x = a, a + 1, . . . , d, 

knx = (nxp
e Z + 2 E nwpe w) nx. 

\ w=x+l / 
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But we know that na = ma is not equal to 0. If all the nx, a < x < d are 
zero, then the mx are all equal and thus all mx = 1. Suppose that not all mx 

are equal. Let H = {h\a < h < d, nh ^ 0}. 
Let w and v, u < v he two consecutive members of H. Then 

*»« = \nupe~u + 2 X) nwpe~w) nu, 
\ w=u+1 / 

tot, = \nvp
e~v + 2 X nwpe~w) nv. 

Since w and y are consecutive in iJ, ww ^ 0, 7ZP ^ 0 but %• = 0 for w < k < v, 
and hence solving the above equations, we obtain nv = — pv~unu. Now 
nv = mv — mu since mv_i — mu. But ma 7e 0 since a Ç Sp(GA), so that if 
there exists an integer larger than a in H we set u = a and let z; be the next 
smallest integer in H. Then mv = ma(l — pv~a). 

Therefore, the sign of mv is the negative of that of ma and we can state: 

LEMMA 1.4. If 

S(A) = 2 MzC(x) 

and each mx is positive, then all mx = 1. 

A basis element such that each mg is positive will be called a positive basis 
element. If A is not a positive basis element, the above equations show that 

H = {a, hl9 h2, . . . , h} 

where a < hi < . . . < hk, k > 0, and 

(2) 5 = naZ{a) + nhlZ(hi) + nh2Z(h2) + ... + nhkZ(hk) 

where 

nhi = ( - l ) V ' ^ K 
for j = 1, 2, . . . , k. 

A basis element with spectrum 5 as defined by (2) is called an alternating 
basis element. 

LEMMA 1.5. / / A is an alternating basis element then 
d+l 

S (A) = X nxZ(x),n0 = ± 1, 
x=0 

and if 0 < hi, < . . . < hk are the elements of Sp(G^) with nh 9^ 0, then 

nhi= ( - l ) V > o . 
We must show that n0 9^ 0. Suppose no = 0. There exists a basis element 

B 9^ A, such that GB intersects C(0), and therefore 

S(£)2 = £ mtC(t) + ... 
teSp(GA) 
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where each mt > 0 by Lemma 1.2. Then S(B)2 = kA + . . . , and the co
efficients in A must have the same sign as k, so A must be a positive element. 
This shows that no T6- 0 and thus a = 0 in (2) and n0 divides all the nh. Thus 
since the greatest common divisor of the mQ is 1 for g in the partition set 
corresponding to basis element A, no must be + 1 or — 1. We will always 
choose ?IQ = 1 for an alternating element of the canonical basis of its par
tition ring. 

We now show that if A is a basis element then A ^ S(A) implies GA £ C(a) 
for some a. 

LEMMA 2.1. Let A be a basis element of a partition ring P of a group G of 
odd prime power order pe. Let Y be the automorphism group of G, and YA the 
subgroup of Y leaving A fixed. If [Y: YA] is not a power of p, there exists (z) Ç Y 
such that GA(a) . GA

{z)(a) Ç C(a) for all a. 

Let (y) be a generator of F, g a generator of G, and let a be an integer. 
[F: YA] = psb where b\p — 1 since F has order pe~l{p — 1) and M l by 
hypothesis. Both F and YA are cyclic so YA is generated by yA = ypSb. 

If GA{a) is empty, the result is trivial for any (z) G F. 
If GA(a) is non-empty, GA(a) contains gvpa for some (v) G F. Then, for 

all (s) e F, 

gvzpa 6 GA
z\a)y 

and G A (a) and GA^z)(a) are closed under Y A. Therefore the existence of a 
z?é 0 (mod p) such that GA(a) . GA

{Z)(a) C C{a) is equivalent to the existence 
of a z such that for all m,n,p \ (vyA

m + vzyA
n), hence is equivalent to the 

existence of a z such that for all r, p \ (yA
r + z) or yA ^ — 2 (mod £). This 

condition is clearly independent of a. 
But 

^A = ypSb = : / (mod £) 

and y is primitive of order p — l (mod^) while yA is of order (p — \)/b 
(mod p) and hence has order less than p — 1. Thus we may choose — z 
from the residues which do not appear as powers of yA. 

Next, we mention a well-known lemma. 

LEMMA 2.2. 

If a
pi = bpi (mod p) 

for some i > 0, p a prime, then 

apn
 EE bpn (mod £n+1) 

/or a// non-negative integers n. (See 2, Theorem 4.5, vol. 1.) 

LEMMA 2.3. Under the hypotheses of Lemma 2.1, if 

[F: YA] = psi s> 0, then GA(a)2 Pi C(a + 1) = 0 

/or aZZ a. 
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Let gpau be an element of GA{a). Then an element of GA(a)2 would be of 
the form 

£\u){yn2 + ynl). 
If this element is contained in C(a + 1), pWijA11 + J A12) (where we use 
pk\\u to mean that pk is the highest power of p dividing u). 

Let p\yA
nl + yA

n\ Then yA
nl= - yA

n2 (modp). But 

y A = y 

(where y generates Y) so 

ypSm = -yvSm (modp). 

Now Lemma 2.2 shows that 

and since s > 0, p2\(yA
nl + 3>AW2), which means that the element does not 

lie in C(a + 1). 

LEMMA 2.4. / / A is a basis element of a partition ring of a cyclic group G of 
odd prime power order and GA meets more than one level of G, then GA is a union 
of levels. 

To show this, we need only show that YA = Y. Suppose YA 7^ Y; since by 
Lemma 3.1 the spectrum of A is consecutive and GA meets more than one 
level, there exists a such that GA(a) 9^ 0, GA{a + 1) ^ 0. Let [Y: YA] = psb, 
(b, p) = 1. First, assume b y^ 1. Choose z by Lemma 2.1 such that 
GA(h)GAw(h) C C{h) for all ft. Let B = A^z\ 

(AB){a) = A(a)B(a) + A(a)[B(a + 1) + . . . + B(d)] + 
B(a)[A(a + l) + . . . + A(d)]. 

But since \A(h)\ = \B{h)\, by Theorem 1, 

l~f~^ = M (a) I + 2[\A(a + 1)| + . . . + \A(d)\] 

while similarly 

illf+~T)\L = ^ ( a + 1}| + m(a + 2)! + • • • + M Wll-
We chose s so that GA(a) GB(a) ÇZ C(a), thus the spectra oî AB and 4̂ 

intersect, and hence 

,45 = £ ^ 4 t e ) 

with distinct values of &^, and the sum of the coefficients in AB of the ele
ments in a given level is in a fixed proportion to those in A. Thus the left 
sides of the two equations above must be equal and, by subtracting, we 
obtain \A(a)\ + \A (a + 1)| = 0 . But, by Theorem 1, 
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\GA(a)\ _ \C(a)) _ , 
\GA(a + l)\ \C(a + l)\ P 

(where for any set S we shall write |5| = \S\) and since |-4(a)| ^ 0, we have 
ma+i = - pma. 

We have shown, however, that if A is a positive element ma+1 = ma, and 
if A is an alternating element nta+i = — (p — l)ma, so we have obtained a 
contradiction. 

By the above reasoning b = 1, whence the hypothesis that YA7^Y implies 
that ^ > 0. Now, by Lemma 2.3, for all h, GA(h)2 H C(h + 1) = 0. 

Let g £ GA(h). Then, an element of GA(h)2 is of the form g^1+y^ and this is 
an element of C(h) unless p\l + yA

k, that is, unless yA = — 1 modulo p. 
Let W be the set of elements of YA which are congruent to — 1 modulo p. 

W is non-empty since YA is of even order (divisible by p — 1) and hence is 
equal in order to the subgroup of YA of elements congruent to 1 modulo p. 
But this is a subgroup of index p — 1 in YA, and hence 

\W\=J1T-1{\YA\). 

Thi 

So 

\GA{h) r\ c(h)\ = |-zrf I^W2i-

YA^\ = ^Hf[M(o) |] + 2[M(a + Dl + • • • + l^)U 
w Kile 

L4 2 (a+l ) | p-2. 
\A(^+t)\ = p~l llA{a + 1)1] + 2[lA{a + 2)! + • • • + W)\] 

and 

j^~\A{a)\ + — ^ M ( a + 1)| = 0 or mG+1 = - (£ - 2)mfll 

which also contradicts previous lemmas. Thus the lemma is proved. 

Thus we have proved: 

THEOREM 2. Let A be a basis element of a partition ring of a cyclic group of 
odd prime power order. If YA F^ F, then GA C C(a) for some a, and all mQ 

are 1. If YA = Y then GA is a union of consecutive levels. If all mQ are positive, 
then all mQ are 1. / / not all mQ are positive, then C(0) C GA and A is an alter
nating basis element. 

Next, we examine some relations between sets which intersect consecutive 
levels. 
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Let G be a cyclic group of odd prime power order pe and let F be the auto
morphism group of G. A non-empty subset J of G is called a basic set if it 
is the set of all images of an element g of G under a subgroup of F. The largest 
subgroup Z of Y such that J = {gv\y Ç Z) is called the automorphism group 
of/. 

We will now state three lemmas concerning basic sets and the sums of 
their elements. Let GA be a basic set contained in C(a), 0 < a < e — 1 and 
let Y A be the automorphism group of GA. Let [F: YA] = psb where 5 > 0 
and b\p - 1. 

LEMMA 3.1. GA is a union of d = (p — l)/b cosets of Gpa modulo Qpa+s + \ 

Let H be a coset contained in GA. We define H[p] to be the coset containing 
the pth powers of the elements of H. Let A be the sum of all elements of GA 

and A[p] the sum of all elements of the cosets H[p] for cosets H C GA. 

LEMMA 3.2. 

Let GB be a basic subset contained in 

U H[p] 

H-GA 

and YB be the automorphism group of GB. Let B be the sum of all elements 
of GB. 

LEMMA 3.3. AB is a sum of conjugates, under F, of A if and only if GB Pi H[p] 

y£ 0 for each coset H C GA. 

Proof of Lemma 3.1. If (y) is a generator of F, then (FA) = (ypSb) is a 
generator for YA. As a generator of F, (;y) is transitive on all levels of G 
and hence on C(a). The order of C(a) is pe~a~l{p — 1), and thus this is the 
order of (y) on C{a). Let 

(2) = (3U)* = ( / 8 ( p - 1 ) ) . 

Then (0) has order 
pe-a-s-l = pe-a-i^p _ \)/p* (p - 1) 

on C(a). By Lemma 2.2, 2 = 1 (mod^?s+1), and hence, for any h = gpa in 
Gp°, h^ = h (mod Gpa+S+1). Since the order of (z) on C(a) is equal to the 
number of elements in a coset modulo Gpa+S + 1 and (z) maps each coset into 
itself, (2) is transitive on each coset contained in C(a). It follows that GA is 
a union of cosets. 

If h = gpa e GAy then 

hpvï^hp (mod Gpa+S + 1) 

pyA = p (modps+1) 
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and since s > 0, yA
l = 1 (mod/?). But 

y A = ypSb = yb (mod/?), 

whence d\i. Thus, for h £ GA the elements 

ft,*1",...,*"1"1 

lie in distinct cosets, say H0, Hh . . . , Hd-i, and further, the cosets 

Trip] Tjip] 
£10 , • • • , II d-l 

are distinct. This proves that GA = H0 U Hx U . . . U i^_i , a union of d 
cosets. 

Proof of Lemma 3.2. Let 

whence 
d-l d-l 

Now 

and 

o ko ç;kd-i _ \^pa + s + 1\p— 1 ç. 

for 5 the sum of the elements of some coset H. Hence, 

modulo p\(T*'*1r\ 
d-l d-l 

AP _ y ^ e ? s y |y-»po + 8 + 1 ip- ici#[p] _ | ^ P o + s + 1 i p - i / j [p] 
Proof of Lemma 3.3. For i = 0, 1, . . . , d - 1, let |Gfl H H^\ = mt. If 

Wi, ntj T^ 0, there is an automorphism in YB mapping GB (~\ Ht
[p] onto 

GB (~^ Hj[v], whence mt = m*. Thus, if some non-zero mt = m, each m* = 0 
or w, for j = 0, 1, . . . , d — 1. 

For h G Ho, Ht Hj[p] contains 

hence 

TT Trip] _ TT (.1+PV^1) 

a conjugate of iT*. Moreover, the 

ff d+PVA) 
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for 0 < i, k < d — 1 are distinct, for 

implies 

yi(i + ^ ) = yïQ. + pyï) (mod ps+1), 

hence, since 

^ + 1 > 2, yi = ^ and ;£ = /A' 

modulo py and thus i = if, k = k\ 
Thus 

rf-l d - l / \ d-l d-1 

AB=Z 54 E ( ^ ) = E E ^ S / 1 ^ " 1 ' , 

where m< = |i2VPl H G^. Since 

^4J3 is a sum of such conjugates if and only if all Mj = m ^ 0, that is, since 
GB j* 0, if GB meets each Htw. 

A result of these lemmas is the following theorem. 

THEOREM 3. Let G be a cyclic group of odd prime power order pe. Let A be a 
basis element of a partition ring P of G such that the number of distinct conjugates 
of A is greater than or equal to p. Then GA is entirely contained in some level C(a) 
of G, and, if GB is a partition set intersecting C(a + 1), GB is contained in 
C(a + 1) and \GA\ = pl\GB\ for t an integer greater than or equal to zero. 

Proof of Theorem 3. That A has more than p — 1 conjugates implies that 
the index [Y: YA] of the automorphism group of A is greater than p, hence 
[Y: YA] = psb for some 5 > 0 and b\p - 1. By Theorem 2, GA C C(a) for 
some a, and since C(e — 1) has only p — 1 elements, 0 < a < e — 1. Writing 
GA = Ho VJ . . . KJ Hd_i in accordance with Lemma 3.1 we note that, using 
Lemma 3.2, we can show that A[p] is a linear combination of basis elements 
by an argument identical with that used in the first part of the proof of 
Theorem 1. But the partition set of A[p] is contained in C(a + 1), and hence 
C(a + 1) is a sum of partition sets of basis elements. Since all basis elements 
contained in a level are conjugate, and 

ff„wU...Uiî2!i 
is a union of partition sets of basis elements, we may assume GB is a set of 
this union. By Lemma 3.3, since GB is a basic subset of G, \GB\ = md where 
m\i\Hp\\). Since \H™\ = p°-*-'-i and \GA\ = p^-^d, \GA\ = pl\GB\ for 
some t > 0. 
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We now show tha t the necessary conditions for a set 2 of elements 

A = Z Mgg 
0*GA 

of the group ring of a cyclic group G of odd prime power order pe, where the 
G A const i tute a part i t ion w of G to be a canonical basis for a reduced integral 
part i t ion ring of the group, as stated in Theorems 1, 2, and 3, are also suffi
cient. These conditions are as follows. 

The part i t ion w consists of sets of two sorts : 

(i) GA = C(a) U C(a + 1) U . . . U C(d) = Gp° - Gpd+\ d > a; 

(ii) GA C C(a) = Gpa - Gpa+\ 

The sets of type (ii) are subject to the two conditions: 

(iii) GA C C(a) implies t ha t GA
(y) G TT for all (y) £ F ; 

(iv) If C(a) is a union of k sets GA of TT and k > p; 

then C(a + 1) is a union of sets GB of x, and \GA\ = £ l £ # | for / a non-negative 

integer. 

(v) T h e elements of 2 are of two sorts: 

(we will call such an element positive) ; 
(b) Possibly, for a single 

G A = C(0) \J C( l ) W . . . \J C(d), d>0, 

A is an al ternat ing element as defined earlier. The sufficiency of these con
ditions is asserted by the following theorem. 

T H E O R E M 4. Let G be a cyclic group of odd prime power order pe. If w is a 
partition of G and 2 a set of elements of G such that TT and 2 satisfy conditions 
( i )-(v) above, then 2 is a canonical basis for a partition ring of G: 

We need only show tha t if A and B are elements of the given set, 2 , then 
AB is a sum of elements of 2 . We may assume tha t the least element of the 
spectrum of GA is less than or equal to the least element of the spectrum 
of GB- Let Y A be the automorphism group of GA> 

Case I. Let Y = Y'A and let Sp(GA) = {a, . . . , d), d > a. Suppose B = A. 
Then A2 = kA + nZ(d + 1) for some k and n, and Z(d + 1) is clearly a 
sum of elements of 2 such tha t all mQ = 1. If B ^ A then GB £ Z(d + 1) 
and BA = \B\A. 

We have considered the case in which YA = Y. Now we may assume t h a t 
Y A is a proper subgroup of F, and thus GA C C(a) for some a. 

Case I I . Let 1 < [Y: YA] < p- We consider two subcases: 

Subcase 11.1. Let G# not intersect C(a). Then since, by the construction 
employed in the proof of Lemma 3.1. GA is a union of cosets of 
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Gpa modulo Gpa , 

GB C G*°+1 and hence AB = \B\A. 

Subcase 11.2. Let GB intersect C(a). By (iii) B = A^v) for some (v) g F. 
G A must be a union of cosets modulo Gpa+l since [F: FA] < p. If GA = 77o 
U I f i U . . . U fld-i then 

G f l = f f ^ U f f { ' ) U . . . U i 3 r i - ) i . 

Let 

Then 

5̂ = 4 ^(t) = E s* E s$8) = |s,| E s s^i-'' 
d - 1 d-1 

= \s,\ E E s(/+wi)-

If p ^ * = — 1 (mod p) then S(1+vv^ is the sum of the elements of the unit 
coset Gpa+l and hence a sum of elements of 2. If vyA

k ^ — 1 (mod p) then 

is a conjugate of ^4. Thus ^4i3 is a sum of elements of 2. 

Case III. The index [F: FA] > p. Then [F: FA] = £*6 where 5 > 0 and 
b\p — 1. Let d = (p — l)/b. By Lemma 3.1, GA is a sum of cosets of 

Gpa modulo Gpa+8+\ 

We will retain the convention that GA = HQVJ HiKJ . . . \J Hd^u where 

We define H{t] to be the coset containing the tth powers of the elements 
of H and S{ t} to be the sum of the elements of H{t]. Let h £ HG and let Ht 

and Hj be distinct cosets contained in GA. If î V t] and H / '} are not distinct 
then 

A°*andA*i 

are elements of the same coset and tyA
l = tyA

j (mod£ s + 1). This implies that 
ps+1\t, for otherwise we obtain yA*= JAJ (mod p) contradicting the assump
tion of distinctness of cosets. We can now define A[t] as 

d-l 

E s/'\ 
i=0 
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and note that if t= 0 (ps+1), 

AU)=d( £ g). 

while otherwise A[t] is a sum of distinct coset sums. 
We will now prove two lemmas, under the assumptions of Case III . 

LEMMA 4.1. For 0 < k < s, C(a + k) is a union of at least p sets of TT1 each 
of which meets precisely d cosets of Gpa modulo Gpa+s+l and these cosets are con
jugate under YA. 

LEMMA 4.2. The sum of A{t] is a sum of elements of 2. 

Proof, of Lemma 4.1. We know that \C(a)\ = pe~a~1(p — 1) and 

|GA| " [Y^YÂi ~P 

By (iv), if G Ah is a set of IT contained in C{a + k) and 

—\rr~\ > *» 

then C(a + k + 1) is a union of sets of w and iG ĵb+J < |G^ft|, and since 
\C(a + k)\ = p\C(a + k + 1)| we obtain 

\C(a + k + l)\ \C(a + k + l)\ _ \C(a + k)\ v - * - i f n r 0 . , . 
\G^\ > \GZ\ " p\GAk\

 > p f o r 0 < * < * ' 

But since \GAk\ = pl\GAk+l\ for t > 0, and 

_ |C(g + fe)j 

we may write [F: F A J = ps~k+eb for e > 0. 
If (y) is a generator for F then (yA) = (̂ pS&) is a generator for FA and 

ijAh) = (yps~k+€b) is a generator for FAjfc. Let H be a coset contained in GA 

and A Ç H. Now Ap* G JH"^*1, and we examine the effect of (yA) and (yAk) 
on this coset. 

If e > k, from ^P6 -* = 3; (mod/?), by Lemma 2.2, we obtain 

y - * + « = yp* ( m o d ^ 1 ) . 

If & > e, from 3/̂ ~€== y (mod/?) we obtain 

y = yP-*+* (modps-k+e+l). 

In either case 

y = yv*-*+* (mod^s-^+1), 

and thus 

Hence (yA) and (yAk) map an element of H{pk] into the same coset and thus 
they permute the cosets contained in C(a + k) in the same way. It follows 
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that GAk meets precisely those cosets that belong to some family of d cosets 
conjugate under YA. This completes the proof of Lemma 4.1. 

Proof of Lemma 4.2. By (v), since 0(a) is not contained in an alternating 
element, each element of 2 with partition set contained in Gpa is the sum of 
the elements of its partition set. Since, by Lemma 4.1, C(a + s) is a union 
of elements of w, by (i) and (ii), Gpa+s + l is a union of elements of w, and hence 
for t= 0 (modps+1), A[t] is a sum of elements of 2. 

If ps+1 \ t, HQ t} is contained in some C(a + k), 0 < k < s, and by Lemma 
4.1, 

HV} U ... U H1^ 

is a union of sets of w. Hence A11} is a sum of elements of 2. This completes 
the proof of Lemma 4.2. 

Let GB G 7T be the partition set of some 5 ^ 2 where b, the smallest element 
of the spectrum of GB, satisfies b > a. Then 

B= E g. 

Subcase 111.1. b = a. Then by (iii), GB = GA
(Z) for some (z) £ F, whence 

d-\ 

Now \GB r\H}z]\ = |G"»+S + 1| where 0 < * < d and 
d-1 d-1 d-\ d-1 

AB=J:Y, SiS,1** = \G*a+3+1\ E E s\1+<~l] 

d-1 
_ |gpo+8 + i, y ^ ^{l+zyA} 

which, by Lemma 4.2, is a sum of elements of 2. 

Subcase 111.2. a < b < a + s. Then C(6) is a union of conjugates of GB, 
and writing b = a + k, we know that G# meets i^0

{ '} for some t where pk\\t, 
whence, by Lemma 4.1, GB meets precisely the d cosets 

TT It] TT It} TT\ 

Ho , i i i , . . . ,lid 
d-1' 

By an earlier argument, see proof of Lemma 3.3, all \Hi t] \J GB\ = m for a 
fixed m > 0. Thus 

d-1 / d-1 \ d-1 

AB=Z siZ H g)=m-Z Ail+«'*\ 
i=0 \ j=0 g€Hj{t} / j=0 

which again is a sum of elements of 2. 

Subcase 111.3. If b > a + s, then B is an element of 2 with partition set 
contained in Qpa+s + 1

m Then BA = \B\A and the theorem is proved. 
In view of Theorem 4, in order to list all reduced integral partition rings of 

a cyclic group G of odd prime power order pe, it suffices to list all proper 
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part i t ions of G, t ha t is, part i t ions satisfying ( i)-( iv) , and, in the case of 
part i t ions in which C(0) is properly contained in a part i t ion set, to list the 
possible ways in which an al ternat ing element may occur. 

If 7T is a proper part i t ion of G, the restriction -K' of ir to Gv is a proper 
part i t ion of the subgroup Gv. Thus , a proper part i t ion IT of G can be obtained 
from a proper part i t ion x ' of Gv in a t most two ways: 

1. C(0) may be parti t ioned and the sets of this parti t ion, together with 
those of T' will form w. 

2. If C( l ) , the lowest level of Gp, is contained in a set of w', C(0) may 
be adjoined to this set to extend w' to ir. 

A part i t ion formed by the first procedure must be made in such a manner 
t h a t conditions (i)-(iv) are satisfied. This can be done as follows. 

Let G A be a set of the part i t ion of C{a). By condition (hi) GA mus t be a 
basic set and from condition (iv) it follows t h a t any such GA for which 

\GA\ < P 

yields a proper part i t ion, while such a part i t ion with 

™1>» 
\GA\

 > P 

is permissible just in case C( l ) contains some GB and \GA\ = ps\GB\ for some 
s > 0. Any part i t ion ring formed in this manner must contain only positive 
elements by (v) and hence is fully determined. 

If the part i t ion TT is formed in the second manner, TT contains a set 
GA = C(0) U C( l ) U . . . U C(<Z) for some d > 0. Then by (v), the element 
4̂ of the part i t ion ring with part i t ion set GA can be taken as a positive element 

or an al ternat ing element. By the definition of an al ternat ing element, the 
coefficient m(0) of the elements of C(0) must equal one, while the coefficients 
m (a) of levels C(a), 0 < a < d may each be chosen positive or negative, and 
by Lemma 1.5 the signs of these coefficients determine their values. 

Since the group containing one element has only one part i t ion ring, we 
have established an inductive procedure for finding all part i t ion rings of cyclic 
groups of odd prime power order pe. 
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