Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Relations for quadratic Hodge integrals via stable maps

Georgios Politopoulos

Abstract

Following Faber-Pandharipande, we use the virtual localization formula for the moduli space of stable maps to \mathbb{P}^{1} to compute relations between Hodge integrals. We prove that certain generating series of these integrals are polynomials.

1 Introduction

Let $\overline{\mathcal{M}}_{g, n}$ be the moduli space of n-pointed genus g stable curves. It is a proper smooth Deligne Mumford (DM) stack of dimension $3 g-3+n$. We denote by $\pi: \overline{\mathcal{C}}_{g, n} \rightarrow \overline{\mathcal{M}}_{g, n}$ the universal curve and by $\sigma_{i}: \overline{\mathcal{M}}_{g, n} \rightarrow \overline{\mathcal{C}}_{g, n}$ the sections associated with the marking i for all $1 \leq i \leq n$. We denote by $\omega_{\overline{\mathfrak{C}}_{g, n} / \overline{\mathcal{M}}}^{g, n}$, the relative dualizing sheaf of π. We will consider the following classes in $A^{*}\left(\overline{\mathcal{M}}_{g, n}\right)$:

- For all $0 \leq i \leq g, \lambda_{i}$ stands for the i th Chern class of the Hodge bundle, i.e., the vector bundle $\mathbb{E}=\pi_{*} \omega_{\overline{\mathfrak{C}}_{g, n}} \overline{\mathcal{M}}_{g, n}$. For all $\alpha \in \mathbb{C}$, we denote $\Lambda_{g}(\alpha)=\sum_{j=0}^{g} \alpha^{g-j} \lambda_{j}$, and $\Lambda_{g}^{\vee}(\alpha)=(-1)^{g} \Lambda_{g}(-\alpha) .{ }^{1}$
- For all $1 \leq i \leq n$, we denote ψ_{i} the Chern class of the cotangent line at the i th marking $\mathcal{L}_{i}=\sigma_{i}^{*}\left(\omega_{\bar{\complement}_{g, n} / \overline{\mathcal{M}}_{g, n}}\right)$.
A Hodge integral is an intersection number of the form:

$$
\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \ldots \psi_{n}^{k_{n}} \Lambda_{g}\left(t_{1}\right) \ldots \Lambda_{g}\left(t_{m}\right),
$$

where k_{1}, \ldots, k_{n} are nonnegative integers and t_{1}, \ldots, t_{m} are complex numbers. If $m=$ 1,2 , or 3 , then the above integral is called a linear, double, or triple Hodge integrals, respectively. Relations between linear Hodge integrals where proved in [FP00a] using the Gromov-Witten theory of \mathbb{P}^{1} and the localization formula of [GP99]. This approach was also used in [FP00b] and [TZ03] to prove certain properties of triple Hodge integrals. Linear and triple Hodge integrals naturally appeared in the GWtheory of Calabi-Yau 3-folds, thus explaining a more abundant literature on the topic. However, double Hodge integrals have appeared recently in the quantization of Witten-Kontsevich generating series (see [Blo20]), in the theory of spin Hurwitz

[^0]numbers (see [GKL21]), and in the GW theory of blow-ups of smooth surfaces (see [GKLS22]).

In the present note, we consider the following power series in $\mathbb{C}[\alpha][[t]$ defined using double Hodge integrals:

$$
P_{a}(\alpha, t)=\sum_{g \geq 0} t^{g}\left(\int_{\overline{\mathcal{M}}} \frac{\Lambda_{g}^{\vee}(n+1}{\vee} 1-\psi_{0}^{\vee}(\alpha) \prod_{i=1}^{n}\left(2 a_{i}+1\right)!!\left(-4 \psi_{i}\right)^{a_{i}}\right) \exp \left(\frac{t}{24}\right),
$$

where $a=\left(a_{1}, \ldots, a_{n}\right)$ is a vector of nonnegative integers. If $n=1$, we use the convention: $\int_{\overline{\mathcal{M}}_{0,2}} \psi_{1}^{a} \frac{\left.\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(\alpha)\right)}{1-\psi_{2}}=(-1)^{a}$.

Theorem 1.1 $\quad P_{a}(\alpha, t)$ is a monic polynomial in $\mathbb{C}[\alpha][t]$ of degree $|a|$ in t.

Here, we provide the first values of $P_{a}(-\alpha-1, t)$. In the list below, we omit the variables $-\alpha-1$ and t in the notation:

$$
\begin{aligned}
& P_{()}=1 . \\
& P_{(1)}=t+12 . \\
& P_{(2)}=t^{2}-10 \alpha t+240 . \\
& P_{(1,1)}=t^{2}-12 t . \\
& P_{(3)}=t^{3}+(-77 / 3 \alpha-28) t^{2}+280 t+6720 . \\
& P_{(2,1)}=t^{3}+(-10 \alpha-48) t^{2}+(240 \alpha+240) t . \\
& P_{(1,1,1)}=t^{3}-72 t^{2}+432 t . \\
& P_{(4)}=t^{4}+(-43 \alpha-72) t^{3}+\left(126 \alpha^{2}+756 \alpha+840\right) t^{2}+10080 t+241920 . \\
& P_{(3,1)}=t^{4}+(-77 / 3 \alpha-100) t^{3}+(1232 \alpha+1624) t^{2} . \\
& P_{(2,2)}=t^{4}+(20 \alpha+100) t^{3}+\left(-100 \alpha^{2}-1360 \alpha-1680\right) t^{2} . \\
& P_{(2,1,1)}=t^{4}+(-10 \alpha-132) t^{3}+(840 \alpha+3120) t^{2}+(-8640 \alpha-8640) t . \\
& P_{(1,1,1,1)}=t^{4}-168 t^{3}+5616 t^{2}-20736 t .
\end{aligned}
$$

Considering these first values, we conjecture that P_{a} is a polynomial of total degree $|a|$ in both variables t and α.

2 Preliminaries

We denote by $\overline{\mathcal{M}}_{g, n}\left(\mathbb{P}^{1}, 1\right)$, the moduli space of stable maps of degree 1 to \mathbb{P}^{1}. It is a proper DM stack of virtual dimension $2 g+n$. Here, we can define in an analogous way the Hodge bundle \mathbb{E}, the cotangent line bundles \mathcal{L}_{i} and we denote again λ_{i} and ψ_{i} the respective Chern classes. We also have the forgetful and evaluation maps

$$
\pi: \overline{\mathcal{M}}_{g, n+1}\left(\mathbb{P}^{1}, 1\right) \rightarrow \overline{\mathcal{M}}_{g, n}\left(\mathbb{P}^{1}, 1\right) \text {, and } e v_{i}: \overline{\mathcal{M}}_{g, n+1}\left(\mathbb{P}^{1}, 1\right) \rightarrow \mathbb{P}^{1} .
$$

Throughout this note, the enumeration of markings starts from 0 . Furthermore, π is the morphism that forgets the marking p_{0} and $e v_{i}$ is the evaluation of a stable map to the i th marked point. The vector bundle $T:=R^{1} \pi_{*}\left(e v_{0}^{*} \cup_{\mathbb{P}^{1}}(-1)\right)$ is of rank g and we denote by y its top Chern class. We will denote:

$$
\left\langle\prod_{i=0}^{n-1} \tau_{a_{i}}(\omega) \mid y\right\rangle_{g, 1}^{\mathbb{P}_{1}^{1}}:=\int_{\left.\left[\overline{\mathcal{M}}_{g, n}\left(\mathbb{P}^{1}, 1\right)\right]\right]^{i r}} \prod_{i=0}^{n-1} \psi_{i}^{a_{i}} e v_{i}^{*}(\omega) y,
$$

where ω denotes the class of a point in \mathbb{P}^{1}.
Theorem 2.1 (Localization Formula [GP99, FP00a]) Let $g \in \mathbb{Z}_{\geq 0}$, and let $a \in \mathbb{Z}_{\geq 0}^{n}$ such that $|a| \leq g$. Then, for all complex numbers α, and $t \in \mathbb{C}^{*}$, we have

$$
\begin{aligned}
&\left\langle\prod_{i=1}^{n} \tau_{a_{i}}(\omega) \mid y\right\rangle_{g, 1}^{\mathbb{P}^{1}}= \sum_{g_{1}+g_{2}=g} \\
& \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} t^{n} \prod_{i=1}^{n} \psi_{i}^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(t) \Lambda_{g_{1}}^{\vee}(\alpha t)}{t\left(t-\psi_{0}\right)} \\
& \times \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \frac{\Lambda_{g_{2}}^{\vee}(-t) \Lambda_{g_{2}}^{\vee}((\alpha+1) t)}{-t\left(-t-\psi_{0}\right)}
\end{aligned}
$$

Here, we use the convention $\int \overline{\mathcal{M}}_{0,1} \psi_{0}^{a}=1$.
Proposition 2.2 (Proposition 4.1 of [TZ03]) For all complex numbers α, we have

$$
F(\alpha, t)=1+\sum_{g>0} t^{2 g} \int_{\overline{\mathcal{M}}_{g, 1}} \frac{\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(\alpha)}{1-\psi_{0}}=\exp \left(-\frac{t^{2}}{24}\right) .
$$

Besides, we have the String and Dilaton equation for Hodge integrals.
Proposition 2.3 Let $g, n \in \mathbb{Z}_{\geq 0}$ such that $2 g-2+n>0$.
(i) [Dilaton equation for Hodge integrals] Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and assume that there exist i_{0} such that $a_{i_{0}}=1$. Then

$$
\int_{\overline{\mathcal{M}}_{g, n+1}} \frac{\psi_{i_{0}} \Pi_{i \neq i_{0}} \psi_{i}^{a_{i}} \prod_{j=1}^{g} \lambda_{k}^{b_{k}}}{1-\psi_{0}}=(2 g-2+n) \int_{\overline{\mathcal{M}}_{g, n}} \frac{\prod_{i=1}^{n-1} \psi_{i}^{a_{i}} \prod_{j=1}^{g} \lambda_{k}^{b_{k}}}{1-\psi_{0}}
$$

(ii) [String equation for Hodge integrals] Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and assume that there exist i_{0} such that $a_{i_{0}}=0$. Then we have

$$
\begin{aligned}
\int_{\overline{\mathcal{M}}_{g, n+1}} \frac{\prod_{i=1}^{n} \psi_{i}^{a_{i}} \prod_{j=1}^{g} \lambda_{k}^{b_{k}}}{1-\psi_{0}}= & \int_{\overline{\mathcal{M}}_{g, n}} \frac{\prod_{i=1}^{n-1} \psi_{i}^{a_{i}} \prod_{j=1}^{g} \lambda_{k}^{b_{k}}}{1-\psi_{0}} \\
& +\sum_{j=1}^{n} \int_{\overline{\mathcal{M}}_{g, n}} \frac{\psi_{j}^{a_{j}-1} \prod_{i \neq j} \psi_{i}^{a_{i}} \prod_{k=1}^{g} \lambda_{k}^{b_{k}}}{1-\psi_{0}} .
\end{aligned}
$$

3 The calculation

Note that the GW-invariant $\left\langle\prod_{i=1}^{n} \tau_{a_{i}}(\omega) \mid y\right\rangle_{g, 1}^{\mathbb{P}^{1}}$ is 0 unless $|a|=g$ for dimensional reasons. Indeed, $\operatorname{dim}_{\mathbb{C}}\left[\overline{\mathcal{M}}_{g, n}\left(\mathbb{P}^{1}, 1\right)\right]^{\text {vir }}=2 g+n$ and the cycle we are integrating is in codimension $g+|a|+n$. Using the above localization formula, and Lemma 2.1 of
[TZ03] the intersection number $\left.\left\langle\prod_{i=1}^{n} \tau_{a_{i}}(\omega)\right| y\right|_{g, 1} ^{\mathbb{P}_{1}^{1}}$ is expressed as

$$
\begin{aligned}
& \sum_{g_{1}+g_{2}=g} \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} t^{n} \prod_{i=1}^{n} \psi_{i}^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(t) \Lambda_{g_{1}}^{\vee}(\alpha t)}{t\left(t-\psi_{0}\right)} \cdot \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \frac{\Lambda_{g_{2}}^{\vee}(-t) \Lambda_{g_{2}}^{\vee}((\alpha+1) t)}{-t\left(-t-\psi_{0}\right)} \\
= & \sum_{g_{1}+g_{2}=g} t^{|a|-g_{1}}(-t)^{-g_{2}} \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} \prod_{i=1}^{n} \psi^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(1) \Lambda_{g_{1}}^{\vee}(\alpha)}{1-\psi_{0}} \times \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \frac{\Lambda_{g_{2}}^{\vee}(1) \Lambda_{g_{2}}^{\vee}(-(\alpha+1))}{1-\psi_{0}} \\
= & t^{|a|-g} \sum_{g_{1}+g_{2}=g} \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} \prod_{i=1}^{n} \psi^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(1) \Lambda_{g_{1}}^{\vee}(\alpha)}{1-\psi_{0}} \cdot \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \psi_{0}^{3 g_{2}-2} .
\end{aligned}
$$

In the last equation, we used Proposition 2.2 in order to replace $\int_{\overline{\mathcal{M}}_{g_{2}, 1}} \frac{\Lambda_{g_{2}}^{\vee}(1) \Lambda_{g_{2}}^{\vee}(-(\alpha+1))}{1-\psi_{0}}$ with $(-1)^{g_{2}} \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \psi_{0}^{3 g_{2}-2}$.

We define

$$
A_{g, a}(\alpha)=\sum_{g_{1}+g_{2}=g} \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} \prod_{i=1}^{n} \psi^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(1) \Lambda_{g_{1}}^{\vee}(\alpha)}{1-\psi_{0}} \cdot \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \psi_{0}^{3 g_{2}-2}
$$

Then, we have

$$
A_{g, a}(\alpha)=\left\{\begin{array}{cl}
0, & |a|<g, \\
\left.\left\langle\prod_{i=1}^{n} \tau_{a_{i}}(\omega)\right| y\right|_{g, 1} ^{\mathbb{P}_{1}^{1}}, & |a|=g .
\end{array}\right.
$$

By the definition of $\Lambda_{g}^{\vee}(t)$, we see that $\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(-(\alpha+1))$ is a polynomial in α of degree g, which actually determines the degree of $A_{g}(\alpha)$.

We now present a proof for the main result.
Proof (of Theorem 1.1) We begin by stating the well-known fact

$$
1+\sum_{g>0} t^{g} \int_{\overline{\mathcal{M}}_{g, 1}} \psi_{0}^{3 g-2}=\exp \left(\frac{t}{24}\right)
$$

proven in Section 3.1 of [FP00a]. Now, we consider the product of $\exp \left(\frac{t}{24}\right)$ and

$$
\sum_{g \geq 0} t^{g}\left(\int_{\overline{\mathcal{M}}_{g, n+1} 1-\psi_{0}}^{\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(\alpha)} \prod_{i=1}^{n}\left(2 a_{i}+1\right)!!\left(-4 \psi_{i}\right)^{a_{i}}\right)
$$

to obtain a new power series whose coefficients in degree g are given by

$$
\sum_{g_{1}+g_{2}=g} \int_{\overline{\mathcal{M}}_{g_{1}, n+1}} \prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}} \prod_{i=1}^{n} \psi^{a_{i}} \frac{\Lambda_{g_{1}}^{\vee}(1) \Lambda_{g_{1}}^{\vee}(\alpha)}{1-\psi_{0}} \cdot \int_{\overline{\mathcal{M}}_{g_{2}, 1}} \psi_{0}^{3 g_{2}-2}
$$

This is exactly $A_{g, a}(\alpha) \cdot \prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}}$. Hence, we can rewrite the power series $P_{a}(\alpha, t)$ in the form

$$
P_{a}(\alpha, t)=\prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}} \sum_{g \geq 0} t^{g} A_{g, a}(\alpha) .
$$

As it is computed in the start of Section 3, we have that the numbers $A_{g, a}(\alpha)$ vanish when $g>|a|$. Hence, we get that all coefficients of the power series $P_{a}(\alpha, t)$
vanish when $g>|a|$, i.e. $P_{a}(\alpha, t)$ is a polynomial of degree $|a|$. Furthermore, the top coefficient of $P_{a}(\alpha, t)$, i.e., the coefficient of $t^{|a|}$ is given by

$$
\left.\left\langle\prod_{i=1}^{n}(-4)^{a_{i}}\left(2 a_{i}+1\right)!!\tau_{a_{i}}(\omega)\right| y\right|_{|a|, 1} ^{\mathbb{P}^{1}}
$$

This value is computed in [KL11] and is actually equal to 1 . In particular, the number $\prod_{i=1}^{n}(-4)^{a_{i}}\left(2 a_{i}+1\right)!$! is here to make the polynomial monic.

We now prove several other properties of the polynomials P_{a}.
Proposition 3.1 The constant term c_{0} of $P_{a}(\alpha, t)$ is nonzero if and only if $n=1$, where then $c_{0}=(-1)^{a} \prod_{i=1}^{n}(-4)^{a_{i}}\left(2 a_{i}+1\right)!$ or if $n>1$ and $\sum_{i=1}^{n} a_{i} \leq n-2$ where then

$$
c_{0}=\prod_{i=1}^{n}(-4)^{a_{i}}\left(2 a_{i}+1\right)!!\frac{(n-2)!}{a_{1}!\ldots\left(n-2-\sum a_{i}\right)!} .
$$

Proof We only compute the integrals appearing in the constant term of this polynomial since then we only have to multiply with $\prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}}$. The integral in the constant term of $P_{a}(\alpha, t)$ is given by $\int_{\overline{\mathcal{M}}_{0, n+1}} \frac{\prod_{i=1}^{n} \psi_{i}^{a_{i}}}{1-\psi_{0}}$. When $n=1$, using the convention $\int_{\overline{\mathcal{M}}_{0,2}} \frac{\psi_{1}^{a}}{1-\psi_{0}}=(-1)^{a}$, we get that

$$
c_{0}=(-1)^{a} \prod_{i=1}^{n}(-4)^{a_{i}}\left(2 a_{i}+1\right)!!
$$

When $n>1$, if $\sum_{i=1}^{n} a_{i}>n-2$, then c_{0} is zero for dimensional reasons. Otherwise, we have

$$
\int_{\overline{\mathcal{M}}_{0, n+1}} \frac{\prod_{i=1}^{n} \psi_{i}^{a_{i}}}{1-\psi_{0}}=\int_{\overline{\mathcal{M}}_{0, n+1}} \psi_{0}^{n-2-\sum a_{i}} \prod_{i=1}^{n} \psi_{i}^{a_{i}}=\frac{(n-2)!}{a_{1}!\ldots\left(n-2-\sum a_{i}\right)!} .
$$

Proposition 3.2 Let $n \geq 3$. Then we have the following rules:
(i) [String equation]

$$
P_{\left(a_{1}, \ldots, a_{n-1}, 0\right)}(\alpha, t)=P_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t)-\sum_{i=1}^{n}\left(8 a_{i}+4\right) P_{\left(a_{1}, . ., a_{i}-1, \ldots, a_{n-1}\right)}(\alpha, t) .
$$

(ii) [Dilaton equation]

$$
\left.P_{\left(a_{1}, \ldots, a_{n-1}, 1\right)}(\alpha, t)=(t-12 n+24) P_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t)-24 t P_{\left(a_{1}, \ldots, a_{n-1}\right)}^{\prime}(\alpha, t)\right) .
$$

Proof We define the power series

$$
\widetilde{P}_{a}(\alpha, t)=\sum_{g \geq 0} t^{g}\left(\int_{\overline{\mathcal{M}}_{g, n+1}} \prod_{i=1}^{n} \psi^{a_{i}} \frac{\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(\alpha)}{1-\psi_{0}}\right) .
$$

Note that the following equation holds:

$$
P_{a}(\alpha, t)=\prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}} \widetilde{P}_{a}(\alpha, t) \exp \left(\frac{t}{24}\right) .
$$

We can rewrite the coefficients of $\widetilde{P}_{a}(\alpha, t)$ as

$$
\sum_{k=0}^{g} \sum_{j=0}^{g}(-1)^{g+k}(a+1)^{g-j} \int_{\overline{\mathcal{M}}_{g, n+1}} \frac{\prod_{i=1}^{n} \psi_{i}^{a_{i}} \lambda_{k} \lambda_{j}}{1-\psi_{0}}
$$

(i) Applying the String equation for Hodge integrals, we obtain the following formula:

$$
\widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}, 0\right)}(\alpha, t)=\widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t)+\sum_{i=1}^{n} \widetilde{P}_{\left(a_{1}, \ldots, a_{i}-1, \ldots, a_{n-1}\right)}(\alpha, t)
$$

Hence, multiplying with $\prod_{i=1}^{n-1}\left(2 a_{i}+1\right)!!(-4)^{a_{i}} \exp \left(\frac{t}{24}\right)$, we obtain the desired result after a straightforward calculation.
(ii) Applying Dilaton equation for Hodge integrals, we obtain the following formula:

$$
\begin{aligned}
\widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}, 1\right)}(\alpha, t) & =2 \sum_{g \geq 0} g t^{g} \int_{\overline{\mathcal{M}}_{g, n-1}} \prod_{i=1}^{n-1} \psi_{i}^{a_{i}} \frac{\Lambda_{g}^{\vee}(1) \Lambda_{g}^{\vee}(\alpha)}{1-\psi_{0}} \\
& +(n-2) \widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t)
\end{aligned}
$$

Note that the first term of the sum is equal to $2 t \widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}\right)}^{\prime}(\alpha, t)$. Now, multiplying both sides of the equation above with

$$
\prod_{i=1}^{n-1}\left(2 a_{i}+1\right)(-4)^{a_{i}} \exp \left(\frac{t}{24}\right)
$$

we have

$$
\begin{aligned}
\frac{-1}{12} P_{\left(a_{1}, \ldots, a_{n-1}, 1\right)}(\alpha, t) & =(n-2) P_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t) \\
& +2 t\left(\prod_{i=1}^{n-1}(-4)^{a_{i}}\left(2 a_{i}+1\right)!!\right) \widetilde{P}_{\left(a_{1}, \ldots, a_{n-1}\right)}^{\prime}(\alpha, t) \mathrm{e}^{t / 24} \\
& =(n-2) P_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t) \\
& +2 t\left(P_{\left(a_{1}, \ldots, a_{n-1}\right)}^{\prime}(\alpha, t)-\frac{1}{24} P_{\left(a_{1}, \ldots, a_{n-1}\right)}(\alpha, t)\right)
\end{aligned}
$$

Finally, clearing the denominators, we obtain the desired result.
We recall Mumford's relation $\Lambda_{g}^{\vee}(1) \cdot \Lambda_{g}^{\vee}(-1)=1$ (see [Mum83]). In particular, $P_{a}(-1, t)$ is defined by integrals of ψ-classes.

Corollary 3.3 For any vector $a \in \mathbb{Z}_{\geq 0}^{n}$, the power series

$$
P_{a}(-1, t)=\prod_{i=1}^{n}\left(2 a_{i}+1\right)!!(-4)^{a_{i}} \exp \left(\frac{t}{24}\right) \cdot \sum_{g \geq 0}(-t)^{g} \int_{\overline{\mathcal{M}}_{g, n+1}} \frac{\prod_{i=1}^{n} \psi_{i}^{a_{i}}}{1-\psi_{0}}
$$

is a polynomial of degree $|a|$.
In this case, the polynomiality as well as a closed expression were proved in [LX11].

Acknowledgments I am very grateful to my PhD advisor Adrien Sauvaget for introducing me to this problem and for his guidance and comments throughout the whole writing of this article.

References

[Blo20] X. Blot, The quantum Witten-Kontsevich series and one-part double Hurwitz numbers. Geometry \& Topology, Geom. Topol. 26(2022), no. 4, 1669-1743.
[FP00a] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory. Invent. Math. 139(2000), no. 1, 173-199.
[FP00b] C. Faber and R. Pandharipande, Logarithmic series and Hodge integrals in the tautological ring. Michigan Math. J. 48(2000), 215-252. With an appendix by Don Zagier, Dedicated to William Fulton on the occasion of his 60th birthday.
[GKL21] A. Giacchetto, R. Kramer, and D. Lewański, A new spin on Hurwitz theory and ELSV via theta characteristics. Preprint, 2021. arXiv:2104.05697
[GKLS22] A. Giacchetto, R. Kramer, D. Lewa'nski, and A. Sauvaget, The spin Gromov-Witten/Hurwitz correspondence for \mathbb{P}^{1}. Preprint, 2022. arXiv:2208.03259
[GP99] T. Graber and R. Pandharipande, Localization of virtual classes. Invent. Math. 135(1999), no. 2, 487-518.
[KL11] Y.-H. Kiem and J. Li, Low degree GW invariants of spin surfaces. Pure Appl. Math. Q. 7(2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1449-1475.
[LX11] K. Liu and H. Xu, The n-point functions for intersection numbers on moduli spaces of curves. Adv. Theor. Math. Phys. 15(2011), no. 5, 1201-1236.
[Mum83] D. Mumford, Towards an enumerative geometry of the moduli space of curves. In: Arithmetic and geometry. Vol. II, Progress in Mathematics, 36, Birkhäuser, Boston, MA, 1983, pp. 271-328.
[TZ03] G. Tian and J. Zhou, Quadratic recursion relations of Hodge integrals via localization. Acta Math. Sin. (Engl. Ser.) 19(2003), no. 2, 209-232.

Laboratoire AGM, Cergy University, 2 Avenue Adolphe Chauvin, 95300 Cergy-Pontoise, France
Mathematical Institute, Leiden University, 2300 CA RA Leiden, Netherlands
e-mail: g.politopoulos@math.leidenuniv.nl

[^0]: Received by the editors June 12, 2023; revised January 8, 2024; accepted January 9, 2024
 Published online on Cambridge Core January 17, 2024.
 AMS subject classification: $\mathbf{1 4 H 1 0}$.
 Keywords: Hodge integrals, moduli of curves, intersection theory, localization formula.
 ${ }^{1}$ Here, we use the convention of [FP00a] for $\Lambda_{g}^{\vee}(\alpha)$ and $\Lambda_{g}(\alpha)$.

