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ABSTRACT. To test any theory, such as theories of motion—Newtonian or 
relativistic—of solar system objects, one must compare the predictions 
of theory with observation. But discordant observations habitually 
plague the reducer of astronomical data. To alleviate the baleful ef
fects, particularly harmful when the observations are reduced by the 
method of least squares, of discordant data investigators almost invari
ably reject observations whose corresponding (0-C) fs or post-solution 
residuals exceed a cutoff. But techniques that are insensitive to the 
assumption that the observational errors are normally distributed, call
ed robust estimation in the literature, have also been developed. 

Various techniques for robust estimation exist, but some of 
them, such as minimization of the 1.5th power of the residuals, are only 
practical for small data sets because of the amount of computing involv
ed. This study assesses the utility of two techniques for robust estima
tion that are practical with large data sets: iteratively reweighted 
least squares and an L^ solution. The data set used is 21,365 optical 

observations of the minor planets 6-9 and 15 that Branham (1979) pub
lished. The analysis in that publication derived values for a correc
tion to the equinox of the FK4 catalog system at epoch 1950.0, AE = 
07283±07342, and to Newcomb Ts general precession in longitude, A p c = 

17318±07238, that are in good agreement with other determinations of 
these quantities, AE = 07525±07045 and A p c = 171010715, that Fricke 
(1972; 1982) summarized. The distribution of the residuals from the 
21,365 observations, which had a mean error of unit weight of 27394, is 
more peaked, skewed, and heavy-tailed than one would obtain from the 
normal distribution. The present study uses these same observations and 
robust estimation to ascertain if the derived AE and Ap are in reason-

c 
able agreement with the other determinations. Although these two yard
sticks may not be as precise as one would like, they should nevertheless 
allow one to weed out techniques or data reduction procedures that re
sult in grossly discordant values. 

Iteratively reweighted least squares (Coleman, et al. 1980) is 
ordinary least squares applied to a data set whose residuals have been 
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weighted to achieve robustness. If r represents the vector of the re-
1/2 T 1/2 

siduals then we minimize (JjJ *r) • (Jtf *r) , where Jj is a diagonal 
T 

matrix of the weights, instead of, as with ordinary least squares, £ 
To start an iteratively reweighted least squares solution we need a pre
liminary solution to calculate the residuals because an individual 
weight depends on the size of the residual. The weights used in this 
study fall into three categories: the Andrews, Biweight, and Talwar 
weightings reject large residuals that exceed a cutoff, and the former 
two assign higher weight to small residuals; the Welsch weighting em
ploys no cutoff, but large residuals receive such small weight that for 
practical purposes it is zero; the Fair and Huber weightings assign re
latively high weight to large residuals. The latter two categories re
flect modern ideas that heavy-tailed distributions are common rather 
than exceptional. For this study a preliminary solution was calculated 
from all of the data and iterated until a convergence criterion was met. 
Of the weighting schemes studied thos that apply no cutoff were all un
satisfactory. The others, Andrews, Biweight, and Talwar, all gave good 
determinations (AE = 0 V 5 1 0 ± 0 V 1 6 8 , 0 V 4 4 8 ± 0 V 1 6 3 , 0 7 4 4 2 ± 0 7 1 6 4 ; A p c = 
1 7 4 3 6 ± 0 7 1 3 5 , 1 7 4 4 8 ± 0 7 1 3 1 , 1 V 6 4 3 ± 0 V 1 3 1 respectively) albeit at the cost 
of increased computer time. About three times more CPU time was needed 
by iteratively reweighted least squares than would be by ordinary least 
squares. The former, therefore, requires a careful study of the distri
bution of the residuals to determine a proper weighting function. 

The other technique studied, estimation, is a non-least 
squares procedure based on the principle of minimization of the sum of 
the absolute values of the residuals. The algorithm for estimation 
used in this study is a modification of Dantzig's simplex algorithm for 
linear programming (Barrodale and Roberts 1 9 7 4 ) . estimation may re
quire considerably more computing than ordinary least squares, but the 
exact amount of CPU time depends critically on the available physical 
memory. However, the results from the algorithm were highly satis
factory (AE = 0 7 4 4 9 and A p c = 1 7 2 6 1 ) , and because estimation rejects 

no residuals the investigator is freed from the task of establishing 
cutoffs or studying the shape of the distribution of the residuals. The 
technique, therefore, incorporates an invariant algorithm that would be 
useful for comparison of the results of individual investigations. 
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DISCUSSION 

Kristensen : you recommend weighting the observations by the residuals 
o-c. In my opinion, weights should be determined by a critical ana
lysis of the series of observations. 

Branham : of course, it would be better to analyse the real observation 
conditions, but we often have no information about these conditions 
but only pure data. 

Kristensen : have you compared the results obtained by least squares wi
th those obtained by on fictitious examples where errors are cons
tructed by a random numbers generator to be truly Gauss-distributed ? 

Branham : we did so, but this comparison was not very convincing. It was 
shown in 1977 in a paper on various robust methods, that the optimal 
method for simulated data is often bad for real data. So the only way 
to select a method is to test it on real data. 

Seidelmann.: what were your considerations in chosing your method ? 

Branham : first because it has been theoretically proven, secondly becau
se it worked on test examples. 

Batrakov : would it not be better to use more standard two-step method: 
first use least squares and eliminate outliers, then, again use least 
squares ? 

Branham : this method works well for eliminating the outliers. But in our 
case, the distribution is not Gaussian and the two-step method would 
not work. 

Kreinovich : you have used the simplex method for linear programming pro
blem. So your program took 12 hours of computer time. But nowadays, 
new methods have been invented (ellipse- method, Karkmarkar method). 
Their use would reduce the computer time. 

Branham : I heard about the russian ellipse-method five years ago, but as 
far as I know, it is not better than the simplex method. 

Kreinovich : since then, it has been greatly improved. Another question : 
you use on method. Why didn't you choose L with padapted to obser
vations ? One can prove that these methods ari optimal. 

Branham : we are planning to try L 1 s method. 
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