COMPOSITIO MATHEMATICA

Cuspidal cohomology of stacks of shtukas

Cong Xue

Compositio Math. 156 (2020), 1079-1151.

doi:10.1112/S0010437X20007058

A LONDON
FOUNDATION V/\ \Tg MATHEMATICAL
COMPOSITIO AR [socieTy
MATHEMATICA B |isr 1a0s

https://doi.org/10.1112/50010437X20007058 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007058
https://doi.org/10.1112/S0010437X20007058

</\ Compositio Math. 156 (2020) 10791151
%/ doi:10.1112/90010437X20007058

Cuspidal cohomology of stacks of shtukas

Cong Xue

ABSTRACT

Let G be a connected split reductive group over a finite field F, and X a smooth
projective geometrically connected curve over F,. The f-adic cohomology of stacks of
G-shtukas is a generalization of the space of automorphic forms with compact support
over the function field of X. In this paper, we construct a constant term morphism on the
cohomology of stacks of shtukas which is a generalization of the constant term morphism
for automorphic forms. We also define the cuspidal cohomology which generalizes the
space of cuspidal automorphic forms. Then we show that the cuspidal cohomology has
finite dimension and that it is equal to the (rationally) Hecke-finite cohomology defined
by V. Lafforgue.
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Introduction

Let X be a smooth projective geometrically connected curve over a finite field IF,. We denote by
F' its function field, by A the ring of adeéles of F' and by O the ring of integral adéles.

Let G be a connected split reductive group over F,. For simplicity, we assume in the
introduction that the center of G is finite.

We consider the space of automorphic forms C.(G(F)\G(A)/G(0),C). On the one hand,
there is the notion of cuspidal automorphic form. An automorphic form is said to be cuspidal if
its image under the constant term morphism along any proper parabolic subgroup of G is zero.
A theorem of Harder [Har74, Theorem 1.2.1] says that the space of cuspidal automorphic forms
has finite dimension. The proof uses the Harder—Narasimhan truncations and the contractibility
of deep enough strata.

On the other hand, the space of automorphic forms is equipped with an action of the Hecke
algebra C.(G(0)\G(A)/G(0),Q) by convolution on the right. An automorphic form is said to
be (rationally) Hecke-finite if it belongs to a finite-dimensional subspace that is stable under the
action of the Hecke algebra.

In [Laf18, Proposition 8.23], Vincent Lafforgue proved that the space of cuspidal automorphic
forms and the space of Hecke-finite automorphic forms are equal. In fact, the space of cuspidal
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automorphic forms is stable under the action of the Hecke algebra and is finite-dimensional,
and thus it is included in the space of Hecke-finite automorphic forms. The converse direction
follows from the following fact: any non-zero image of the constant term morphism along a proper
parabolic subgroup P with Levi quotient M is supported on the components indexed by a cone
in the lattice of the cocharacters of the center of M. Hence it generates an infinite-dimensional
vector space under the action of the Hecke algebra of M. Thus a non-cuspidal automorphic form
can not be Hecke-finite for the Hecke algebra of M.

Let ¢ be a prime number not dividing ¢. In [Dri78| and [Dri87]|, Drinfeld introduced the
stacks classifying GL,,-shtukas for the representation St X St* of GL,, x GL,, where St is the
standard representation of GL, and St* is its dual, and considered their f-adic cohomology.
These were also used by Laurent Lafforgue in [Laf97]. Later in [Var04], Varshavsky defined the
stacks classifying G-shtukas Chtg ;w for general G and for an arbitrary representation W of GI ,
where G is the Langlands dual group of G over Q; and I is a finite set (Drinfeld considered the
case G = GL,, I = {1,2} and W = St K St*). Varshavsky also defined the degree j cohomology
group with compact support H? GIW of the /-adic intersection complex of Chtg 7w (this stack
is smooth in the case of Drinfeld but not in general). In particular, when I = ¢ and W = 1 is
the one-dimensional trivial representation of the trivial group G“ the cohomology group HG b1
coincides with C.(G(F)\G(A)/G(0), Qy). ‘

The Hecke algebra C.(G(0)\G(A)/G(0),Z;) acts on the cohomology group H]GIW In
[Laf18], Vincent Lafforgue defined the subspace HZ; Hgv of H G.ow Wwhich consists of the
cohomology classes ¢ for which Cc(G(0)\G(A)/G(0),Z ¢)-c is a finitely generated Zg-submodule
of HG LW When I = @ and W = 1, the space HG’ gfl coincides with the space of Hecke-finite
automorphlc forms, and thus coincides with the space of cuspidal automorphic forms. Vincent
Lafforgue used H, g’ ?If/v to construct the excursion operators on the space of cuspidal automorphic
forms and obtained a canonical decomposition of this space indexed by the Langlands parameters.

We can also define a subspace Hé?;,m of H JG w which consists of the cohomology classes ¢
for which C.(G(OQ)\G(A ) /G(0),Qy) - ¢ is a finite-dimensional Qg-vector subspace of H, é rw- BY

definition, we have H, é w CH JG ?ivrat When I =@ and W = 1, it is easy to see that they are

equal.

In this paper, we are interested in the constant term morphism of the cohomology of stacks
of shtukas, analogous to the case of automorphic forms. For any parabolic subgroup P of G, let
M be its Levi quotient. As in [Var04|, we can define the stack of P-shtukas Chtp;w and the
stack of M-shtukas Chtys ;w. The morphisms G <= P — M induce a correspondence

ChtGJ,W <~ Chtpvj’W — ChtM7[7w.
From this we construct a constant term morphism
Pj . rrJ J
Cq  Hg rw = Hyrw-

Then we define the cuspidal cohomology H, é’ (}u;f C Hé 7w as the intersection of the kernels of

the constant term morphisms for all proper parabohc subgroups.
This construction was suggested by Vincent Lafforgue. He also conjectured the following.

— The cuspidal cohomology is of finite dimension.
— The following three Qg-vector subspaces of H}, ; ;, are equal:

4, Hf 4, Hf-rat 4, cusp
HG,I,W - HG,I,W - HG,I,W
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In this paper, we prove these conjectures except for the equality with H g; ?iv, which we plan
to treat in a future paper. The main results are as follows.

THEOREM 0.0.1 (Theorem 5.0.1). The Qg-vector space Hg; T has finite dimension.

PROPOSITION 0.0.2 (Proposition 6.0.1). The two Qq-vector subspaces H% P and H}; ?%V_rat of
Hé,I,W are equal.

j, HE . . .
As a consequence, HJ; |}, has finite dimension.

In particular, when I = ¢ and W = 1, the constant term morphism CIGD’O coincides with
the usual constant term morphism for automorphic forms. In this case, Theorem 0.0.1 coincides
with Theorem 1.2.1 in [Har74|, and Proposition 0.0.2 coincides with [Lafl8, Proposition 8.23|
mentioned before.

Let N C X be a finite subscheme. Theorem 0.0.1 and Proposition 0.0.2 are still true for the
cohomology with level structure on N.

Structure of the paper

In §1 we construct the parabolic induction diagram and define Harder—Narasimhan truncations
which are compatible with the parabolic induction. In §2 we recall the cohomology of the stacks
of G-shtukas and define the cohomology of the stacks of M-shtukas. In §3 we construct the
constant term morphism using the compatibility of the geometric Satake equivalence with the
constant term functors for the Beilinson—Drinfeld affine grassmannians.

The idea of the proofs of Theorem 0.0.1 and Proposition 0.0.2 is analogous to the case
of automorphic forms. The goal of §§4 and 5 is to prove Theorem 0.0.1. In §4 we prove the
contractibility of deep enough horospheres. In § 5 we use this result and an argument by induction
on the semisimple rank to prove the finiteness of cuspidal cohomology. In §6 we show that
the constant term morphism commutes with the action of the Hecke algebra, and we prove
Proposition 0.0.2.

Notation and conventions

0.0.3 Let G be a connected split reductive group over Fy. Let G be the derived group
of G and G® := G//G4°" the abelianization of G. Let Zg be the center of G and G* the adjoint
group of G (equal to G/Zg).

0.0.4 We fix a discrete subgroup Z¢g of Zg(A) such that E¢ N Zg(0)Zg(F) = {1}, the
quotient Zg(F)\Zg(A)/Zc(0)Z¢ is finite and the composition of morphisms Zg < Zg(A) —
G(A) — G®P(A) is injective. Note that the volume of G(F)\G(A)/G(Q)Zq is finite. We write

—_ —_
= . T
== 2a.

0.0.5 We fix a Borel subgroup B C . By a parabolic subgroup we will mean a standard
parabolic subgroup (i.e. a parabolic subgroup containing B), unless explicitly stated otherwise.

0.0.6 Let H be a connected split reductive group over [F, with a fixed Borel subgroup.

Let Ap (respectively Ax) denote the weight (respectively coweight) lattice of H. Let ( , ) :
Ap x Ay — Z denote the natural pairing between the two. R R
Let A}} C A denote the monoid of dominant coweights and A};® C Ay the monoid generated

by positive simple coroots. Let K% = Ay ®Q. Let IAX%OS’Q and _/AXEQ denote the rational cones of
Z

KI;FS and KJI; We use analogous notation for the weight lattice.
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We use the partial order on IA\% defined by py <Hps & o — p1 € K%OS’Q (i.e. po — py is a
linear combination of simple coroots of H with coefficients in Qx¢).
We will apply these notations to H = G, H = G or H = some Levi quotient M of G.

0.0.7 We denote by I'¢ the set of simple roots of G and by fg the set of simple coroots.
The standard parabolic subgroups of G are in bijection with the subsets of I'¢ in the following
way. To a parabolic subgroup P with Levi quotient M, we associate the subset I'j; in I'g equal
to the set of simple roots of M.

0.0.8 Let N C X be a finite subscheme. We denote by Oy the ring of functions on N and
write Kg n = Ker(G(0) — G(Oy)).
Let H be an algebraic group over Fy. We denote by Hy the Weil restriction Resp, /v, H.

0.0.9 If not specified, all schemes are defined over I, and all the fiber products are taken
over [Fy.

0.0.10 For any scheme S over F, and x an S-point of X, we denote by I', C X x S the
graph of z.

0.0.11  For any scheme S over F,, we denote by Frobg : S — S the Frobenius morphism
over ;. For any G-bundle G on X x S, we denote by "G the G-bundle (Idx xp, Frobg)*gG.

0.0.12  We use [LMB99, Definitions 3.1 and 4.1] for prestacks, stacks and algebraic stacks.

0.0.13 As in [LMB99, § 18|, [LOO08] and [LO09], for X an algebraic stack locally of finite
type over IF;, we denote by D%(X, Q) the bounded derived category of constructible £-adic sheaves
on X. We have the notion of six operators and perverse sheaves.

If f: X — Xy is a morphism of finite type of schemes (respectively algebraic stacks) locally
of finite type, we will denote by fi, f«, f*, f* the corresponding functors between DXy, Q) and
D%(X5,Qy), always understood in the derived sense.

0.0.14 We will work with étale cohomology. So for any stack (respectively scheme)
(for example Chtg n rw and Grgrw), we consider only the reduced substack (respectively
subscheme) associated to it.

1. Parabolic induction diagram of stacks of shtukas

The goal of this section is to introduce the parabolic induction diagram of stacks of shtukas
without a bound on the modifications at paws in §§1.1-1.3 and to introduce the Harder—
Narasimhan stratification for the parabolic induction diagram in §§ 1.4—-1.7.

In §§1.1-1.3 we work in the context of prestacks (see 0.0.12).

1.1 Reminder of stacks of shtukas and Beilinson—Drinfeld affine grassmannians
This subsection is based on [Var04, §2| and [Lafl8, §§1 and 2|. All the results are well known.

DEFINITION 1.1.1. We define Bung x to be the prestack that associates to any affine scheme §
over [, the groupoid

Bung n(S) :={(G, ), where G is a G-bundle on X x S,

1 is an isomorphism of G-bundles : g‘NxS = G‘Nxs}‘
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1.1.2 Bung,y is a smooth algebraic stack over [y, locally of finite type.

DEFINITION 1.1.3. We define Heckeg .1 to be the prestack that associates to any affine scheme
S over F, the groupoid Heckeg n 7(S) that classifies the following data:

(i) (xi)ier € (X\N)(S);
(11) (g7 7/1)7 (g,a 17[/) € BunG,N(S);
(iii) an isomorphism of G-bundles ¢ : Q"(

~

/
XXS)\(UieIFCUi) - g ‘(XXS)\(UieIFGUi)
the N-level structure, i.e. 1)’ o ¢‘N><S = 1.

which preserves

1.1.4 The prestack Heckeg s is an inductive limit of algebraic stacks over (X~ N)!. We
define the morphism of paws Heckeg n 1 — (X~N)! by sending ((x;)icr, (G, ) 4 (G',9") to

(zi)ier-

1.1.5 We denote by pr, (respectively pr) the projection Heckeq n; — Bung ny which
sends ((@:)ier, (G,4) % (G 0)) to (G, ) (respectively to (G, ).

Let Frob : Bung ny — Bung y be the Frobenius morphism over F,. With the notation in
0.0.11, for any affine scheme S over F,, the morphism Frob : Bung y(S) — Bung n(S) is given

by (G,¢) = ("G, 7).
DEFINITION 1.1.6. We define the prestack of shtukas Chtg n ; to be the following fiber product.

ChtGJVJ

Heckeg .1
l@ro, or) (1.1)

l (1d, Frob)
BunGJV E—— BunGJV XIFq BunG’N

1.1.7  Concretely, Chtg n s is the prestack which associates to any affine scheme S over I,
the groupoid Chtg n,7(S) classifying the following data:

(i) (zi)ier € (XNN)(S);
(ii) (G,v¢) € Bung n(S5);
(iii) an isomorphism of G-bundles ¢ : g‘(XXS)\(UiGI I = Tg’(XXS)\(UiGI r.) which preserves
the N-level structure, i.e. ") o ¢‘N><S = 1.

We define the morphism of paws pg : Chtg ns — (X~N)! by sending ((2;)ier, (G, ) %
("G, ")) to (zi)ier-

1.1.8 The prestack Chtg y s is an inductive limit of algebraic stacks over (X~.N).

1.1.9 We will omit the index N if N = @.

We will need a local model of Chtg n ;. For this, we recall the definition of Beilinson-Drinfeld
affine grassmannians.
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1.1.10  For (z;)ie;r € X'(S), d € N, we denote by I's~4,, the closed subscheme of X x S
whose ideal is generated by ([[;c; t;)¢ locally for the Zariski topology, where t; is an equation
of the graph I'y,. We define I's~ o, == @}dFZ dz; to be the formal neighborhood of  J;c; 'z, in
X xS.

A G-bundle on I's~ o, is a projective limit of G-bundles on I's~g,, as d — oo.

DEFINITION 1.1.11. We define the Beilinson-Drinfeld affine grassmannian Grg ; to be the ind-
scheme that associates to any affine scheme S over F, the set Grg ;(S) classifying the following
data:

(1) (zi)ier € XT(S);
(ii) G,G" two G-bundles on I's~ o5

(iii) an isomorphism of G-bundles ¢ : G ’FZ where the precise

~
SWUierT'zy) —9 |FZ o, MUier I'e;)
meaning is given in [Lafl8, Notation 1.7];

(iv) a trivialization 6 : G’ = G on U5 ooy -

1.1.12 We have the morphism of paws: Grg; — XT. The fiber over (z;)icr € XE{— is
q

Hye{mmel} Grg,y, where Grg,y is the usual affine grassmannian, i.e. the fpqc quotient G, /Go,),
where O, is the complete local ring on y and K, is its field of fractions.

DEeFINITION 1.1.13. (a) For any d € N, we define Gr4 to be the group scheme over X’
that associates to any affine scheme S over I, the set consisting of pairs ((x;)ier, f), where
(z3)ier € X!1(S) and f is an automorphism of the trivial G-bundle on U5~ da,-

(b) We define the group scheme Gp o := lim Gy 4.

1.1.14 The fiber of G over (z;)icr € Xé—q is Hye{zm'el} Go,-

1.1.15 The group scheme G acts on Grg,; by changing the trivialization 6. We denote
by [G1.00\ Gra, 1] the quotient prestack. For any affine scheme S over Fy, [G1 o0\ Grg, 1](S) is the
groupoid classifying the data (i), (ii) and (iii) in Definition 1.1.11.

1.1.16  We have a morphism of prestacks:

€G,N,I,00 : Chtg N1 = [G1,00\ Gre,1]

(@)ier, (G.6) % (6.70) = (@iier, Gl 576l ) 42

Remark 1.1.17. The prestack [G1 o\ Grg, 1] is not an inductive limit of algebraic stacks. But we
can still use it for the construction in §§1.2 and 1.3. We will construct a variant of morphism
(1.2) for algebraic stacks in 2.4.1.

The following definition will be used in §4.
DEFINITION 1.1.18. (a) We define Bung n 7,4 to be the prestack that associates to any affine
scheme S over [F, the groupoid classifying the following data:
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(1) (zi)ier € (XNN)I(S);
(ii) G: a G-bundle over X x S;
(iii) a level structure on the divisor (N x S§) + I's~g4,,, i.e. an isomorphism of G-bundles: ¥ :

~

g| (NXS) 4T 4o, - G‘ (NXS)+I's da,

(b) We define Bung n,1,00 := lim Bung n 4.

1.1.19 Bung,n, 1,4 is a smooth algebraic stack over (X~ N)!. Its fiber over a point (z;);cr €
(X~N)L(F,) is Bung n45° da,-

1.1.20 The definitions and constructions in this subsection work for all affine smooth
geometrically connected algebraic groups over F, (we will use these for parabolic subgroups
of G and their Levi quotients).

1.2 Parabolic induction diagrams

1.2.1 Let P be a parabolic subgroup of G and let M be its Levi quotient. Applying the
definitions and constructions in § 1.1 to P and M, respectively, we define Bunp n, Chtp n 7, Grpy,
Pr oo, €PN, 1,00 and Bunyy v, Chtag n,r, Grazr, My oo, €M,N,I,00-

Remark 1.2.2. When N is non-empty, the prestack Chtp y ; defined above is not the same as the
one defined in [Var04, 2.28|. We will describe the difference in Remark 3.4.4.

1.2.3 The morphisms of groups G <= P — M induce morphisms of prestacks over SpecF,:

,L'Bun 7.‘_Bun

Bung y <— Bunpy —— Buny/ n. (1.3)

CONSTRUCTION 1.2.4. The morphisms of groups G <= P — M induce morphisms of prestacks
over (X~N).
Chtp 1
e ~
ChtG7N’] PP ChtM,NJ (1.4)

(X~ N)!

More concretely, for any affine scheme S over Fy:
P P
i: Chtpn,1(S) — Chtg n,1(S) is given by (P — "P) — (P x G — P x G) where the level

~ P
structure ¥ — P|NX5 is sent to ¥ X G;

:P‘NXS
P P
7 : Chtpn 1(S) — Chtasn 1(S) is given by (P — "P) — (P x M — TP x M) where the level

P
structure v is sent to ¥ x M.

1.2.5 The morphisms of groups G <= P — M induce morphisms of ind-schemes over X':

-0 TI'O
Grg 1 < Grpr — Grag. (1.5)
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1.2.6 Let X (respectively )) be an (ind-)scheme over a base S that is equipped with an
action of a group scheme A (respectively B) over S from the right. Let A — B be a morphism of
group schemes over S. Let X — ) be a morphism of (ind-)schemes over S which is A-equivariant
(where A acts on ) via A — B). This morphism induces a morphism of quotient prestacks

[A\X] — [B\Y].

1.2.7 Applying 1.2.6 to i : Grp; — Grg,r and P o — G0, We obtain a morphism of
prestacks: B
ZO : [Pl,oo\ GI‘P,[] — [Gl,oo\ GI‘G’[].

Applying 1.2.6 to 70 : Grpr — Gryr and Pr oo — M oo, We obtain a morphism of prestacks:

ﬁ . [Pl,oo\ GI‘py[] — [M],oo\ GI“M’[].
1.2.8 The following diagram of prestacks is commutative.

Chta n,r -~ Chtpy ——— Chtar s

lfG,N,I,oo lGP,N,I,oo \LEM,N,I,OO (1.6)
i0 70
(G 100\ Gra, 1] <= [Proo\ Grpg] —— [M100\ Gra,g]

1.3 Quotient by E

1.3.1 Let Zg be the center of G as defined in 0.0.3. We have an action of Bungz, on
Bung v by twisting a G-bundle by a Zg-bundle, i.e. the action of 7z € Bung, is given by
G+ (G xTz)/Zq. Similarly, Buny,, acts on [G,\ Grg, 1], i.e. the action of Tz € Bung, is given
by

(G5 ) > (6% Tlr. /ZG—>(Q/><7'G\F )1Z6).

For Tz € Bung, (F,), we have a canonical 1dent1ﬁcat10n Tz ~ TTZ. Thus Bung,, (F,) acts on
Chtg n,r by twisting a G-bundle by a Zg-bundle, i.e. the action of T € Bung, (F,) is given by

(6% 7G) ~ (G % T2)/Za > (G % Tz)/Za).
The group Z defined in 0.0.4 acts on Bung y, Chtg v and [G1 o\ Grg,f] via 2 — Zg(A) —
Bung,, (Fy).

1.3.2 Note that the morphism eg n 1,00 defined in (1.2) is Z-equivariant.

Now applying Definition 1.1.13 to Zg (respectively G®), we define a group scheme (Z¢) .00
(respectively G?fioo) over X!. We have G*}fioo = G1.00/(ZG)1,00- The group scheme (Zg)s o0 acts
trivially on Grg 7, so the action of Gy on Grg,; factors through Gad We use this action
to define the quotient prestack [G ! \ Grg r]- The morphism G o — G4 ‘o induces a morphism
[Gr.00\ Grg 1] = [G I,oo\ Gra 1), which is E-equivariant for the trivial action of = on [Gafioo\ Grg 1.

Hence the composition of morphisms

€G,N,I,00
G

ChtG NI s [G[ OO\GI“G [] adoo\GrgJ]

is E-equivariant. Thus it factors through

€GNI1o0 : Chtan,1 /2 = [G1A\Gre ). (1.7)

We will construct a variant of morphism (1.7) for algebraic stacks in 2.4.1.
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1.3.3 Zg acts on a P-bundle via Zg — P. Just as in 1.3.1, we have an action of Bung,
on Bunpy by twisting a P-bundle by a Zg-bundle. This leads to an action of = on Bunpy,
Chtp,NJ and [PI,oo\GrP,I] via = — Zg(A) — BunZG (]Fq)

Using the morphism Zg < M, we similarly obtain an action of = on Bunys y, Chtas,n,r and
[M7,00\Graz,1].

1.3.4 Applying Definition 1.1.13 to P := P/Zg (respectively M := M/Zq), we define a
group scheme Py o, (respectively M o) over X!. We have Pj oo = Pr.oo/(ZG) 1,00 and M s =
MI,oo/(ZG)I,oo-

The morphism ep n 10 defined in 1.2.1 is Z-equivariant. Since the group scheme (Zg)r,00
acts trivially on Grpy, the action of P;,, on Grp; factors through ijoo. We denote by
[?],oo\Gr p1] the resulting quotient prestack. The morphism Pj o, — FLOO induces a morphism

[P1.00\Grp 1] = [Pr.00\Grp,], which is =-equivariant for the trivial action of Z on [P .\Grp].

Hence the composition of morphisms Chtp s PN Do [Proo\Grps] — [Proo\Grpy] is

Z-equivariant. Thus it factors through

€PN, oo Chtp /2 = [Pro\Grpgl. (1.8)

Similarly, the composition of morphisms Chtas,n, 1 RLEELN (M7 0o\Grar 1] = [M1,00\Gras 1]

is E-equivariant for the trivial action of = on [M ., \Gras,r]. Thus it factors through

6%47]\7’1700 : ChtMJVJ /E — [Ml,oo\GrM,I]- (1.9)

1.3.5 The morphisms ¢ and 7 in (1.6) are Z-equivariant. Diagram (1.6) induces a
commutative diagram of prestacks.

ChtGJVJ /EéChtP,NJ /E$~ChtM7N,[ /E

le%,N,I,oo ie%vl,N,I,m <1~1O)
O a0 =
(G4 N\GrG 1) < [P1,00\Grp ] = [M00\Gray 1]

\Lea,N,I,oo

In the remaining part of § 1, we introduce the Harder—Narasimhan stratification (compatible
with the action of Z) for the parabolic induction diagram (1.4). In order to do so, we use the
Harder—Narasimhan stratification for the parabolic induction diagram (1.3). From now on we
work in the context of algebraic (ind-)stacks.

G
In § 1.4, we recall the usual Harder—Narasimhan stratification Buné " C Bung and a variant

Gad
Buné " C Bung which is compatible with the action by Z.

a

G d
In § 1.5, we introduce the Harder—Narasimhan stratification Bunf/[ " Bunyy, which allows
us to construct in § 1.6 the truncated parabolic induction diagrams (1.26):

<Gad,LL <Gadu <Gadu
Bung /2 < Bunp /2 — Buny, "/E.

In §1.7, we define the Harder—Narasimhan stratification on the stacks of shtukas using

§§1.4-1.6.
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1.4 Harder—Narasimhan stratification of Bung
In 1.4.1-1.4.10, we recall the Harder-Narasimhan stratification of Bung defined in [Sch15| and
[DG15, §7]. (In these papers, the group is reductive over an algebraically closed field. Since our
group G is split over F,, we use Galois descent to obtain the stratification over F,.)

In 1.4.11-1.4.17, we recall a variant of the Harder-Narasimhan stratification of Bung which
is compatible with the quotient by =, as in [Var04, § 2] and |Laf18, § 1].

1.4.1 Applying 0.0.6 to group G, we define A, /A\J(g, KPGOS, K%, KE’Q, KPGOS’Q and the partial
order ‘<%’ on A%.

1.4.2 [Schl5b, 2.1.2] Let P be a parabolic subgroup of G and M its Levi quotient. Consider
the sublattice /A\[M’M]SC C KG spanned by the simple coroots of M. We define

Ac,p = Ae/DMps ... (1.11)

Let K% pi= KG’p ®z Q. We denote by Kg’; the image of K%OS in KGJ:, and by KPGO;’Q the image
of Kgos,@ in K% p- We introduce the partial order on KGJD by

i <ps & po — € AP

1.4.3 [Schl5, 2.1.3], [DG15, 7.1.3, 7.1.5] Let Zp; be the center of M. Let KZM be the
coweight lattice of Zyy, i.e. Hom(Gyy,, Zpr). Note that it equals to Kz?w = Hom(G,,, Z3,), where
Z](\)/[ is the neutral connected component of Zy;.

We have a natural inclusion Az,, C Ag (because Zy; is included in the image of B <> P —» M).
The composition KgM — /A\% —» K% p is an isomorphism:

AZ S A, (1.12)

We define the slope map to be the composition

¢p:Agp— AGp=AT — AL (1.13)
We define prp to be the composition
prp: AG — Ag p ~AZ (1.14)

By definition, we have K% a= K%G, qu = KM,M and KG,B = Kg. So ¢p is just the inclusion
KG —> K(g

LEMMA 1.4.4 [Sch15, Proposition 3.1]. The slope map ¢p preserves the partial orders ‘<%’ on

/A\G7p and /AX% in the sense that it maps K%O; to /A\%OS’Q.
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1.4.5 [Var04, Lemma 2.2|, [Schl5, 2.2.1, 2.2.2|, [DG15, 7.2.3] The map Bunp — Bunj,
in 1.2.3 induces a bijection on the set of connected components of Bunp and Buny,. We have
mo(Bunp) = mo(Bunys) = Ag p. Let degy, : Buny, — mo(Bunys) = Ag,p and degp : Bunp —

o~

Bunys — Ag,p.

DEFINITION 1.4.6 [DG15, 7.3.3, 7.3.4]. For any u € JA\ZJQ, we define BunéG“ to be the stack that
associates to any affine scheme S over I, the groupoid

BunéG“(S) := {G € Bung(9)| for each geometric point s € S, each parabolic
subgroup P and each P-structure P of G, we have ¢p o degp(P) éG,u},

P
where a P-structure of G, is a P-bundle P on X such that P x G ~ G,.
Remark 1.4.7. (a) By [Sch15, Lemma 3.3], the above Definition 1.4.6 is equivalent to

BunéG“(S) = {G € Bung(9)| for each geometric point s € S,
and each B-structure B of Gy, we have degg(B) <%u}
(the argument repeats the proof in [Sch15, Lemma 3.3] by replacing ¢g(Ag) by ).
(b) By [Schl15, Proposition 3.2 and Remark 3.2.4|, the definition of BunéG“ in (a) is equivalent

to the Tannakian description:

BunéG”(S) :={G € Bung(9)| for each geometric point s € S,

each B-structure B of G5 and each A\ € Ag, we have deg By < (i, \)},

where B is the line bundle associated to B and B — T A G-

(¢) The reason why we use Definition 1.4.6 (rather than its equivalent forms) is that it will
be useful for non-split groups in future works.

LEMMA 1.4.8 [DG15, 7.3.4, Proposition 7.3.5]. (a) For any p € KJG“Q, the stack BunéG“ is an
open substack of Bung.

. . <@ <
(b) For any pu; <%usa, we have an open immersion Bung "' < Bung

G
(c) We have Bung = UueKJG“Q Buné #

Gy

(d) The open substack BunéG“ is of finite type.

DEFINITION 1.4.9. For any \ € Kg’Q, let Bung‘) C Bung be the quasi-compact locally closed
reduced substack defined in [Sch15, Theorem 2.1] and [DG15, Theorem 7.4.3]. It is called a
Harder—Narasimhan stratum of Bung.

1.4.10 [DG15, Corollary 7.4.5] We have

Bung‘) #FO0=N\e U Lo pI'P(Kg),
PCG

where prp is defined in (1.14) and ¢ : K%M — IA\% is the inclusion. For any u € KJG“@, we have

<Cu _ \
BunG = U BunG .
AeAL® A<

The set {\ € KJG“Q | A <%y and Bung‘) # (I} is finite. This gives another proof of Lemma 1.4.8(d).
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I

G
The above open substack Buné is not preserved by the action of = on Bung. Now we

introduce open substacks which are preserved by the action of =.

1.4.11 Applying 0.0.6 to group G4, we define A gad, Kzad, IA\pGC;Sd, T\gad, KJGF;S, Kg(i’@ and
the partial order ‘<Gad’ on Agad.
The morphism G — G/Zg = G* induces a morphism
To:Ag — A2, (1.15)

It maps K%OS’Q to /A\g;i{@.

DEFINITION 1.4.12. For any p € Kg;j%,

affine scheme S over F, the groupoid

Gad
we define Buné " to be the stack that associates to any

ad
Bunéa #(S) :={G € Bung(9)| for each geometric point s € S, each parabolic subgroup P

and each P-structure P on G, we have Y o ¢p o degp(P) gGadlu}.

Remark 1.4.13. For the same reason as in Remark 1.4.7, Definition 1.4.12 is equivalent to [Var(04,
Notation 2.1(b)| and |Lafl8, (1.3)].

1.4.14 Just as in 1.4.10, for p € T\gﬁ, we have

gGad A
BunG b= U Bun(G ).

AL, Ta ()<

The set {\ € Kg(@ ITe(A) <G and Bung‘) # (I} is finite modulo KZG.

aad ad
1.4.15 The action of = on Bung preserves Buné " We define the quotient Buné k=
~ Gad
LEMMA 1.4.16. (a) For any u € AZ’S, the stack Buné #'is an open substack of Bung.
aad <Gad

d . . <
(b) For any py < pa, we have an open immersion Bung "' < Bung "2

gad
(¢) The stack Bung is the inductive limit of these open substacks: Bung = Uuefﬁ’@ Buné r
Gad

ad
(d) The stack BunéG " /= is of finite type.

Proof. Parts (a), (b) and (c) are induced by Lemma 1.4.8 (see also [Var04, Lemme A.3)|. Part (d)
follows from 1.4.14. O

Remark 1.4.17. See [Var04, Lemmas 3.1 and 3.7] for another proof of Lemma 1.4.8(d) and
Lemma 1.4.16(d).
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1.5 Harder—Narasimhan stratification of Buny,
Let P be a proper parabolic subgroup of G and M its Levi quotient.

0. pplying 0.0.6 to group , wWe eneAM,A,A ,A,A’,A ’~ and the
1.5.1  Applying 0.0.6 M, we define Ay, Af,, AP AY AHC AP®D and th
partial order ‘<M’ on IAX%

1.5.2 Sections 1.4.2-1.4.10 work also for M. In particular, let P’ be a parabolic subgroup
of M ; we have the slope map ¢ps : KM,P’ — A(]% and degp/ : Bunpr — /A\MJ:/.

DEFINITION 1.5.3. Applying Definition 1.4.9 to M, for any A € JAPL’Q, we define a quasi-compact

locally closed substack Bung\}) C Bunjy, called a Harder—Narasimhan stratum of Bunj,.

ad
Now we introduce Bunf/lc # C Buny; which will be used to construct diagram (1.26).

+Q <&My :
Gaa» We define Buny, to be the stack that associates to any
ad

; <TGy .o
affine scheme S over F, the groupoid Bun,, *(S5) :=

DEFINITION 1.5.4. For any u € A

{M € Buny,(9)]| for each geometric point s € S, each parabolic subgroup P’
of M and each P’-structure P’ of M;, we have Y o ¢pr o degp(P') <Gad,u},

where Y : /A\% = Kg — /A\gad is defined in (1.15).

Similarly to Lemma 1.4.16, we have

ad

LEMMA 1.5.5. (a) For any u € Kg;%, the stack Bunfj H'is an open substack of Bunjy;.

Gad <Gad

Gad . . < M1 < 2
(b) For any pu1 <% 2, we have an open immersion Bun,, — Bunj, .

<Gad

(¢) The stack Bunyy is the inductive limit of these open substacks: Buny, = UMET\J”Q Bunjy, *.
Gad

Gad Gad
1.5.6 The action of =Z on Bunys preserve Bun} " We define the quotient Bunfvf r=.
Note that Z is a lattice in Zg(F)\Zg(A). However, E is only a discrete subgroup but not a lattice

ad

in Zpy(F)\Zn(A) (since P C G). We will see that Bunf\/[G # /= is locally of finite type but not
necessarily of finite type.

1.5.7 Note that Kq p= A M, M- Consider the composition of morphisms

d —~ —~ ~ ~
BunM ﬂ) AM,M — A(.%[,M ~ A(ZDM — AgM/ZG’ (116)

Q

~ ZmlZa
v e ﬁ%w 70 We denote by Bun’, its inverse image in Bunys. It is non-empty if and only if
Ve Ay.

where deg,; is defined in 1.4.5. We denote by Ajps the image of /A\M’M in A . For any

Gg2d Gad
DEFINITION 1.5.8. We define Bunfw ®¥ to be the intersection of Bunfw # and Buny,.

1092

https://doi.org/10.1112/50010437X20007058 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007058

CUSPIDAL COHOMOLOGY OF STACKS OF SHTUKAS

<™ . . <™ . .
1.5.9 The stack Buny;, """ isopen and closed in Buny; * and is open in Bun’,;. We have

a decomposition

Bun<"# = || B <6 1.17
un,, "= un,, . (1.17)
N
VGAZ]M/ZG

1.5.10 Just as in 1.4.14, we have

<Gad

<CTp (N
Bun,, = U Bunj, .
AeR$%, Ta(N<E™

1.5.11  Similarly to (1.14), we define

d . AQ AQ
pry : Afaa — AZM/ZG' (1.18)

Taking into account that KG = KM and KQ p= KM7 M, for any A € K;[’@, we deduce that
Bung\y C Buny, if and only if v = prist oY ().
1.5.12 We deduce from 1.5.10 and 1.5.11 that

<Gad

Bunjy, Y= U Bung\}). (1.19)

XeAF%, Ta (NG, pristoT o () =v

1.5.13 We denote by XI%?Z%G = pr?gd (KIC’;‘Z;Q) We introduce the partial order on jA\gM 76
by

Gad Apos,
1 < MZ@M—MGA}ZZ%@

By definition, for 4 € fM, we have prl oY (%) = 0. By [Sch15, Proposition 3.1], for 4 € I

we have prist oY (¥) > 0 and these prst oY (%) are linearly independent. Thus for Ay, Ag € AQ

Gad
and A\; <)\, we have prat(A;) <6 prast(Ag). Also, the inclusion AgM 176 A%ad maps A%‘j\j’%g
to K%ZEQ

d

LEMMA 1.5.14. Let u € [A\JGFQS. Then the stack Bunfwc " is empty unless v € Apy defined in 1.5.7
and v <& prast(p).

Proof. The first condition follows from 1.5.7. To prove the second condition, note that for the
set {\ € AX/I’Q | Ta(N) éGad,u, pritoY¢(\) = v} to be non-empty, by 1.5.13 we must have
v <& pril(). o

1.5.15 Let M = M/Zg as in 1.3.4. For \,u € Kgad, we define A éﬁ,u if and only if u — A

is a linear combination of simple coroots of M with coefficients in Q¢ modulo K(%G

1.5.16 Let \,u € /A\gad and A <% 1. We write A = p— Z«?efg c5 T (¥) for some c5 € Q.
We deduce from 1.5.13 that prist(\) = pré!(u) if and only if c5 = 0 for all ¥ € T'g — I'jy. Hence

A <Gad,u and  prat(\) = prdt(p) < A gﬁu. (1.20)
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1.5.17 Let p € Kg;j% and v <™ prd(u). For every 4 € T — Tas, let ¢y € Q0 be the

unique coefficient such that
P~ 3 e prioTa(h) —
5ele-Tum

We define py, :=p— > .

SePa—Tu cyYTa(¥). As in 1.5.16, we deduce that

A gG“dM and prif\) =v < A SM,LL,,. (1.21)

Gad
1.5.18 The action of = on Bunj; preserves Bunf\/l MY We define the quotient
aad
Bunfw i

<Gadﬂ UV j— . .
LEMMA 1.5.19. The stack Buny, " " /Z is of finite type.

Proof. By (1.21), we have
e X Ta) <, prioTa(\) = vk = (A e A2 [ Te() <M}

We deduce from 1.4.10 (applied to M) that the set {\ € JAX;\}Q | Ta(A) <, pridoYe(N) = v,
Bung\z) # (¢} is finite modulo IA\ZG By Definition 1.5.3, Bung\}) is of finite type. From 1.5.12 we
deduce the lemma. O

1.5.20 By Lemma 1.5.14, the decomposition (1.17) is in fact indexed by a translated cone

m AZM/ZG'
N ~ Gad d
Nz =1 EAG, 70 v <O prE ()} (1.22)
We deduce that
ad ad
Buny, “= || Bunj " (1.23)
VEA;]\/I/ZG
and
<Gadu — <Gad“ .
Buny, "/E= || Buny /= (1.24)
VGKZM/ZG

1.6 Harder—Narasimhan stratification of parabolic induction

;Bun Bun
Recall that we have morphisms (1.3): Bung < Bunp —— Buny,.
A+Q <™y . : <
DEFINITION 1.6.1. Let p € A5 We define Bunp to be the inverse image of Bung in

Gad *
Bunp.

ad ad

. <G wos . . . gG w
LEMMA 1.6.2. The image of Bunp in Bunyy is included in Bun,, ".
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ad

ad
Proof. Let P € Bunf;G and let M be its image in Bunj;. We will check that M € Bunl\gf k
For any parabohc subgroup P’ of M, let M’ be its Levi quotient. Let P’ be a P’-structure of M

and M' := P’ >< M’. By Definition 1.5.4, we need to prove that Y¢g o ¢p o degp/(P’) <G

Let P” := P x P'. It is a parabolic subgroup of G with Levi quotient M’. We have the
M

following.

Pl/
VRN
P P’
RPN
G M M’

By [DG16, Lemma 2.5.8], we can define a P”-bundle P” := P x P’. We have degp P’ =
M

degy M’ = degpy P”. Taking into account that KQ A%, we deduce that Yg o ¢pr o
degp(P') = Yo dpr o degpn(P") <E*' i, where the last inequality follows from the definition
d

<Ga w
of Bunp . O

1.6.3 By Lemma 1.6.2, morphisms (1.3) induce morphisms:

<Gad G Gad
Bung * <« Buny * — Buny, *. (1.25)

The group = acts on all these stacks. All the morphisms are Z-equivariant. Thus morphisms
(1.25) induce morphisms:

ad ad

< oe S E <=
Bun; " /E < Bunp /2 — Buny, " /=. (1.26)

1.6.4 For any v € AZ (/7 e define Bun’ to be the inverse image of Bun’j; in Bunp. We
Gad ad

<G
define Bunfg Y= BunI\D #N Bun’%. Morphisms (1.26) induce morphisms:

gcadu _ <Ga Ga v
Bung; /2 <~ Bunp " /E— Bun /E. (1.27)

1.7 Harder—Narasimhan stratification of stack of shtukas
Notation 1.7.1. In the remaining part of the paper, we will only use the truncations indexed by
‘<Gad’ (rather than ‘<G’). To simplify the notation, from now on, ‘<’ means ‘gGad’

DEFINITION 1.7.2. Let p € Aga(g (respectively A\ € /APL’Q) We define ChtGNI (respectively
oy

Chtg‘)N ;) to be the inverse image of Buné (respectively Bung,’) by the morphism

Chten.s — Bung, ((@)ics, (G.0) 2 (G, 7)) —> G

Similarly, we define Chtf\/[“N ; (respectively Chtfw“}\l,’ g Chtg\z) ~ 7) using the morphism Chtas n 5 —

Bunj, and Chtfg‘ﬁv ; (respectively Chtfg‘ﬁ\’,'}) using the morphism Chtp y 5 — Bunp.
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1.7.3 The following diagram is commutative

Chtg,n,1 < Chtp N, —— Chtprn 1

l | i l (1.28)

Bung <— Bunp —~ Bun;,

where the first line is defined in (1.4). We deduce that Chtf;’;\, ; is the inverse image of Chté’jv I
in Cht P,N,I-

LEMMA 1.7.4. The image of Chtli‘f\,l in Chtys 1 is included in Chtf/[“NI.

Proof. This follows from Lemma 1.6.2 and the commutativity of (1.28). o

1.7.5 Just as in 1.6.3 and 1.6.4, morphisms (1.4) induce morphisms:

Chtéf‘NJ =« Cht;‘jv’[ = Chtfw’fN’ /&, (1.29)
Chtéf‘NJ =« Chtf;fj’vf’[ = - Chtfjj;ql /=, (1.30)

We deduce from (1.24) a decomposition:

< = <, v e
Chtyf'y /2= || Cht3fy, /= (1.31)
VEA;M/ZG

2. Cohomology of stacks of shtukas

In §§2.1-2.5 we recall the definition of the cohomology of stacks of G-shtukas with values in
perverse sheaves coming from [G o\ Grg ] via €GN 100, 1.€. coming from G c-equivariant
perverse sheaves over Grg, 7. These sections are based on [Lafl8, §§1, 2 and 4.

In §2.6 we define the cohomology of stacks of M-shtukas.

Notation 2.0.1. Our results are of geometric nature, i.e. we will not consider the action of
Gal(F;/F;). From now on, we pass to the base change over F;. We keep the same notations
X, Bung v, Chtg,n,1, Grg,1, ete., but now everything is over Fy and the fiber products are taken
over [F,.

2.1 Reminder of a generalization of the geometric Satake equivalence

2.1.1 The geometric Satake equivalence for the affine grassmannian is established in [MV07]
over the ground field C. By [MVO07, § 14|, [Gai07, § 1.6] and [Zhul7], the constructions in [MVO07|
carries over to the case of an arbitrary algebraically closed ground field of characteristic prime
to £.

2.1.2 Let G be the Langlands dual group of G over Q defined by the geometric Satake
equivalence for the affine grassmannian, as in [MV07, Theorem 7.3| and [Gai07, Theorem 2.2].

2.1.3 |MVO07, §2|, |[Gai01, 1.1.1 and § 6] The Beilinson-Drinfeld affine grassmannian Grg s
is an ind-scheme. Every finite-dimensional closed subscheme of Grg s is contained in some finite-
dimensional closed subscheme of Grg ; stable under the action of G .

We denote by Pervg,  (Grg,r,Q¢) the category of G -equivariant perverse sheaves with
Qy-coefficients on Grg s (for the perverse normalization relative to X 4 ).
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2.1.4 As in |Gai07, 2.5], we denote by PG the category of perverse sheaves with Q-
coefficients on X' (for the perverse normalization relative to X ') endowed with an extra structure
given in [Gai07].

THEOREM 2.1.5 [Gai07, Theorem 2.6]. There is a canonical equivalence of categories
PerVGI,oo (GI“G'J, Qg) —~> Pé’l,

compatible with the tensor structures defined in [Gai07].

2.1.6  We denote by Repg, (@I ) the category of finite-dimensional Q-linear representations
of GT. We have a fully faithful functor Reer(@I) — P W+ W ® Qgx:. The composition

of this functor and the inverse functor P! 5 Pervg, . (Grg,1, Q) in Theorem 2.1.5 gives the
following.

COROLLARY 2.1.7. We have a canonical natural fully faithful Q-linear fiber functor:

~

Satg s : Rep@z(GI) — PeI'VGLOO(GI“GJ,Qg).
DEFINITION 2.1.8. For any W € Reer(aI), we define Sg 1w := Satg 1(W). We define Grg 1w
to be the support of Sg 1w .

2.1.9 When W = W; © Wa, by the functoriality of Satg r, we have Sg 1w = Sa,rw, ©
SG,I,WQ- Then GI‘GJ,W = GrG,I,Wl U GI‘GJ,WQ.

2.1.10 By [Lafl8, Théroéme 1.17|, the above definition of Grg 1w is equivalent to [Lafl8,
Définition 1.12 and the definition after (1.14)] (which describes Grg rw as a generalization of
the Zariski closure of the Schubert cell in affine grassmannian). It is well known that Grg 7w is
a closed subscheme of Grg ; and that it is projective (see [MVO07, §§2-3], [Zhul7, Proposition
2.1.5]). The ind-scheme Grg  is an inductive limit of Grg rw. ¢

Remark 2.1.11. By |Lafl8, Théroéme 1.17], when W is irreducible, the perverse sheaf S 1w is
(not canonically) isomorphic to the intersection complex (with coefficient in Qy and the perverse
normalization relative to X7') of Grg,rw-

2.2 Satake perverse sheaves on quotient stacks

The stacks [G1.00\Grg,1] or (G100 \Gra,1,w] are not algebraic because the group scheme Gy o is
of infinite dimension. For technical reasons, we will need algebraic stacks.

PROPOSITION 2.2.1 [Gai0l, 1.1.1]. For d € Zso large enough depending on W, the action of

Ker(Groo — Gra) on Grg w is trivial. Thus the action of G on Grg,w factors through
Gl,d-

2.2.2 For d as in Proposition 2.2.1, we define the quotient stack [G 4\Grg,1,w]. Since the
group scheme Gy 4 is of finite dimension, the stack [G4\Grg,r,w] is algebraic.
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2.2.3 Let Sgrw be the Gjo-equivariant perverse sheaf on Grgw defined in
Definition 2.1.8. By Proposition 2.2.1, the action of G, on Sg 1w factors through Gr 4. Since
the kernel of G — G| 4 is connected, by [BBDGS82, Proposition 4.2.5|, we deduce that Sg 1w
is also G 1 g-equivariant.

Let &éa.1.4 : Grgrw — [Gr.a\Grg,r,w] be the canonical morphism. It is smooth of dimension
dim G 4. By [BBDG82, Corollaire 4.2.6.2] and the discussion after it, there exists a perverse sheaf
(up to shift [dim Gy 4]) (for the perverse normalization relative to X7) SgJ’W on [Gr4\Grg,r,w]

such that Sg 1w = EE,I,ngJ,I,W'

2.2.4 Let d < d be two integers large enough as in Proposition 2.2.1. Then the morphisms
Gr,00 = G — G1,4 induce a commutative diagram.

Grg, 1w

/G,I,d’l w (2.1)
prd

[G1.00\Gr 1 w] — [Gra\Cra 1 w] —2 [G1a\Cre,rw)

We have (§c,r.0)*S& 1w = Seaw = (§a.1.)" Sk 1w = (Eora)* (0r4)*Sg 1w By [BBDGS2,
Proposition 4.2.5|, the functor (g r4)* (up to shift) is fully faithful. We deduce that Sg,[,w =

(Prg/)*sé,l,w'

2.2.5 By Proposition 2.2.1, the action of G?fioo on Grg,rw factors through G"}fid. We define
the quotient stack [G?}?d\GrG,LW].

As in the discussion after [Lafl8, Définition 2.14], since (Z¢), acts trivially on Grg 1w, the
G 1 o-equivariant perverse sheaf Sg 1w on Grg,rw is also Gad ~o-equivariant and G g-equivariant.
Indeed, by 2.1.9 it is enough to prove this for W irreducible. By Remark 2.1.11,in thlb case Sq,1,w
is isomorphic to the intersection complex of Grg 7w, hence is G ~o-equivariant.

Just as in 2.2.3, let £G1d : Grgow — [GY d\GTG,I,W] be the canonical morphism. There
exists a perverse sheaf (up to shift [dim G39)]) (for the perverse normalization relative to X7)

d,d d,d
Sgl w on [ é}fld\Gl"G’Lw] such that SG,I,W == (5?;%1,d)*32:,},w-

2.3 Representability of stacks of shtukas
DEFINITION 2.3.1. We define Chtg 1w to be the inverse image of (G100 \Grg,r,w] in Chtg w1
by €GN, 1,00-

2.3.2 Chtg n,r is an inductive limit of closed subtacks Chtg v 7w -

2.3.3 Let pu € AZS We define Chté’fNJ,W = ChtgyNJ,WﬁChté’fNJ, where Chté’fNJ is

defined in Definition 1.7.2. We define the quotient Chte n,;w /Z and Chtgly /=

PROPOSITION 2.3.4 [Var04, Proposition 2. 16] The stack Chtg, n,1,w is a Deligne-Mumford stack
locally of finite type. The stack ChtG ~.1.w /Z Is a Deligne— —Mumford stack of finite type.

2.3.5 The stack Chtg n 1w /E = hm A* 2 ChtG NIw /[ E = is locally of finite type.
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2.4 Satake perverse sheaf on stacks of shtukas
2.4.1 For any d € Zzq large enough as in Proposition 2.2.1, we define e n 14 to be the
composition of morphisms

€ ,00
ea,N, 1.4 Chte v ——= [Grs0\Gra,w] = [Gr.d\Gra,wl- (2.2)

This is morphism (2.3) in [Laf18].
Just as in 1.3.2, we define a morphism

ce.ra Chte v rw /2 = [GF3\Gra,rw]. (2.3)
This is morphism (2.10) in [Laf18].

2.4.2  We denote by dimy: Gy 4 the relative dimension of Grg4 over X! and by |I| the
cardinal of I. We have dimyr Grqg=4d-|I|-dimG.

PROPOSITION 2.4.3 [Lafl8, Proposition 2.8|. The morphisms eg n,1,q4 (respectively 62‘,1\/,1,(1) is
smooth of dimension dimyr G4 (respectively dimy1 G}“fld).

2.4.4 For all d € Z>p large enough as in Proposition 2.2.1, we have morphisms over

(XN
Chta N, r,w Grgrw
Gr,4\Grg,1,w]

We deduce from Proposition 2.4.3 that dim Chtg n;w = dim Grg ;w. We refer to [Lafl8,
Proposition 2.11] for the fact that Chtg n 1w is locally isomorphic to Grg ;w for the étale
topology. We will not use this result in this paper.

DEFINITION 2.4.5. Let d € Z>o large enough as in Proposition 2.2.1. We define Fg n 1w =
(€G,N,1,0)"SE 1w

Remark 2.4.6. As in 2.24, let d,d € Zs both large enough with d < d’. Then we have
€GN1d = Py o €N 1~ Thus (g n1,a)*SE rw = (€an,r.a) (Prg) St 1w = (ea,n1.a)"SE 1w
Hence Fg, n,1,w is independent of d.

= e = * cad, d
DEFINITION 2.4.7. We define F¢ vy = (€6 n.1.0) S 1w

Just as in Remark 2.4.6, FE,N,LW is independent of d.

LEMMA 2.4.8. The complex Fg n,1w (respectively ‘FE,N,I,W) is a perverse sheaf (for the
perverse normalization relative to (X~N)!) on Chtg n, (respectively Chtg n.1 /=) supported
on Chtg 1w (respectively Chtg n,rw /Z) (in the context of 0.0.13). When W is irreducible,
Fa,n, 1w (respectively ]-"g’ ~.1.w) 18 (not canonically) isomorphic to the intersection complex (with
coefficient in Qq and the perverse normalization relative to (X~N)!) of Cht¢ y. 1w (respectively
Chta,n, 1w /Z).

Proof. The lemma follows from Corollary 2.1.7, Remark 2.1.11 and Proposition 2.4.3. O
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2.5 Cohomology of stacks of G-shtukas
Recall that we have the morphism of paws pg : Chtg 1y /E — (X~ N

DEFINITION 2.5.1 [Laf18, Definitions 4.1 and 4.7]. For any p € A", we define

Gad 9

7'[GNIW = R(pc): (]:GNIW}Cht@ =) € DY((X~N)', Q).

G,N,I,.W =
For any j € Z, we define degree j cohomology sheaf (for the ordinary t-structure)

<
/Hé,Nl,LI,W = R (pa)(FG N,LW‘Chté“N Lw =)

This is a Qp-constructible sheaf on (X~ N).

The complex Hé“ NIW and the sheaf ”Hé]gv“ LW depend on =. We do not write = in the index

to simplify the notations.

2.5.2  Let pi,u0 € AGad and p; < po. We have an open immersion:
Cht 3" = < Cht3/*? (2.4)
G,N,I,W /= G,N,I,W /= :

For any j, morphism (2.4) induces a morphism of sheaves:

j7 <N1 jv S;LQ
HG,N,I,W HG,N,I,W’
DEFINITION 2.5.3. We define
J RN Jy Sp
Heongw = h_r>nHG,N,I,W
w

as an inductive limit in the category of constructible sheaves on (X~ N)?.

2.5.4 Let ﬁ be a geometric point over the generic point o’ of X'.

DEFINITION 2.5.5. We define

Jy Sp Jy SH J oy
HG NJIW * HG N, I,W P HG,N,I,W = HG,N,I,W P (2-5)

<
By definition Hé:\“ rw is a Qvector space of finite dimension. We have HGN W=
Jy S
hmMHG?NJ,W.

2.6 Cohomology of stacks of M-shtukas
Let P be a proper parabolic subgroup of G and let M be its Levi quotient.

2.6.1 Let M be the Langlands dual group of M over Qy defined by the geometric Satake
equivalence. The compatibility between the geometric Satake equivalence and the constant term
functor along P (that we will recall in Theorem 3.2.6 below) induces a canonical inclusion M — G
(compatible with pinning).
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2.6.2 We view W € RepQ[(@I) as a representation of M! via M! — GI. As in §§2.1-2.4,
we define Grys ;w and Chty nrw. For d € Z>q large enough such that the action of M7 o, on
Grar,r,w factors through My 4, we define

em,N,1.d : Chtar v rw = [Mra\Grarwl,
exn,,d  Chtarnrw /2 — [M1a\Gra,rw].

We define perverse sheaf Sp;rw on Grasrw, perverse sheaves (up to shift) Sﬂ,[,w on
[MI,d\GrM,I,W] and S?\L/([i;iw on [MI,d\GrM,I,W]' We define

% d = = x cad,d
FMNIW = 6M,N,I,dSM,I,W and ]:M,N,I,W = (EM,N,I,d) SM,I,W'

2.6.3 Applying |Var04, Proposition 2.16] to M, we deduce that Chtaz, 7 nw is a Deligne—
Mumford stack locally of finite type and that for A € A , the Deligne-Mumford stack
Chtgw)j ~yw (defined in Definition 1.7.2) is of finite type.

Let p € AJGFS We define ChtMNIW = ChtMNIWﬂChtMNI, where ChtMNI is defined

in Definition 1.7.2. We define the quotient Chtys n 7w /= and ChtMNI w/E =. Asin 1.5.6, Z is
a lattice in Zg(F)\Zg(A) but only a discrete subgroup in Zy;(F)\Za(A). The decomposition
(1.31) induces a decomposition

ChtMNIW == |_| Chtfwlu}VIW = (2.6)
I/EAZ /7
M/4G

where each Cht;/[“} ~.w /E is of finite type (just as in Lemma 1.5.19).
Recall that we have the morphism of paws pys : Chtyr 7§ /2 — (X~ N

DEFINITION 2.6.4. For any p € AGad and v € A2 we define

Zn /26>

iy

Harnrw = R(pan): (fMINW‘Cht@ v ) € DY((X~N)', Q).

N,I,W /H
For any j € Z, we define degree j cohomology sheaf

7<7
H?\M\?JW = R’ (pu): (‘FMINW‘Cht<u v

)-

Nrw /E

2.6.5 Ifv¢ Ay . by Lemma 1.5.14, Cht3f}"y /= = 0. In this case H3/'y, = 0.

DEFINITION 2.6.6. Let ﬁ be the geometric generic point of X! fixed in 2.5.4. We define

Js Sy V Jy SP, V
Hyniw =M1 (2.7)
This is a finite-dimensional Q-vector space. We define
Jy S Jy SHs
Hy Norw = H HyNtw (2.8)
VGA;M/ZG
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2.6.7 Let p1, e € AGdd and py < pe. We have an open immersion:
< —_ X _
Cht 'y /2 = Chtyf% 1y /Z. (2.9)

For any j, morphism (2.9) induces a morphism of vector spaces:

J, Sp1 Jy SH2
HM N,IW HM N, ILW -

DEFINITION 2.6.8. We define

j — 13 j7 <,LL
HM,N,I,W = h_r>nHM,N,I,W
“w

as an inductive limit in the category of Qg-vector spaces.

> ] . 1, < . .
DEFINITION 2.6.9. For any v € AgM/ZG7 we define Hy'y ;= h_n)luH]j\/[\A’,‘Il’W as an inductive
limit in the category of Q-vector spaces.

3. Constant term morphisms and cuspidal cohomology

Let P be a parabolic subgroup of G and M its Levi quotient. Let W e RepQ (GI ). The goal of
this section is to construct a constant term morphism from H? aN1w to H? MNIW (in fact, to a

variant HMNI w of HMNI w defined in §3.4 below). There are two steps.
First, we will construct a commutative diagram

. Chtp’N’[’W /E
/ X
Chte,n,rw /2 PP Chty,nw /= (3.1)

\ /

(X~N)!

where the morphism 7 is of finite type. Therefore the complex mi*]—"g ~Nrw on Chtay v rw /2 is
well defined in D2(Chtasn s w /Z, Q) (in the context of 0.0.13). We will construct a canonical
morphism of complexes on Chtys n. 7w /Z:

ﬂ!i*Fé,N,I,W - f]ﬁ,N,I,W‘ (3.2)

~Second, the cohomological correspondence given by (3.1) and (3.2) will give a morphism from

J J
He norw to Hy nrwe

3.1 Some geometry of the parabolic induction diagram

-0 0
Recall that we have morphisms over X' in (1.5): Gra 1 < Grpr KN Gra g

PROPOSITION 3.1.1. We have (%)~} (Grg rw) C (7°) "1 (Grarrw), where the inverse images are
in the sense of reduced subschemes in Grp.

Proof. Tt is enough to prove the inclusion for each fiber over X!. By 1.1.12, we reduce the case

of the Beilinson—Drinfeld affine grassmannian with paws indexed by I to the case of the usual
affine grassmannian Grg = G /Go.
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When P = B, the statement follows from [MV07, Theorem 3.2]. More concretely, for w a
dominant coweight of G, we denote by Grg,, the Zariski closure of the Schubert cell defined by
w in Grg. For v a coweight of T', we denote by Grr, the component of Gry (which is discrete)
associated to v. We denote by C,, the set of coweights of G which are W-conjugated to a dominant
coweight < w (Where the order is taken in the coweight lattice of G). By [MV07, Theorem 3.2|
the subscheme (i°)~1(Grg ) N () ~}(Grr,) in Grp is non-empty if and only if v € C,,. Hence

(%) (Grgw) = | | Grrp. (3.3)
veCy,

For general P with Levi quotient M, we denote by B’ the Borel subgroup of M. We use the
following diagram, where the square is Cartesian.

.B GI'B xB
ZP/ \B/
B/ GI‘B/ B’

iy

Zg/GrP\”f/f S NG

Grg Gryy Grp
Since the square is Cartesian, we have
/ ’ P ’ i NN 3.3
()BT () (8)  Craw = (nf o nB) (G0 if) Graw E | | Grrye  (34)
ZIECw

For any dominant coweight A of M, we denote by Grjy ) the Zariski closure of the Schubert
cell defined by A in Grys. Applying [MV07, Theorem 3.2| to Gry; < Grgr — Grp, we have

(eB)(i5) Gran = || G (3.5)

vely

The subscheme (i5)7'Grg, in Grp is stable under the action of Pp. The subscheme
(r)GE)1Grg,, in Gryy is stable under the action of Mo, so is a union of strata in Grpy.
We deduce from (3.4) and (3.5) that Gry can be in (7)) (i5)"1Grg,, only if A € C,. Thus

(mi)(i6) 'Graw € | Gran. O
AeCLMAT,
3.1.2 We define Grprw = (i°) ' (Grgrw). As a consequence of Proposition 3.1.1,

morphisms (1.5) induce morphisms over X/:
i0 70
GrG,I,W < GI‘RLW — GI‘MJ’[/V. (36)
3.1.3 We deduce from the commutative diagram (1.6) that

’L_l(ChtG7N7]7w) C 71'_1 (ChtM7N,I,W)7

where the inverse images are in the sense of reduced substacks in Chtpy ;. We define
Chtpn 1w =i '(Chtg nrw). Morphisms in (1.4) induce morphisms over (X~N)’:

ChtG,NJ,W <l— Chtp,NJ’W N ChtP,N,I,W- (3.7)
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3.1.4 Let d € Z>¢ large enough depending on W as in Proposition 2.2.1 applied to Grg 1w
and to Grps,;w. To simplify the notations, we write eg 4 for eg n 14 defined in 2.4.1 and €z 4 for
€m,N,1,4 defined in 2.6.2. Similarly we define ep4 to be the composition

Chtpnrw = [Proo\Grpr,w] = [Pra\Grprw].

We deduce from the commutative diagram (1.6), morphisms (3.6) and (3.7) a commutative
diagram of algebraic stacks.

Chta N, 1,w ~— Chtpn 1w ——— Chty N 1w

lﬁc,d iEP,d lﬁw,d (3.8)
-0 0

[G1.40\Cra.rw] < [Pra\Grprw] —= [Mra\Grasr.w]

3.1.5 The right square in (3.8) is not Cartesian. We have a commutative diagram, where
the square is Cartesian.

Chtp N, 1w
\ﬂ'd m
~

Cfﬁlth,N,I,W ——— Chtynrw (3.9)

™3
l@fd lelw,d

[Pra\Grprw] —> [M1a\Grarw]

T4

Remark 3.1.6. Note that Cht m,N,1,w depends on the choice of d. We do not write d in index to
shorten the notation.

DEFINITION 3.1.7. Let U be the unipotent radical of P. We have P/U = M. Applying
Definition 1.1.13 to U, we define the group scheme Ut 4 over X I

LEMMA 3.1.8. The morphism mq is smooth of relative dimension dimyr Uy 4.
The following proof was suggested to the author by a referee.

Proof. Proposition 2.4.3 works also for P and M. Hence the morphism €p 4 is smooth of relative
dimension dimyr P4 and the morphism eprq (hence €p74) is smooth of relative dimension
dimys My 4. Thus to prove that 7y is smooth, it is enough to show that it induces a surjective
map between relative tangent spaces.
For any closed point zp = ((x;),P — "P) of Chtpn 1w, let zpr := mi(zp). We have the
canonical morphism
Tepa(zp) = Tor,(wm), (3.10)

€M,d

where T,

€p,d

(fjﬁjcM,NJ,W) at xp (respectively xps) relative to [Pr4\Grprw].

(zp) (respectively T (rar)) is the tangent space of Chtpnrw (respectively
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Let y = epq4(zp). By the proof of [Lafl8, Proposition 2.8|, we have a Cartesian square

epa(y) —Bunpn gy,

J{ J{(bf,bé’) (3.11)
(1d,Id)

BunRN — BunRN X BunRN

where b{" is a smooth morphism (which is the forgetful morphism of the level structure on d Y z;)
and b¥" has zero differential (because it is the composition of the Frobenius morphism with some
other morphism). We have T, ,(zp) = Tyr(xp) (see for example [Laf97, I. 2. Proposition 1]). It

bP
is well known that Bunp7N+dei BEN Bunpy is a szm—torsor, where Pdei is defined in 0.0.8.
We deduce that Ty (zp) = Lie(Pyy:4,)-
-1

Similarly, we have a Cartesian square (taking into account that éxrq ' (y) = €;; d(;g(y)))

— -1

eMd  (Yy) ——Buny nyas o,
l l(b{”, bM) (3.12)
(1d,1d)

BUHMJV —_— BunM,N X BunM,N

where b}? is a smooth morphism (which is the forgetful morphism of the level structure on d Y z;)
and b3! has zero differential. We deduce that Tora(zm) = Ty (vpr) = Lie(Mgy5,), where Mgy,
is defined in 0.0.8.

Morphism (3.10) is the canonical morphism Lie(Pyy~,,) — Lie(Mys~ ) induced by P — M.
Hence it is surjective. We deduce also that the relative tangent space of 7y is Lie(Ugs~,)- O

3.2 Compatibility of the geometric Satake equivalence and parabolic induction
The goal of this section is to recall (3.17) and deduce (3.20), which is the key ingredient for the
next section.

3.2.1 We apply Definition 1.1.11 to G,, and denote by Grg,, ; the associated reduced
ind-scheme. We denote by pg (respectively pps) the half sum of positive roots of G
(respectively M). Since 2(pg — par) is a character of M, the morphism 2(pg — papr) : M — Gy,

M
induces a morphism Gry;; — Grg,, 1 by sending a M-bundle M to the G,,-bundle M x G,,.
We have a morphism deg : Grg,, 1 — Z by taking the degree of a Gy,-bundle. We have the

composition of morphisms

Gry,r — Grg,,.1 deg 7. (3.13)

We define Grj, ; as the inverse image of n € Z. It is open and closed in Grps,;. We define
Grp = (WO)’lGr’X/M. Morphism (1.5) induces a morphism

;0 0
Grg,r & Grp oy Griy - (3.14)

3.2.2  Recall that we have defined KQP in 1.4.2. Asin [Sch15, 2.1.2|, we define Ag p :={\ €
Agl{@,A) =0 for all & € fM} The pairing ( , ) in 1.4.1 induces a pairing ( , ) : KG’p xAg.p— Z.
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3.2.3 Wedenote by RepQ (M M1 ) the category of finite-dimensional Q-linear representations
of MT. Let W € Repg, (MI) Then Zg; acts on W via Zg7 — M diagonally. We have the
decomposition as Z7; representation: W Doc Ay we.

M

Since 6 € AZA = qu and 2(pg — pm) € Ag,p, we can consider (6,2(pc — par)). Let
Wo =@ 92 pu)=n WP We have W = @, .5, Wh.

Let Repg, (M M1 )¢ be the category of finite-dimensional Qg-linear representations of M M! such
that Zg7 acts by 6. We have Rep@[( I = ®06A Rep@[(MI) . Let

RepQ[(]\/f\I)n = @ Rep@e(ﬂ/f\])a.

96/\21\7, 0,2(pc—par))=n

We have . .
Repg, (M) = @D Repg, (M),
nez
A1 ResCiI
We define (Resci )n to be the composition of morphisms Rele(GI) — RepQZ(MI)

Reer(]/M\I)n.

3.2.4  In morphism (3.13), Grps o is sent to (0,2(pc — par)). We deduce that Griy, ;N
Grarrw = Grarw, -

3.2.5 In Corollary 2.1.7, we defined a fully faithful functor
Satg,r : RepQZ(@I) — Perlem(GrgJ,Qg)

which sends W to Sg,r,w. We denote by Perlem(GrGJ,Qg)MV the subcategory of essential
image of this functor. Similarly, we define

SatM’[ : Reer (MI) — PerVMI,oo (GI‘MJ,Qg)MV
Let Satar,r,, be the restriction of Satys,r to Reer(]\/f\I)n.

THEOREM 3.2.6 (|[BD99, 5.3.29], [BG02, Theorem 4.3.4], [MV07, Theorem 3.6| (for M = T),
[BR18, Proposition 15.2]).

(a) For any n € Z, the complex

(@) S © (Qel1](3)) "
is in Pervyy, (Gr’X/LI, Q)MV.
(b) We denote by ((9)1(i2)*)™ the shifted functor (70)1(i0)* ® (Q¢[1](3))®". Then there is a

canonical isomorphism of fiber functors

Satar,1n © (ResS,)n = ((70):(i5)")™ o Sata . (3.15)

n n

In other words, the following diagram of categories canonically commutes.

(T (ip)*)™

Pervg, . (Grg, 1, Q)MV Pervyy, o (Grlhy g, Q)MV
SatG,IT Sat]\/[,I,nT (316)
o~ (Res]%ll)n —,
Repg, (G*) Repg, (M*),
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Remark 3.2.7. The references cited above in Theorem 3.2.6 are for the case of affine
grassmannians (i.e. I is a singleton). The general case (i.e. I is arbitrary) can be deduced
from the case of affine grassmannians using the fact that the constant term functor commutes
with fusion (i.e. convolution). The proof for I = {1, 2} is already included in the proof of [BR18,
Proposition 15.2]. For general I the proof is similar.

COROLLARY 3.2.8. There is a canonical isomorphism
Su 1w, = (m)i(in)*Sarwn](n/2). (3.17)

Proof. Applying (3.15) to W and taking into account that Sas r w, = Satar,1,(Wy) and Sg 1w =
Satg (W), we deduce (3.17). O

3.2.9 For any n, denote by Grp;y = Grp; N Grprw. We have a commutative diagram,
where the first line is induced by (3.6).

-0 0
Gra,r,w Grp 1w Grarr,w,

lfG,d o iﬁp,d igl\l,d
[ w9

0
[G1a\Gre,rw) <= [Pr.a\Gr'} ;] —> [M1a\Gras,1,w,,]

The morphism

GY?D,I,W - [Pl,d\Gr?D,I,W] X Grav,rw, = [Ul,d\GT%I,W]
(M1 a\Grar,1,w,]

is a Ur g-torsor. Since the group scheme Uy 4 is unipotent over X I we deduce that

(T)1(€pa)™ ~ (Ear.0)* (7Y, )i[—2m](—m), (3.18)

where m = dim £P,d — dim gM,d = dimXI U[,d.
Corollary 3.2.8 implies

~

Sirrw, = (19, 1(i5,,) SE rwln — 2m](n/2 — m). (3.19)

3.2.10 Let (wj)ier € (KL)I . Let V¥ be the irreducible representation of M of highest
weight w;. Note that KG,P = KM,M (defined in 1.4.2). By definition, it coincides with 7y (M)
defined in [Var04, Lemma 2.2]. We denote by [} ;. w;| the image of ), ;w; by the projection
K M — K M,M-

LEMMA 3.2.11 [Var04, Proposition 2.16(d)|. The stack Chtas N 1%, ,v«: is non-empty if and only
if [, wi is zero.
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3.2.12 Let W and W as in 3.2.3. Then W has a unique decomposition of the form

W= @ (MierV*) ®qQ, m(wi)iel’

(wi)ier€(Ai)T

where M), _, are finite-dimensional Q-vector spaces, all but a finite number of them are zero.

We have

iel

We - @ (&ZEIV%) ®q, m(wi)iel'
(Wi)ier€AT)T [ e wil=0
Lemma 3.2.11 implies that Chty; y ;e is non-empty if and only if 6 is zero. For such 6, we have
<0,2(,0G — pM)> = 0. We deduce that ChtM,N,I,W = UneZ ChtM,N,I,Wn = ChtM,N,I,WO- So the
image of
end : Chtyr v rw — [Mra\Gragrw]
1s in [Ml,d\GrM,I,WO]-

3.2.13 With the notations of diagram (3.8), we have

(EM,d)*S]O\Z,I,W = (EM,d)*S]O\lLI,WO
= (enra)* (G )1 (10, 0)* S& 1w (—2m](—m)
= (eara)* (T (1) *SE 1 w[—2m](—m). (3.20)

The first and third equality follows from 3.2.12. The second isomorphism follows from (3.19)
applied to n = 0.

3.3 Construction of the morphism (3.2)

3.3.1 Consider diagrams (3.8) and (3.9). Let m = dimy: Uy 4 as in 3.2.9. By Lemma 3.1.8,
m = dimmy. We construct a canonical map of functors from Dg([PI,d\GrR wl, Q) to
D2(Chtarn.1w Qo)

m(epa)” = (eara) (T [~2m](~m), (3:21)

as the composition

m(epa)” = (T (ma)(ma)* (Ex7a)° B
— (s (Exra)"[=2m](=m) < (eara)" (n)[-2m](~m). (3:22)

The second morphism in (3.22) is induced by the isomorphism (74)*[2m](m) =~ (74)' (because
g is smooth) and the counit map Co : (74)1(74)" — Id. (The composition (mq)i(7q)*[2m](m) =
(mg)i1(mq)" — 1d is the trace map in [SGA4, XVIII 2].)

The third morphism is the proper base change (|[SGA4, XVII 5|, [LOO0S, §12]).

3.3.2 Now we construct a morphism of complexes in D%(Chty, ~N,w, Qo):

mi*Foniw = mit(ec.a) St w
@ 7 (ep,a)*(19)* S 1w
(b) * (0 (:0\* ed o o
— (en,a)* (mg)i(ig)"SG 1w ([—2m](—m)
(& (era)*Sirrw = Funaw, (3.23)

where (a) is induced by the commutativity of diagram (3.8), (b) is induced by morphism (3.21),
and (c) is (3.20).
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3.3.3  All the constructions in 3.1-3.3 are compatible with the quotient by =. In particular,
just as in 3.1.4, diagram (1.10) induces a commutative diagram.

Chtg,n,rw /2 <—— Chtpy, 1w /= —"= Chtarn,rw /2
|€mna |Fnra | Fin (3.24)
[G55\Crgrw] i [P1.4d\Grprw] i [M71a\Gras,r,w]
CONSTRUCTION 3.3.4. Just as in 3.3.2 (using (3.24) instead of (3.8)), we construct a canonical
morphism of complexes in D%(Chts n.r.w /=, Qp):

7T!i*]:g,z\f,l,vv — F]\E/[,N,I,W' (3.25)

3.4 More on cohomology groups
When the level structure IV is non-empty, to construct the constant term morphism of cohomology
groups, we need a variant of H 1]\/1 NIW"

3.4.1 Let Oy be the ring of functions on N as in 0.0.8. The finite group G(Oy) (respectively
P(On) and M(Op)) acts on Chtg, n 1w (respectively Chtp n rw and Chtas v rw) by changing
the level structure on N: g € G(Op) sends a level structure ¥g to g~* o ¢g.

By [Var04, Proposition 2.16(b)|, Chtg v 1w (respectively Chtpn w and Chty nrw) is a
finite étale Galois cover of ChtG,I,W}(X\N)z (respectively ChtPJaW’(X\N)I and ChtMJ,W‘(
with Galois group G(Op) (respectively P(Ox) and M (Oy)).

DEFINITION 3.4.2. We define

X\N)I>

, P(On) , P(On)
ChtP,N,I,W = ChtP’N,[?W X G(ON), ChtM,N,I,W = ChtMJV,[’W X G(ON),

where P(Op) acts on G(Op) by left action (by left multiplication) and P(On) acts on Chtas, N 1w
via the quotient P(Oyn) — M(On).

3.4.3 Morphisms (3.7) induce morphisms

ChtGJV’]’W (i Cht/F’,N,I,W i) Cht/]W,N,I,W’ (326)
Indeed, the morphism 4’ is giving by
((Pa Q/JP) - (TpaTwP)ag € G(ON)) = ((g’g—l © ¢G) g (Tgag_l © T¢G))’

P P

where G = P x G and g = ¥ p X G. The morphism 7’ is induced by 7, which is P(Oy)-equivariant

(because P(Op) acts on Chtp n rw and Chtys n rw by changing the level structure on N).

Remark 3.4.4. The morphism Cht)s 5 ;v = Chtprw  x  Chtg n 1w is a G(On)-equivariant
94Vl htG,I,W

morphism of G(Oy)-torsors over Chtp, and thus it is an isomorphism. In [Var04, 2.28]|, the

stack Cht’p v 7y is denoted by FBunpp ng- The reason why we will need Cht'p  ; 1y instead of

Chtp n 1w is justified in Example 3.5.15 and Theorem 4.2.1.

DEFINITION 3.4.5. We define

P(Oy)
Cht/sl ;1 = ChtFhy 4y X G(ON),

P(On) P(On)
Cht'i[f]‘v’LW = Chtf\/[‘fNJ’W X G(On), Chtlﬂ/§7‘j\}Z7W = Chtf\/[‘f}\',j,f,w x G(On).
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3.4.6 We have a commutative diagram of algebraic stacks.

Chtpn 1w —— Chtay N1 w

P , |

Chte,n,w < Chtlp vy —— Chtly v 1w (3.27)
| | |
Bung Bunp Bunj,

We deduce that ChtSJl\tf,I,W is also the inverse image of Bun]%“ by Cht’P ~N.,w — Bunp and
Chtﬁ‘;v 1w (respectively Chtlj‘j*;\}'jj w) is also the inverse image of Bunf\/f (respectively Bun<”’ )

by Cht/]\/[,N,I,W — Bunyy.

DEFINITION 3.4.7. Just as in §2.6, we construct a morphism 6%/[/@ : Cht'M,NIW/E —

r<p, v
[M14\Grar 1w and we define ]-"M .1,w to be the inverse image of SM Tw- Wedefine H v 7y
= 13, Sty vV I <p, 13, Sty vV ! Jy Sty
R(pM)!(]:M,I,N,W Cht! <k v /_)a HMNI w = (HM,N,I,W) and HMNI w - 7'[M,J\r,I,WLTI
M N,I,.W

3.4.8 Just as in 2.6.5, if v ¢ AZ /2., (defined in 1.5.20), then Cht) %' is empty and
H/j’ N 0
mNgw =Y

DEFINITION 3.4.9. Just as in Definitions 2.6.6 and 2.6.8, we define

1J, S . 1J, SV, 17, Sp
HMNIW H HM,N,I,W’ H M,NIW * —hm MNIW
w M
VEAZM/ZG

/j7V — |1 /j7<)u‘7y
DEFINITION 3.4.10. For any v € AZ /7 We define Hy ' Nrw = h_r>nuHM,N,I,W'

3.5 Constant term morphism for cohomology groups
3.5.1 Morphisms (3.24) induce morphisms over (X~ N).

ChtGJ\/"[’W /E 4 Cht/P,N,I,W /E WH/ Cht?\J,N,I,W /E
lE%,N,I,d lEIPE,N,I,d \L A?N I,d (3-28)
I 0
[G3\Gra rw] <—— [Pra\Grprw] — [M1,4\Grasrw]

3.5.2 Forany p € AGad and any v € KgM 170 the first line of morphisms (3.28) induces
morphisms over (X~ N)’:

< <
Chtgly ; w /2 L Cht’P]’\*]’IW =5 Chtyn’ w /E- (3.29)
The proof of [Var04, Proposition 5.7] in fact proves the following.

1110

https://doi.org/10.1112/50010437X20007058 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007058

CUSPIDAL COHOMOLOGY OF STACKS OF SHTUKAS

PROPOSITION 3.5.3 [Var04, Proposition 5.7|. For any u € AGdd and any v € AZ /76 (defined

in 1.5.20), there exists an open dense subscheme QQ<*V of (X~N)! such that the restriction of

the morphism i’ on Chtlp<f\ﬁ’ w /=, is proper. In particular, the restriction of the morphism

./ I<u,
i on ChtPNI W 771 is proper.

Remark 3.5.4. In [Var04, Proposition 5.7|, the level is denoted by D, the paws are indexed by
n, the index d is related to our v, the index k is related to our W, and the index [g] is in
G(On)/P(Op). The open subscheme QS is of the form

Q(m) = {(z:)ier € (X\N)I, x; # Tra:j for all 4,5 and r = 1,2,...,m},

where ™'z is the image of by Frob” : X — X and m is some positive integer.

In the proof of [Var04, Proposition 5.7], Buné” is denoted by V' and Q(m) is denoted by U.
Varshavsky shows that for fixed p and v, there exists a level D large enough and an integer m
large enough (both depending on p and v), such that over Buné” x Q(m) C Bung x (X~N)I,
the morphism However,

Cht/ <V — ChtsH
P,D,I,W Q(m) G,D,I,W Q(m)

is a closed embedding. In particular, it is proper. Then we descend to level V.
Note that i’ is schematic (i.e. representable). This is implied by the well-known fact that

Bunp — Bung is schematic (a P-structure of a G-bundle G over X x S is a section of the
fibration G/P — X x S).

3.5.5 Now consider the following commutative diagram.

1<p, -
, ChtPﬁJﬁW e
/ \

/<)U‘7 v e
=] < pp ChtM,N,I,W =

To simplify the notations, we denote by ’FGENQSHWW

(3.30)

Cht =
G N,I,W Qswp, v

the restriction of .7-"GEJ’N7W to

=, c . = I <p, —
ChtG Nw /E| and by .FMNQ<M W the restriction of F)r; yyy to ChtMNI w/E| e

The commutative diagram (3.28) is compatible with the Harder-Narasimhan stratification.
Just as in Construction 3.3.4, we construct a canonical morphism of complexes

(T W) F& N acuvw = Farnacme w (3.31)

an)-

3 b /<N7V =
in Dc(ChtM,NJ,W =] e

3.5.6 Thanks to Proposition 3.5.3, we can apply [SGA5, III 3] to diagram (3.30) and the
cohomological correspondence (3.31).

Concretely, first we have morphisms of functors from Db(ChtGN w qu,u’Qf) to
Db(QsHY Q) (all functors are considered as derived functors):
(a) y (b) s (©) PPN
(pa ) = (e (@) ()" = (P (@) (@)" = (par ) (7' N (@), (3.32)
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where (a) is the adjunction morphism, (b) is induced by i] = i, which is because that i’ is
schematic and proper (Proposition 3.5.3), and (c) is induced by the commutativity of diagram
(3.30).

Second we combine (3.32) with (3.31). We obtain a composition of morphisms of complexes

in DY(QSHY. Q).

= (3.32) Nk S (3.31) E,v
(pG)!‘FGjNJzémV’W — (pa)i (7)) fG7N7Q<u7V’W — (pam): ]/\/[,N@gu,u,w' (3.33)

By Definition 2.5.1 and Definition 3.4.7, (3.33) is also written as

P7<M7V. g/*’/ /éu,l/
Co tHE N LW a<mr Hyr N1w

(3.34)

Q<sp, v

3.5.7 From now on, we restrict everything to the geometric generic point ? of X' fixed

in 2.5.4. Recall that we have defined Hé f\,“[ W= ’H]G Jg\,”[ w|— in Definition 2.5.5 and H]/\jﬁ““zv =
b 1t b bl ,’] b 1t
H%I’f\#j;v o in Definition 3.4.7.
For any j € Z, morphism (3.34) induces a morphism of cohomology groups

P j,<p,v | rrpi, Sp 13y Spy v
Ce CHe Niw — Hyvorwe (3.35)

AM 1 P7 j? <N7 v 1
By 3.4.8, for v ¢ A Tt/ Ze the morphism C, is the zero morphism.

3.5.8 We define a morphism:

P j,<p P, j,<p,v | rri, Sp 1 Js SP
Co = H Cq CHG Nrw = Hyvw (3.36)
NZ
VGAZM/ZG

where H]’V[]’]\f}‘W is defined in Definition 3.4.9.

3.5.9 Let p1,u0 € 329 with 1 < po. By Lemma A.0.8, the commutative diagram of stacks

a

Sp =_ I <p =_ IS =
Chte/ n rw /E<——Chtp N’ /E——Cht 'y 1 /Z
j J JA (3.37)

<p1 - i I <pa - w’ I <pa e
ChtG,N,I,W == ChtP,N,I,W = ChtM,N,I,W =

induces a commutative diagram of cohomology groups.

Hj’ <p1 Hj’ <p2

G.N,I,W G,N,I,W
lcg,j, < lcg,j, <wz (3.38)
1 J, SH1 1J, Sp2
Hyi N 1w Hyin 1w

We have defined Hé‘,N,I,W = lignuHéi”IW in Definition 2.5.5 and HM;N’LW = EgluHsz?w
in Definition 3.4.9. The commutative diagram (3.38) induces a morphism between inductive
limits.
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DEFINITION 3.5.10. For all parabolic subgroups P, for all degrees j € Z, we define the constant
term morphism of cohomology groups:

CGN HéNJW"HMNIW (3.39)
Remark 3.5.11. The morphisms H]’V[]Afﬁ‘w — lim H]’V[j]\fﬁ‘; for each v € K(%]M/ZG induce a
morphism
im [ Hiwiw - [ iwHENTY (3.40)
w VGA%NI/ZG VGA%M/ZG #
With the notations in Definitions 3.4.9 and 3.4.10, morphism (3.40) is the natural map
/ j ]7
HJ\ZI,N,I,W H HJI\/J N,I,W* (3.41)
GAZM/ZG
For each v € AZ = taking inductive limit over p of (3.35), we define CP &y HéNIW —
H ]/\/IJ N 1w We form a morphism
P b b
II Ce o HGNIW II -HMNIW’ (3.42)
VGA%M/ZG VEA(%M/ZG

It is equal to the composition of (3.39) and (3.41).
In Lemma 5.3.4 below, we will prove that, for u large enough,

HI Sk H g'hv
M,N,IW — Hyi'norw

GAZM/ZG

is injective. This implies that (3.41) is injective. Thus the kernel of (3.42) is the same as the
kernel of (3.39).

Remark 3.5.12. Now consider all parabolic subgroups (not only the standard ones). If P; and P»
are conjugated, then the conJugatlon induces an isomorphism M7 ~ M>. This induces for any j
an isomorphism H;/ My NIW = ~ H7 My N.1.w- Lhe following diagram commutes

Cglj,\]j
, 17
HG,N,I,W i HMl,N,I,W
k Nl’
Coin

J
Hypy, .1,
and thus we have Ker Cglj’v = Ker C’PQ’ in Hé’NJ’W.

However, we do not know how to compare the constant term morphism along different
parabolic subgroups which have a common Levi subgroup. It is perhaps possible to do that,
but quite difficult because it would be a generalization of the functional equation for Eisenstein
series.

DEFINITION 3.5.13. For any degree j € Z, we define the Cuspidal cohomology group:

S5 Tw = () KerC (3.43)
PG

This is a Qg-vector subspace of Hg},N,I,W'
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Remark 3.5.14. For

P12, j Paj _ P, i ition:
we have C MaN © CG’ N = C’G’ A - Thus we have an equivalent definition:

J,cusp P, j
HGNIW m KerCG’N.

P maximal parabolic

Example 3.5.15 (Shtukas without paws). When I = ¢ and W = 1, we have Chtgng1 =
G(F)\G(A)/Kg n. (Note that G is split. See [Lafl8, (0.5) and Remarque 8.21| for more details.)
Moreover, let KP,N = KG,NQP(@), KU,N = KG,N ﬂU(@) and KM,N = KP,N/KU,N' We write

< for equalities of sets which are not equalities of groupoids. We have

P(On) P(0)

Chtpngs = (PENPA)/Kry) | % G(Ox) = PIEN(P(A) % G(0))/Kex
— P(F)\G(A)/Kc.x,
Chtty w g1 = (MIENM(A)/Kary) | % G(Ox)
P(0)/Ku,n set P(0)
_ MENMA) R G0) Kan) = MPNM(A) X GO)/Kan
P(0)

— M(PYUA\(P(A) x G(O))/Ke.n = M(F)U(A\G(A)/Ka,.

—_ -/
In this case, Grpg1 = Grag1 = SpecFy. We can choose d = 0 in (3.9). Thus Chty; n g, =
Cht)y; 1. The constant term morphism C’g’]jv in Definition 3.5.10 coincides (up to constants

depending on v € A9 e component by component) with the classical constant term morphism:

Ce(GFN\G(A) /K NE, Q) — C(U(A)M \G(A)/Ka,NE, Q)

PR s / 2 du. (3.44)

Therefore Hg R}lzpl C"™P(G(F)\G(A)/Ka nE, Qp).

Remark 3.5.16. When I = @, W =1 and N = @ (without level), for any u € Ag;?, H?\?N]W

is included in the subspace of C(U(A)M(F)\G(A)/G(0)=,Qy) of functions supported on the
components of U(A)M (F)\G(A)/G(0)Z indexed by a translated cone A“ /7¢I AZM/ZG The
0 <p

image of the constant term morphism is included in H4? MNIW = hmMH MNIW- This space is
already defined independently by Wang in [Wan18, §5.1] and is denoted by Cp, _ in [Wan18|.

4. Contractibility of deep enough horospheres

In this section, let P be a parabolic subgroup of G and M its Levi quotient. The goal is to prove
Proposition 4.6.4, which will be a consequence of Theorems 4.2.1 and 4.2.4.
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4.1 More on Harder—Narasimhan stratification
To state Theorems 4.2.1 and 4.2.4, we need to introduce some locally closed substacks of

ChtG’N,[’W.
DEFINITION 4.1.1. Let u € IAXZ,;E. We define a set
Su(p) == {r e ALE [ A<My}
= e AZE A< upnfA e AL | prE (V) = pr ()},

where the second equality follows from 1.5.16 (taking into account Notation 1.7.1). The set Sy (p)
is bounded.

Remark 4.1.2. The set Sps(p) is the same as the one (modulo Kgc) used in [DG15, §§8 and 9|.

DEFINITION 4.1.3. We define

=u._ o) =t ._ M)
Bun/" := U Bun;’, Bun,; := U Bunj/,
XeRES Ya(N)=p AeA T2, Ta(N)=u

where Bung‘) (respectively Bung\})) is defined in Definition 1.4.9 (respectively Definition 1.5.3).

DEFINITION 4.1.4. We define
BungM(“) = U BunEA; BunZM(“) = U Bunj;.

XS () AeSa (1)

4.1.5 It X e Sy(p), N € T\g;‘? and A < X < g, then prad(\) = prai(X) = pris(u). This
implies that X € Sy (). Using [DG15, Corollary 7.4.11], we deduce the following.

LEMMA 4.1.6. The substack BungM(“) is closed in Buné“.

4.1.7 We deduce from the definition of Sy;(u) and 1.5.12 that

ad
BUDSMM(M) _ Bunf/[“’ prig () (4.1)

ad
Recall that Bunf\/}‘ is open in Buny, (see Lemma 1.5.5) and Bunﬁ/rfp w)

Bunjs (see 1.5.7).

is open and closed in

LEMMA 4.1.8 [DG15, Corollary 7.4.11, Lemma 8.2.6]. The substack Bun}?}[”(“) is open and closed

in Bun¥, and i in Bun®F ) and in B
1n unM , ana is Open 11 unM and 1n unpys.

We define BuniM(“) = Bunﬁ“ N W_I(Bunf/lM(“)). By Lemma 4.1.8, it is open and closed in

/' and is open in Bunp. So it is reduced.

Bunf;
LEMMA 4.1.9. Morphisms (1.25) induce morphisms

BunSM(u) - BunSM(#) N BUDSA{(M)- 4.9
G P M
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. . Sar (i)
Proof. We need to verify that the image of Bunp" #

S ()

— BunG is in the closed substack BungM ),

S () be

Since Bun; is reduced, it is enough to consider geometric points. Let P € Bunp

a geometric point. Let M be its image in BunS (1), By definition of BunSM(“ ). there exists
A € Sy(p) such that M € Bun3}
Let G be the image of P in Buné By 1.4.14, there exists X < p such that G 6 Bun:)‘

Taking into account that Bung)‘/ C BunG , by Lemma, 1.6.2, we deduce that M € Bun$) A - Hence

A < . By 4.1.5, this implies that N € Sy (p). Thus G € BungM(“). O
DEFINITION 4.1.10. We define ChtGNIW (respectively Chtgﬂfé I)W) as the inverse image of
Bung " (respectively BunsM G )) by the morphism

Chton 1w — Bung, ((@)ier, (G, %) > (G, ™9)) >

Similarly, we define Cht??\,(’})w, Chty/'y ;1w and Cht]k?}[\ijgfug w-

4.1.11 We deduce from Lemma 4.1.6 that Chtg”fé”l)w is closed in ChtG NIW- We deduce

from Lemma 4.1.8 that ChtM ]S[ I) w is open and closed in ChtM NIW and is open in ChtM N(I)W

and in ChtM’N,[,W.

4.1.12 The commutativity of diagram (1.28) and Lemma 4.1.9 imply that Cht%‘fv(’;)w =

Chtziﬁv,[,w N Wﬁl(Chtf/ﬁI]E,’gW). Morphisms (1.29) induce morphisms:

S (1)

Sar(p) Sn(p)  wIMW)
Chtc,zv,z,w“ } ChtP,N,I,W —

s
Chtat ) -

4.1.13 As in Definition 3.4.2, we define

p P(Ox) s g P(ON)
Cht) 3 ¥y == Cht Wy, X G(Oy),  Chty %W, = Cheyd ) % G(Oy).

Morphisms (3.26) induce morphisms

i’ S (1) 7S pp (1)
ChSiet), LMY st 2O s (13)
4.2 Geometric statements
First consider the morphism /S (1)

THEOREM 4.2.1 (|Var04, Theorem 2.25 and Proposition 5.7], [DG15, Proposition 9.2.2|). There
exists a constant C'(G, X, N,W), such that if u € AGad and (u,a) > C'(G, X, N, W) for all

a € T — Ty, then the morphism ¢S s a schematic finite universal homeomorphism.

Proof. (1) Schematic and finite follows from [Var04, Proposition 5.7] (recalled in Proposition 3.5.3
and Remark 3.5.4).

(2) Surjectivity is implied by [Var04, Theorem 2.25].

(3) Universally injectivity is implied by the fact that Bun, is an isomorphism
for u satisfying the assumption of Theorem 4.2.1 (see [DG15, Proposition 9.2.2]) and the

Sar () (1)

S
— BunG
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well-known fact that Grprw — Grg 1w is bijective. (More concretely, it is enough to prove that

for any algebraically closed field k containing F,, the map Cht%‘} (V’f,) (k) —> Chtgl‘/f(ﬁ,)(k) is injective.

Let ((z:),G 2% Tg) € Cheg4 %) (k). By (3), there exists ((z:), P 25 7P) € Cht}s ) (k) such that

PXG G and ¢p ><G ~ ¢q. Since BunSM( )(k:) — BunSM( )(kz) is injective, P is unique. Choosing
a trivialization of P over I'y~ ooy, We deduce from the injectivity of Grprw (k) - Grgrw(k)
that ¢p is unique.) O

4.2.2 Now we consider the morphism =/ For all d large enough, similar to diagram
(3.9), we have a commutative diagram

1S (1)
Chtp n 7w

(4.4)

[Pra\Grprw] —— [M1a\Gra,w]

where Cht, M, N(l;)w is the fiber product, which depends on d. By 4.1.11, Chtﬁ]‘]{,(’;)w is open in

Cht)y nrw and ChtPS]]\”f(“)/V is open in Cht’p y ;1. By Lemma 3.1.8, the morphism stM( M g

smooth of relative dimension dim x1 Urq.

We now introduce a notion of unipotent group scheme (which should rather be called
‘elementary unipotent group scheme’).

DEFINITION 4.2.3. (a) Let H be a group scheme of finite dimension over a scheme S. We say
that H is a unipotent group scheme if H admits a filtration H = H©® > H® 5 ... 5 gm) 5
H(m+1Y) — 0 such that for every j, the quotient HU) /H (+1) is an additive group scheme (i.e.
isomorphic to G} s for some n locally for the étale topology) over S.

(b) A morphlsm of algebraic stacks f : X — ) is called unipotent if for any scheme S and any
morphism S — ), the fiber product S 3<} X is locally for the smooth topology on S isomorphic

to a quotient stack [H/Hs], where Hy and Hs are unipotent group schemes over S and Hjy acts
on H; as a group scheme over S acting on a scheme over S.

THEOREM 4.2.4. There exists a constant C(G, X, N,I,d), such that if u € AGad and (u,a) >

C(G,X,N,I,d) for all « € T'¢ — I'ps, then the morphism TrdSM(“) is unipotent in the sense of
Definition 4.2.3.

The proof will be given in §§4.3—4.5.

Remark 4.2.5. Theorem 4.2.4 will be used to prove Proposition 4.6.4, where only the statement

for the geometric fibers of F(;SM 1) is needed. Since the proof is the same for a geometric fiber or

a fiber over a general base, we prove it over a general base.
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4.3 Proof of Theorem 4.2.4: step 1
4.3.1 We have a similar diagram as (4.4) without index . The morphism

s S — S (p)
WdNI(M) . Chtpf\][\f(,};?w — ChtM,N,I,W

P(Oy)
Sm() e induced by ﬂgM(“) X G(Op). So to prove

Theorem 4.2.4, it is enough to prove the statement for 7r§M W) instead of W;SM ),

The problem is local for the smooth topology. So it is enough to prove the statement for the
base change by Grprw — [Prq\Grprwl:

is P(Oy)-equivariant and the morphism 7,

X, Sn (1) . ChtsM(M) —— S (1)

T4 PN, I,W X Grprw — Chty v 1w X Grprw.
[Pr,a\Grp 1,w] [Pr,a\Grp 1,w]
i S (1) Sar(p)
4.3.2 Note that ChtM,N,I,W X GI'P7]7W ~ ChtM,N,I,W X GI'P7]7W. We

[Pr,a\Grp,1,w] (M1 a\Grar,1,w]
have the following commutative diagram, where the front and back Cartesian squares are defined

in the proof of [Lafl8, Proposition 2.8| (replace G by P and M, respectively). We have already
used these Cartesian squares in (3.11) and (3.12).

S S
Chtpy Py x Grerw Bunpiyy x Grezw
[Pr,a\Grp 1,w] (X~N)T
, S
o Sm (k) (b1, b5) S (1)
ChtM,N,I,W X Gl“pJ’W BunM,N,I,d X GI"P,I,W
[Pr,a\Grp,1,w] (XN
(1d,1d) !
Sn(p) ’ Sar(p)
BunRN > BunRN x Bunp y (bM b2M)
qBun '""'»-V__,.,(ﬁBuﬂ,wBun)
(Id.1d) BN
s ; s
Bunﬂfjs,“) Bunj\fls,“) x Bunps v

4.3.3 Now let S be an affine scheme over E and let

TAqT S (1)
((z3), (M, ) 4 (M, 79),8): 8 — ChtMA?NF,LI,W X Grprw
[Pr,a\Grp 1,w]

be an S-point. Consider

—— S (1)
S —> ChtM,N,I,W X GI‘PJ’W —> BUHSMA:I]E#}d XGI‘PJ,W
[Pr,a\Grp,1,w] (X~N)T
and ()
—~— Sy (p S
S — Chtyy n 1w x Grprw — BunMAf]E,“) :

[Pr,a\Grp 1,w]
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We define 2, % 4 and %y to be the following fiber products.

S S Sh
¥ — Chtp?]jv(f;?w GI‘py],W @N,d —_— Bun]’:ul\f(f;?d X GI‘py]yW W — Bunpﬂllv(u)

X
[Pr,a\Grp,1,w] ’

(X~N)!
iﬂ;. Spr(w) [ l(ﬂjun‘ 1d) tn&m

S S
Grp,[’W S —— Bun]\f;ﬁ} d ( X )IGI'RLW S — Bun]\}%”)
U (XNN ’

S,
S Chiy ¥ x
T [Pra\Grpw]

Applying Lemma B.0.1 to the diagram in 4.3.2, we deduce a Cartesian square
74

YN.d

l l@lv‘v) (4.5)
(Id,1d)

Yy ——— Yy ? N

where by (respectively bg) is induced by b (respectively b%).

Remark 4.3.4. By the proof of [Laf18, Proposition 2.8], b (respectively b}!) is the forgetful
morphism of the level structure on I (thus smooth) and b (respectively b37) is the composition
of the Frobenius morphism with some other morphism. We deduce that b; is smooth and by has
zero differential. Moreover, the morphism Bunp y — Bunjys y is smooth, and thus %y is smooth
over S. Similarly #y 4 is smooth over S. We deduce that 2 is smooth over S. Note that the
same argument without Sy (p) would give another proof of Lemma 3.1.8.

4.4 Proof of Theorem 4.2.4: step 2
The goal of this subsection is to describe %y and % 4.

(1) First we describe the fiber of BuniM(“) — Buni/[M(“) in Proposition 4.4.4.

4.4.1 We fix a maximal torus T" C B. This allows us to view the Levi quotient M of a
standard parabolic subgroup P as a subgroup M C P (the unique splitting that contains T').
Then P =M x U, where M acts on U via the embedding M C P and P acts on U by the adjoint
action.

4.4.2 Let S — Bunf}[” W be a morphism and M the corresponding M-bundle over X x S.
We define the fiber space Upq := (U x M)/M. It is easy to check that it is a group scheme over
X xS (see |[Xuel7, C.2] for more details).

DEFINITION 4.4.3. Let S be an affine scheme over E. Let A be a sheaf of groups on X x S. We
denote by prg : X x S — S the second projection.

(a) We define R°(prg).A as the sheaf of groups on S:
(8" — 8) — Homxys(X x S, A",

where A’ is the inverse image of A by X x §' - X x S.
(b) [Gir71, V.2.1] We define R!(prg).«A as the sheaf of sets on S associated to the presheaf:

(8 = 8)— HY (X x 8", A).

Indeed R!(prg).A is a sheaf of pointed sets with a canonical section which corresponds to the
trivial A-torsor.
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PROPOSITION 4.4.4. There exists a constant C(G,X) € Qxo, such that if (u,a) > C(G,X)
for all & € Tg — 'y, then R°(prg).Upq is a unipotent group scheme over S and the fiber of

Bun}iM (W) SMM ()

— Bun over S is the classifying stack [S/R%(prg)«Un].
Proof. We denote by % the fiber of Bun}iM N Bunfj”(“ ) over S. For any scheme S’ — S, the
groupoid # (S') classifies the Up| wxg-bundle over X x S’ (see [Xuel7, Lemme C.3.2] for more
details).

By Lemma 4.4.5(b) below, all Upq-bundles are trivial. Taking into account that
RO(prg)«Upnm(S’) is the group of automorphisms of the trivial UM‘Xxs,—bundle on X x S5

and Lemma 4.4.5(a), we deduce the proposition. O

LEMMA 4.4.5. There exists a constant C(G,X) € Qxo, such that if (u,a) > C(G,X) for all
a € I'g — 'y, then we have the following.

(a) The sheaf of groups R°(prg)+Uaq is a unipotent group scheme.
(b) The sheaf of pointed sets R (prg).Uny is trivial.

Remark 4.4.6. If U is commutative, then Uy is an additive group scheme over X x S (in the
sense of Definition 4.2.3). Part (a) of Lemma 4.4.5 is automatic and part (b) follows directly from
[DG15, Proposition 10.4.5].

The difficulty is that in general, U is not commutative. To prove Lemma 4.4.5, we will need
to use a filtration of U where the graded are commutative groups.

4.4.7 We have a canonical filtration of U (see the proof of [DG15, Proposition 11.1.4(c)]|
for more details):

U=U9>u®5...oum 5yl =, (4.6)

where U is the subgroup generated by the root subgroups corresponding to the positive roots
a of G, such that

Z coeffg(a) > j + 1.
Bela—T
(Here coeffg(a) denotes the coefficient of « in simple root 3.) For each j, the subgroup U G+ of
UU) is normal and the quotient is equipped with an isomorphism 9@ : Gy? > UU) JU (G+1) for
some n; € N.

4.4.8 The filtration (4.6) induces for every j € {1,...,m+ 1} an exact sequence of groups:

00— UU-Y/ul) 5 /vl - u/uti- - o. (4.7)

For every j, the subgroup UY) of P is normal. Then P acts on UU) by the adjoint action and
M acts on UU) via M — P. We deduce that M acts on UU) /UG and U/UU).

We define the fiber spaces (U /UG := (M x U /UG /M, it is an additive group
scheme over X x S. We define the fiber space (U/UU) g := (M x U/UY)/M, it is a group
scheme over X x S (see [Xuel7, C.2| for more details).

PROPOSITION 4.4.9. There exists a constant C(G,X) such that for p € K;g, if (p,a) >

C(G,X) for all a« € T'¢ — I'ny, then for any M € Buni/][”(“)(S) and any j, the sheaf
R (prg)«(UW) /UUFD) \y) is trivial.
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Proof. This is [DG15, Proposition 10.4.5(a)]. We take C(G,X) := max;{c;}, where ¢, are the
constants in [DG15, Proposition 10.4.5(a)]. O

LEMMA 4.4.10. Let 0 > A — B — C — 0 be an exact sequence of sheaves of groups on X x S.

(a) If the sheaf of pointed sets R*(prg)«A is trivial, then we have an exact sequence of sheaves
of groups:
0 — R%prg)«A — R%(prg)«B — R%(prg).C — 0.
(b) If moreover the sheaf of pointed sets R (prg).C is also trivial, then the sheaf of pointed sets
RY(prg)«B is trivial.

Proof. By |Gir71, V Proposition 2.3|, the exact sequence 0 > A — B — C' — 0 induces an exact
sequence of sheaves of pointed sets on S:

0— Ro(prs)*A — Ro(prs)*B — Ro(prs)*C’ — Rl(prS)*A — Rl(prs)*B — Rl(prs)*C.
We deduce the lemma. O

Proof of Lemma 4.4.5. For each j, the exact sequence (4.7) induces an exact sequence of group
schemes over X x S:

0— (U0 — (U/UD) \ — (U/TYD) 4 — 0. (4.8)

We apply Lemma 4.4.10 to (4.8) successively for j = 1,57 = 2,..., until j = m + 1. Taking
into account the fact that R'(prg).((UW)/UU+D) ) is trivial (by Proposition 4.4.9) and
RO(prg).(UYW /UG+D) y is additive in the sense of Definition 4.2.3 (because UW) /UU+) 5 G7),
we deduce Lemma 4.4.5. O

(2) Now we add level structure on N x S + I's~g,, to the argument in (1), i.e. we describe

the fiber of Buniﬂf\f(?)d — Bunf%&,“[) 4 in Proposition 4.4.13.

4.4.11 Let V be a group scheme on X x S. For any divisor ip : D — X X S, we denote

by V‘ p the fiber product D ><S V. We denote by V and V‘ p the associated sheaves of groups.
Xx

We define the sheaf of groups Kery,p on X x S as the kernel of the morphism V — (Z'D)*(V}D).
If V' is smooth, the morphism V — (iD)*(V‘D) is surjective.

4.4.12  Let S be an affine scheme over F. Let ((x;)ier, M, ¥ar) be an S-point of Bunf%&,“l) &
Let D := N X S+T's~ gy, Applying 4.4.11 to the group scheme Upq on X xS, we obtain an exact
sequence of sheaves of groups:

0 — Kery,,,p = Unm = (ip)sUn|, — 0. (4.9)

PROPOSITION 4.4.13. There exists a constant C(G, X, N, I,d) € Qxo, such that if (i, o) > C(G,
X,N,1,d) for all o« € T — T'py, then RO(prg).Kery,, p is a unipotent group scheme over S and

the fiber of Buni ]I\f(/;)d — Buni%&,“l) ;4 over S is the classifying stack [S/R°(prg).Keru, . p)-

Proof. We recall that % 4 denotes the fiber of Bunifva(f;? P Bun‘?\%&,’f I) g over S. For any scheme
S’ — S, the groupoid @y 4(S’) classifies the data of (F,3), where F is a Upq-bundle on X x S’
and 3 is an isomorphism of Uy -bundles F ’ D Su M‘ p- By (4.9), this groupoid is equivalent to
the groupoid of Kery,, p-bundles on X x S’

Similarly to the case without level, Proposition 4.4.13 follows from Lemma 4.4.14 below. O
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LEMMA 4.4.14. There exists a constant C(G, X, N, I,d) € Qx¢, such that if (u,a) > C(G, X, N,
1,d) for all « € I'¢ — I"p, then we have the following.

(a) The sheaf of groups R°(prg).Kery,, p is a unipotent group scheme.
(b) The sheaf of pointed sets R (prg).Kery,, p is trivial.

Proof. The proof is the same as Lemma 4.4.5, except that we replace (U (G-1) JU (j)) M by
]Cer(U(jfl)/U(j))ijD, and that we use Lemma 4.4.15 below instead of Proposition 4.4.9. a
LEMMA 4.4.15. There exists a constant C(G,X,N,I,d) € Qo such that for p € Kg;?, if
(p,a) > C(G,X,N,I,d), for all « € T'¢ — 'y, then for any ((z;), M,v) € Buni/}”f]&fl)yd(S) and

any j, the sheaf R'(prg).(UY) /UG (=N x S — s~ gg,)) Is trivial.

Proof. Let C(G,X,N,I,d) := C(G,X) + deg N + |I| - d, where C(G,X) is the constant in
Proposition 4.4.9. We repeat the argument in [DG15, Proposition 10.4.5], except that in [DG15,
Remark 10.3.5] we replace the reductive group G by G' x Gy, and the G-bundle Fg by the

G X Gp-bundle Fz x O(—N x § — s g,.). O

4.5 Proof of Theorem 4.2.4: step 3

4.5.1 Let S be a scheme over F,. Let Hg and Hg be two group schemes over S. Let
f: Hy — Hg be a morphism of group schemes over S. We denote by [S/Hg] the classifying stack
of Hf on S. Similarly for [S/Hg]. Then f induces a morphism of stacks: f : [S/H{] — [S/Hg].
LEMMA 4.5.2. Let f,g: Hg — Hg be two morphisms of connected group schemes. Let [Hg/Hg]
be the quotient stack where Hf acts on Hg by h'-h = f(h')hg(h')~1. Then the following diagram
is Cartesian

[Hs/Hg] [S/H)

l(ﬁg) (4.10)
5/ Hs] 2 [/ Hs) x [/ Hs]

where the morphism [Hg/Hg] — [S/Hg] is induced by Hg — S and Hj 2 Hg.

Proof. The fiber product is [Hg xg Hs/Hg xg Hg|, where Hg acts on Hg Xg Hg by (f,9)
(from the left) and Hg acts on Hg xg Hg by diagonal action (from the right). The morphism
a:[HgxgHg/HgxgHg] — [S/Hg| (respectively 5 : [Hg x g Hg/Hg xs Hg] — [S/Hg]) is given
by Hg xs Hg — S and the second projection Hg x g Hg — Hg (respectively the first projection
HY xg Hg — HY).

The morphism of group schemes over S

Hg xg Hs — Hg x5 Hs, (z,y) — (zy',y) (4.11)

is an isomorphism. Moreover, it is Hg xg Hg-equivariant for the action of Hg xg Hg on the
left-hand side as above and the action of Hg xg Hg on the right-hand side given by (h/,h)
(z,t) = (f(h)zg(h")~1, g(h')th~1). The isomorphism (4.11) induces an isomorphism of quotient

stacks
[Hs xs Hs/Hg x5 Hs] (4—}1) [Hs x5 Hs/Hg x5 Hs] ~ [Hs/Hg], (4.12)
where HY acts on Hg by h' -z = f(k)zg(h’)~!. The morphism [Hg/HY§| — [S/Hg] is the
composition of the inverse of (4.12) and a. O
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LEMMA 4.5.3. Let S be an affine scheme. Let Hi and Hy be two unipotent group schemes over
S. Let ¢ : [S/H1] — [S/Hz| be a morphism of stacks. Then there exists f : Hi — Hy a morphism
of group schemes over S such that ¢ = f.

Proof. Since S is affine and Hj is unipotent, all Ha-torsors on S are trivial. The morphism ¢ is
given by a Ha-torsor # on S which is Hi-equivariant. We trivialize 7 as a Ha-torsor. Then the
action of Hy on 7 gives the morphism f. a

End of the proof of Theorem 4.2.4. Let pu satisfy the hypothesis in Proposition 4.4.13; then
Wna = [S/Hna] (respectively #n = [S/Hy]), where Hygq = RO(plrs)*lCerUj\,l7NX5+pZ .
(respectively Hy := R%(prg).Kery,, nxs) is a unipotent group scheme over S.

By Lemma 4.5.3, the two morphisms b; and by in diagram (4.5) are induced by two morphisms
of group schemes f1, fo : Hy 4 — Hy. By Lemma 4.5.2, £ is isomorphic to [Hy/Hy 4], where
Hy g acts on Hy by I/ - h = fi(R)hf2(R)7L O

4.6 Cohomological statements

DEFINITION 4.6.1. Let dy be the smallest integer in Proposition 2.2.1 such that the action of
Gro0o on Grgrw factors through Grg,,. We have defined the constants C'(G, X, N,W) and
C(G,X,N,I,dw) in Theorems 4.2.1 and 4.2.4 respectively. We take

C(G,X,N,W) := Max{C'(G, X, N, W), C(G,X,N,I,dyw)}.

DEFINITION 4.6.2. Let u € Agf% For any j € Z, we define degree j cohomology sheaves

j, S j =

He J\]fwl(léi)/ = R (o) (FG N W‘Chtsmm sz
.8

7'[3\34 NMI({/LI; R (ply ) (]:MNIW‘Cht/sM(H) /E)~

4.6.3 If (u,a) > 5(G,X, N, W) for all @ € I'¢—T"js, then by Theorem 4.2.1, the morphism
i/ S (m) Chtlp‘?;\”,{(]’f %, — Chtgﬂ%”ﬁw is proper and schematic. Applying the construction in §3 to
the truncation Sys(u), we obtain a constant term morphism (in D%((X~N)!, Qp)):

P,j, S j, S j, S
o ] m(m) H]CJ,]\IXI(,HV‘)/ N Hg\z[’thflf‘/j&. (4.13)

Here is the main result of §4.

PROPOSITION 4.6.4. Let P be a parabolic subgroup of G and M its Levi quotient. For p € Agg,
if (p, o) > é(G, X,N,W) for all « € '¢—TI"py, then for any j, morphism (4.13) is an isomorphism.

Proof. By (3.33), Cg’]{’,SM(“) is the composition of two morphisms:

. = (1) . * (T2
R (pa) (FG N1 w | cppsarin ) — RI (ply )i (! Sm 0y, (37 Sm (1) (FEN1w | apesare )
G,N,I,.W G,N,I,W

2)
= Ry )W(FAfnow ChthM(u>W)~

The morphism (1) is induced by the composition of functors

R (pa)1 — R (pe)i (¢ 5M ), (" M) * ~ RI(pg)y (i S (1)), (37 Sna () y*
= RJ(pM)!(»;T’SM(N))!(Z'/SM(M))*
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defined in (3.32). By Theorem 4.2.1 and Lemma 4.6.5 below applied to ¢/ the morphism
(1) is an isomorphism.
The morphism (2) is induced by the morphism

(W/SM(/L))! (i/SM(M))*}—E,NJ,W — ff\;N,I,W

defined in (3.23), which is a composition of the counit map

Co (F;SM(M))](TF;SM(M))! ~1Id
and some isomorphisms. By Theorem 4.2.4 and Lemma 4.6.6 below applied to W;SM(# ), the
morphism (2) is an isomorphism. O

LEMMA 4.6.5. Let f : & — % be a schematic finite universal homeomorphism of algebraic
stacks; then the unit map Id — f,f* is an isomorphism.

LEMMA 4.6.6. Let f : 2 — % be an unipotent morphism of algebraic stacks (see
Definition 4.2.3); then the counit map fif ' 1d is an isomorphism.

Proof. The proof consists of four steps.

(i) Using proper base change and the fact that f is smooth, we reduce to the case when
% = Speck is a point, and thus 2" = U;/Us is a quotient of unipotent group schemes U; and
Us over k.

Indeed, to prove the lemma, it is enough to prove that for any geometric point i, : y — %/,
the morphism (i,)*fif' — (i,)* is an isomorphism. Form the following Cartesian square.

i)~ 2

lf
iy
)

- S 9d

(4.14)

~

Since f is smooth, we have f' ~ f*[2n](n) and (f)' ~ (f)*[2n](n), where n is the dimension of f.
We deduce that

(i) Fif' = (Phliy)* £ = (Priy)*(£)*12n)(n) 2= () ()" [20](n) = (Pi()'(iy)*,  (4.15)
where A‘ghe~ﬁrst isomorphism is the proper base change [LO08, §12]. Thus it is enough to prove
that (f)1(f)'(iy)* — (iy)* is an isomorphism.

(ii) We denote by BUs the classifying stack of Uy over k. Let fi : Uy/Us — BUjy and fo :

BU,; — Speck be the canonical morphisms. Then f = f5 o fi. We have a commutative diagram
of functors.

fif = (o (f)i(f) (f2) —=1d
l (4.16)

(f2)r(f2)'
Thus it is enough to prove that the counit maps (fi)i(f1)' — Id and (f2)i(f2)' — Id are
isomorphisms.
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(iii) Note that f is a Uj-torsor over BUs. By Definition 4.2.3, we reduce to the case of
Al-torsor. Using (i) again, we reduce to the case when f; is the map A! — Speck, where it is
clear that (f1)i(f1)' — Id is an isomorphism.

(iv) Let g2 : Speck — BUs be the canonical morphism. Then f; o go ~ Id. We have a
commutative diagram of functors.

(f2)1(92)1(g2)' (fo) —=1d
l (4.17)
(fo)i(f2)!

We deduce that to prove that (f2)i(f2)' — Id is an isomorphism, it is enough to prove that
(92)1(g2)" — Id is an isomorphism. Note that go is a Us-torsor over BUs. Just like in (iii), we
prove that (g2)1(g2)' — Id is an isomorphism. m

Remark 4.6.7. In fact, to prove that the morphism (2) in Proposition 4.6.4 is an isomorphism, it

Shr(p)

. . /
is enough to write 7 as the tower

ChESM ) 2% s Gl yre) 5 Ol — - 2% Gty

and prove that for each j, the morphism Co : (7q;)1(mq;)' — Id is an isomorphism. For this, we
only need the statement of Theorem 4.2.4 for each 74 ; (and replace unipotent group scheme by
additive group scheme). The proof of such a statement still uses the three steps, but in step 2
Remark 4.4.6 we only need to consider the case of commutative groups.

5. Finiteness of the cuspidal cohomology

The goal of this section is to prove the following.

THEOREM 5.0.1. The Qy-vector space ng\lisﬁw (defined in Definition 3.5.13) has finite
dimension.

Theorem 5.0.1 will be a direct consequence of the following proposition.

PRrROPOSITION 5.0.2. Let G, X, N,I,W as before. There exists g € KZ;S (depending on G, X,
N, W and j) such that

J, cusp J, Spo J
Hg niw CIm(HG NTw = Ho v rw):

The proof of this proposition is essentially based on Proposition 4.6.4 and an induction
argument on the semisimple rank of the group G. We will present our strategy in §5.1 and give
the proof in §§5.2-5.4.

Notation 5.0.3. In the remaining part of this section, to simplify the notations, we will omit the
indices N, I, W.
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5.1 Strategy of the proof
5.1.1 We denote by RGad the coroot lattlce of G*. We have RGad C AGad Let Rf,, :=

Gdd
AJGrad N Rgaa. For any r € N, we have (1/ 7") Gaa C AZS and
: J, <p_ ; 7, <
h_r>n Hg h_r>n Hg ™"
uEAGad pe(l/r)RT, Gad

Let ¢: A@ w/Za C A2, be the inclusion. We fix 7 such that Upce topry (Agad) C (1/7“)}A%gad,

Gad
where pri : AQad — AZ /7 is defined in (1.18).
5.1.2 For any a € ', we denote by & € fG the corresponding coroot, and vice versa. Let
P, be the maximal parabolic subgroup with Levi quotient M, such that I'¢ — 'y, = {a}.
In this section, for p € AES, we will write p — (1/r)c instead of u — (1/r)Y (&), where

Yo AQ — AGad is defined in 1.15.

5.1.3 We have defined the inductive limits Hj in Definition 2.5.5 and H’j in
Definition 3.4.9. For any A € (1/1“) let Z) : HJ’@‘ — H] be the morphism to the 1nduct1ve

CPa J
i G 1]
Hy —— Hy; . where

Gad>

] T
limit. Let Hj’g)‘ H;é be the composition of morphisms Hj’g)‘ A

the second morphlsm is defined in Definition 3.5.10.

5.1.4 Since for every c € HG, there exists A € R, large enough such that ¢ € Im(Hé RN

Gad
Hé), Proposition 5.0.2 will be a direct consequence of part (b) in the following proposition.

PROPOSITION 5.1.5. Let G be a connected split reductive group. There exists a constant
9, € Q?° (depending on G, X, N, W, j), such that the following properties hold.

(a) Let u € (1/r)]§gad such that {(u,~y) > C% for all v € I'. Then for any o € I'¢; such that
- (1/ma e (1/7“)}A?zgad (which is automatic if C%, > 2/r), the morphism

Ker(Hé‘Yig”*(l/r)d — Hjl\ja) — Ker(Hg;’g" — H;Vf,a)
is surjective.

(b) There exists g € (1/7‘)1/%2;14 (depending on C2), such that for any \ € (1/7")?22&(1 satisfying
A= po and (N, ) = CY for all v € T, the morphism

Ker(Hégl‘0 — H H]/\f[) — Ker(HélQ‘ — H HM)
PCG PCG
is surjective.
(c) There exists a constant Cg > C%, such that for any \ € (1/r) Gaa satistying (A,7y) = Cg
for all v € I'q, the morphism T : Hé& AN Hg; is injective.

5.1.6  The proof of Proposition 5.1.5 uses an induction argument on the semisimple rank
of the group G: first we prove the statements (a), (b) and (c) for every Levi subgroup of G of
rank 0. Second we prove the key step: for n > 1, if (¢) is true for all Levi subgroups of rank n — 1,
then (a) is true for all Levi subgroups of rank n. Then we deduce easily (a) = (b) and (b) = (c)
for all Levi subgroups of rank n.
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5.1.7 As in 4.4.1, we fix a maximal torus T' C B and view the Levi quotient M of a
(standard) parabolic P as a subgroup M C P.

Recall that we have fixed 2 = Eg C Zg(A) in 0.0.4. Applying 0.0.4 to each Levi subgroup M
of G, we fix Zj; C Zp(A). Moreover, we choose Zj; for different Levi subgroups in a compatible
way: if My is a Levi subgroup of M, then we have E¢ C Ep, C Epg, C T(A).

5.2 Beginning of the induction: semisimple rank 0
5.2.1 The only Levi subgroup of semisimple rank 0 is the maximal torus 7. Then 729 is

trivial and K;ad = KTad has only one element: 0.
~The algebraic stack Chty /E7 is of finite type. There is only one term in the inductive limit
HZ,, which is of finite dimension.
There is no constant term morphism for 7. So we have H% s — ng

LEMMA 5.2.2. Take C% = C7 = 0 and pg = 0. Proposition 5.1.5 is true for T.
T H

5.3 From semisimple rank n — 1 to n

LEMMA 5.3.1. Let G be a connected split reductive group of semisimple rank n. Suppose that
Proposition 5.1.5(c) is true for every Levi quotient M of G of semisimple rank n — 1, with a
constant Cyy. We take

CL := Max{{Cys | M Levi quotient of semisimple rank n — 1 of G}, C(G,X,N,W)},

where é(G, X,N,W) is the constant defined in Definition 4.6.1. Then for this constant C’g
Proposition 5.1.5(a) is true for G.

We need some preparations before the proof of Lemma 5.3.1.

5.3.2 Let p € (l/r)}?igad such that (u,7) > C% for all v € T'. Let o € T'; such that
p—(1/r)a e (1/r)§gad. Let P := P, and M := M, as in 5.1.2. Note that I'¢ — I'5ys = {a}.

LEMMA 5.3.3. Let S1 = {\ € (1/r)Rf,.a|A < i~ (1/r)a} and Sz = {\ € (1/r) R0\ < ). Then
1 H+
Sy — 51 =Spu(p)N ;RG“C‘ ) (5.1)
where Sys() is defined in Definition 4.1.1.

Proof. For any A € Sy, we have y — A\ = ZW

1 co 1 c
——a|=-A=[——-—-)a g 25, € Z>o. 9.2

yelq, y#a

e, (¢y/7)7 for some ¢y € Zzo. Thus

If moreover A ¢ Sy, then in (5.2), there should be at least one coefficient strictly negative. So we
must have ¢, —1 < 0. Since ¢, € Z>0, we must have ¢, = 0. We deduce that

C C.
p-d= Y D= Y 9y ez
yelq, 3#a 5l n

By Definition 4.1.1, we have A € Sy (). O
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LEMMA 5.3.4. Let p and M as in 5.3.2. Suppose that Proposition 5.1.5(c) is true for M. Then
for any j € Z, the morphism HYyy S H)} is injective.

The point of the proof of this lemma is to replace the quotient by Z5; in (5.3) by the quotient
by E¢ in (5.5).

Proof. By Proposition 5.1.5(c) for M, for any \ € (1/7")]:?;12%1 satisfying (\,y) > Cjps for all
~v € 'y, the morphism

. Mad)\ — . —
Hg(cm; o Eu, Fur) = HI(Chty, o7 /Ear, Far) (5.3)

is injective, where everything is defined as in §2.5 by replacing G by M.
We can assume that Zj; in 5.1.7 is small enough (containing Z¢). Then for any v € Ay,
(defined in 1.5.7), the composition of morphisms

Cht]VV[ /EG — ChtM /EG — ChtM /EM (5.4)

is an open and closed immersion.

(For the following discussion, see [Xuel7, Illustration 7.4.4] for an example for G = GL3.) Let
v < prid(u). We use a special case of 1.5.17. By 1.5.13, we have pral oY (@) > 0. Let cq € Q=0
such that pras(u) — co pritoY (@) = v. Let i, := p— cqdv. For any A € (l/r)ﬁgad, the condition
A< and priFi(A) = v is equivalent to A <My, We deduce that Chty/"” = Chty, "

Let U : M — M2 If yi1 < po, then [ éMMZ,, and W(u1,,) éMad\li(Mgﬂj). For all v € 'y,
since (&, ) < 0, we have (u,,7) > (u,7). By hypothesis (u,v) = C& = Cur, so (u,7) = Car.
Then the injectivity of (5.3) with A = ¥(gu, ) implies that the morphism

HI(Cht 7 /2, Far) — HI(Chey o /26, Fur) (5.5)

is injective. Note that we have defined HY, 5" = Hg(Chtf\/[“# /Z¢, Fu) in Definition 2.6.6 and
. . ?/r]
Hy = H] (Cht;/[m—l /Z¢, Far) in Definition 2.6.9.

P(On
Moreover, since Chty; = Chty; x G(Oy) is a disjoint union of copies of Chty;, we deduce

that the morphism Hf\fl SV H)»" is also injective, where H]/\f[ SV s defined in Definition 3.4.7
and Hjl\f[’y is defined in Definition 3.4.10.

Note that by Lemma 1.5.14, for v ¢ Ay or v £ prs!(u), the cohomology group Hg\j SV — ),
By Remark 3.5.11, we have a commutative diagram,

. 15, <p f 14, v
lim, Hyp II i
e
g h
13, <p _ 1§, <p,v
Hyps =[] Hy
NZ
VGAZM/ZG

where f is (3.41) and h is induced component by component by H;é" SV Hg\f; Y. By the above
discussion, h is injective. We deduce that the morphism g is injective. |
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Proof of Lemma 5.5.1. The proof consists of four steps.
(1) Let S; and Sy as in Lemma 5.3.3. We define Ch‘cg2 and Chtg1 as in A.0.2 (taking

into account A.0.1). We deduce from Lemma 5.3.3 that Chth—Chtg1 = Chth(“) and

Cht!52 — Cht/,5t = Cht/;7¥ W),
We deduce from 1.4.10 that

_ ~ 1~
BunZt £ 0 = Ya()) € U Lo pr'j‘;d(AJGrad) C ;Rgad,
pPca

where the last inclusion follows from the choice of 7 in 5.1.1. We deduce that Chtz* = @ if
A ¢ (1/r)Rf,,. Thus Cht2? = Chts, Chtgl = ChtS” /7% Cht}$? = Cht5" and Cht)3' =
r<p—(1/r)a
Cht M“ e
Applying Lemma A.0.8 to S; and S3, we obtain a commutative diagram of cohomology
groups, where the upper and lower lines are part of the long exact sequences in (A.2).

Hg <p—(1/r)a Hg Sp Hé: S (1)

P, j, <p—(1/r)& P,j, < P, 5, Spr(n)
lCG] pn—(1/7) lCGJ I3 lCGﬂ M (k (5_6)

14, <p—(1/r)é 14, <p 13,5 (p)
HM 4>HM 4>HM

Note that if Cht2* ") = @, then the proof is finished.

2) By the hypothesis of Lemma 5.3.1, (1, o) > C% > C(G, X, N,W). By Proposition 4.6.4,
(2) By y p e y

for any j, the morphism C}GD’j’ Sar(w) Hél Suw) _, H;\f[" St ()

(3) We deduce from (3.38) a commutative diagram.

is an isomorphism.

j<p _ZLa j
Hg ~ H,

ot @i lcg,j (5.7)
I SH I HI
M = My

By Lemma 5.3.4, the morphism Zj; in (5.7) is injective.

(4) Let a € Ker(Héigu — H]/\f[) By the commutativity of (5.7), Zys o C'IGJ’j’ SH(a) = C’g’j o
Za(a) = 0. By step (3), Zys is injective. So Cg’j’ SH(a) = 0.

By the commutativity of (5.6) and the isomorphism in step (2), we deduce that the image of
a in Héi S s zero. So there exists o/ € Hélguf(l/r)d whose image in Hgf“ is a. O

Remark 5.3.5. In fact, we have

. . - ad . - .
I — ( I = @,V) & B SPPE ) g <im0 g g S,

v<pril(p)

Thus the bottom line of (5.6) was canonically split.

LEMMA 5.3.6. If the property (a) of Proposition 5.1.5 is true for G, then the property (b) of
Proposition 5.1.5 is true for G.
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Proof. Let V(C2) be the set of p1 € (1/r)]§gad such that (u,v) > C for all v € T'. Let Q(C2)
be the set of u € V(C%) such that ,u (1/r)a ¢ V(CR) for all & € T¢. The set Q(C2) is bounded,
and thus is finite. Let pg € (1/7)R}, ma Such that pig > p for all p € Q(CO)

For any A € V(C2), there exists a (zigzag) chain A = A0 > A1) > ... > Am=1) 5 A(m)
(1/7") Gad for some m € Zzg such that:

(i) for any j, we have \U) € V(C2);
(i) for any j, we have A — AU+ = (1/r)c for some simple coroot & € T'e;
(i) AU € Q(CY).

(Indeed, A(©) satisfies (i). Suppose that we have already constructed a chain until AU) which
satisfies () and (ii). If \Y) satisfies (iii), we are done. If not, then there exists some & € I'¢ such
that AU — (1/r)a € V(C%). We define A1) := AU — (1/r)é& and continue the process.)

Applylng successively the property (a) of Proposition 5.1.5 to AO XD until A0 we
deduce that the morphism

Ker(Hé’g’\(m) — H H]/\f[> — Ker<Héi<>‘ — H H}j)

PCG PCG

. . . . . . i (m) i
is surjective. Assume in addition that A > pug; then the morphism Hé AT Hé SA factors

through H. ]G SHO We deduce the lemma. 0

5.4 Injectivity
LEMMA 5.4.1. If the property (b) of Proposition 5.1.5 is true for G, then the property (c) of
Proposition 5.1.5 is true for G.

We need some preparations before the proof of Lemma 5.4.1.

5.4.2 For p € (1/7") Gaas let Iy, HJ’<” — HJ be the morphism to the inductive limit as
in 5.1.3. For \ € (1/r)§Gad such that X\ > u, we denote by Iﬁ‘ : Héf“ — Hé\ the morphism
defined in 2.5.2. We have Ker(Z}) C Ker(Z,) C HES!

For Ay > A1 > p, we have Ker(Iﬁ‘l) C Ker(ZﬁQ).

LEMMA 5.4.3. Let pu € (1/7“)§gad. There exists pf € R, such that p* > p and Ker(l’ﬁﬁ) =
Ker(Z,).

Proof. We have the filtered system {Ker(ZA) | X e (1/r)R, Gaas A = p} in Ker(Z,) and Ker(Z,) =
lim | Ker(Ili‘) Since Ker(Z,) is of finite dimension, the result is clear. O

CONSTRUCTION 5.4.4. Let pgo be the one in the property (b) of Proposition 5.1.5. Choose ,u(ﬂ) S

(1/r)R, Gaa Which satisfies Lemma 5.4.3 for pg. Let Co = max{Cg, maxwepc{(uo, 7}}

Proof of Lemma 5.4.1. Let \ € (1/r)]§gad such that (\,7) > Cg for all v € T'g. By

Construction 5.4.4, (A — ,ug,’y> = (A7) — (ug,’y) > Cq — <,ug,’y> > 0 for all v € T'g. Thus

,u(ﬁ) < A. Consider the morphisms

. . # . .
Js <po J> SHg Jy <A J
H, — H, — HzZ™" — Hp,.
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We have Ker(Iﬁgj) C Ker(Zﬁ‘O) C Ker(Z,,). By Lemma 5.4.3, Ker(Iﬁg)) = Ker(Z,,), and hence
Ker(Iﬁ‘o) = Ker(Z,,).

For any element b € Ker(Hég’\ — HJG), we have b € Ker(H@g’\ =3l H;\f[) By the property
(b) of Proposition 5.1.5, b is the image of an element by € Ker(HégMO — HHJ/\j) We have
by € Ker(Z,,) = Ker(ZﬁO), so its image b in Héf’\ is zero. This implies that the morphism
Hég)‘ — Hé is injective. O

6. Rational Hecke-finite cohomology

In this section, we will define a subspace Hé gf}rf}[t, of H é ~.r.w and prove the following.

PROPOSITION 6.0.1. The two Qg-vector subspaces Hg y\l,ls]pw and H@ gf}r;t/ ofHé N I are equal.

In §6.1 we give some preparations. In §6.2 we show that the constant term morphisms
commute with the action of the Hecke algebra. Using this, in §6.3 we prove Proposition 6.0.1.
In §6, all the stacks are restricted to n!.

6.1 Compatibility of constant term morphisms and level change
6.1.1 Let K be a compact open subgroup of G(Q). Let N be a level such that Ky C K.
We define

ChtG,K,I,W = ChtG’N’[’W /(K/KN)
It is independent of the choice of V.

Let d € N be large enough as in Proposition 2.2.1; we define Fg g 1w to be the inverse
image of Sé’I’W by €xq : Chtg xrw — [Grd\Grgrw]. Just as in Remark 2.4.6, Fg g 1w

is independent of d. Similarly we define ]:EKI w over Chtg 1w /2. We define HéKI W=

: J p = T=
h_r>nuHC(ChtG,K,],W ‘-‘"FG,K,I,W)'

6.1.2 Let K’ C K be two compact open subgroups of G(0). The inclusion K'/Ky <
K/Kp induces a morphism prIG(, x - Chtg g7 1w — Chtg k1 w. Note that all the stacks are

restricted to /. Morphism pr% s finite étale of degree the cardinality of K/K’. The following
diagram is commutative.

pr?{’,}(
Chtg k1w Chta k1w

€ A]e{d

d
[Gr.d\Gra, 1w

Note that (pr?(/7K)* = (pl"?(/7K)[ and

(pr?(/,K)*fG,K,I,W = (prIG(’,K)*(EKd)*Sg,I,W = (EK’,d)*Sg,I,W =FG. k' 1,W-

The adjunction morphism adj(pr%, ) : Id — (pr%, )« (pr% ;)* induces an (injective) morphism
of cohomology groups, which we still denote by

(G .17 J
adj(pry: ) HE grw = HG,K’,I,W'
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Note that (pr%, ;)" = (pr% ;)*. The counit morphism (in this case equal to the trace map)

Co(pr% x) (pr%K)!(pr% K)! — Id induces a (surjective) morphism of cohomology groups,
which we still denote by
o . .
Co(pr g ) : HJG’K“LW — HJG,K,LW.
6.1.3 Let v be a place in X. Let N = NV 4+ nv. Taking projective limit over n, we define
LiLn ChtG,N“+m),I,W~
n
Let g € G(F,). The right action of g (by left multiplication by g~!) induces an isomorphism
LiI_nChtG,N”—i-nv,LW s kiLnChtG7N“+nv,I,W (g - Tg7 wvj 1/}7)) = (g, — Tg/’ wv’ waj)
n n

where 9" (respectively 1),) is the level structure outside v (respectively on v). The G-bundle G’ is
defined by gluing G‘F and Q’Xiv by G|F Y ER G‘F <« Q‘F _,+ We have Y =g Lo,

Let

Chtg o, 1w = %ﬂ Chtg,n,1,w-

Similarly, Chtg oo r,w is equipped with an action of G(A).
6.1.4 Let P be a parabolic subgroup of G and M its Levi quotient. We define

Chtp oo 1w = L%l Chtpn,1,w-

Just as in 6.1.3, Cht p oo 1w is equipped with an action of P(A). For any compact open subgroup
K c G(0), we define

P(0)
Cht/P,K,I,W = ChtP,oo,I,W X G(@)/K (61)
We have a morphism
P(0)
Chtpeo,r,w x G(0) = Chtg oo, 1w (6.2)

by sending ((P,yp) = ("P,"¢p),g € G(0)) to ((G,97! o ¥a) = ("G,97" o "¢)), where
P P
G =P x G and Yg = ¢p x G. It induces a morphism

P(0)
Chtppo’LW X G(@) — Chtp,[’W X ChtG,oo,I,W- (6.3)
htg, 1w
This is a G(0)-equivariant morphism of G(0)-torsors over Chtp sy, where G(O) acts on the
left-hand side of (6.3) by right action (right multiplication) on G(Q) and acts on the right-hand
side of (6.3) by the right action on Chtg oo rw defined in 6.1.3. Thus (6.3) is an isomorphism.

We have ©
P ~
ChtP,oo,I,W X G(@)/K — Chth,W X ChtG’,oo,I,W/K7
Chtg,1,w
i.e.
Cht}’,K,I,W = ChtPJ,W X ChtG,K,I,W- (64)
hta,r,w

When K = Ky for some level N, we have Chtpn ;w = Chtpoo 1w /Kpn, where Kp y :=
Ky N P(0). We deduce that Cht'p gy defined in (6.1) coincides with Cht’p y 7y, defined in
Definition 3.4.2.
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6.1.5 We define

Chtas,0,1,w = LiNgl(JhtM,N,I,W.
Just as in 6.1.3, Chtas,o,r,w is equipped with an action of M(A). Recall that for any level N, in
P(On)
Definition 3.4.2, we defined Cht?\/l,N,I,W = Chty 1w X G(On). Let Ky n == KnNU(QO) and
Ku,n = Kpn/Ky,n. Taking into account that Chtas n 1w = Chtaseo,r,w /K, we deduce

: P(0)/Ku,x
Chty n 1w = Chtareorw % G(O)/Kn. (6.5)

When we consider the action of the Hecke algebras in 6.2.4 in the next section, we will need
some functoriality on K. For this reason, we rewrite (6.5) in the following way. Note that Ky
is normal in G(Q). The stabilizer of any P(Q)-orbit in G(0)/Ky is Kpn. We deduce from (6.5)

that
Cht)y, nrw = |_| Cht 00, r,w /(KpN/Ku,N)
P(0)-orbits in G(0)/Kn
= |_| ChtM,oo,I,W /(KP,N/KU,N)- (6.6)

P(A)-orbits in G(A)/K N

The second equation is because that P(0)\G(0) = P(A)\G(A), and that in each P(A)-orbit in
G(A)/Ky, we can choose a representative in G(0)/Kx.

In the following, we want to generalize (6.6) for any compact open subgroup K C G(O)
(which may not be normal in G(0)).

6.1.6 Let D be the category of discrete sets S equipped with a continuous action of P(A)
with finitely many orbits such that the stabilizer of any point is conjugated to some open
subgroup of finite index in P(Q). In particular, for any compact open subgroup K C G(0), the set
S =G(A)/K is an object in D.

For any S € D, we define functorially the cohomology group H}, ¢ ; y in the following way.

When S has only one orbit, choose a point s € S, and let H be the stabilizer of s. Then
H is a subgroup of P(A) conjugated to some open subgroup of finite index in P(Q). We have
S = P(A)/H. Let R be a subgroup of finite index in H N U(A) and normal in H. By 6.1.5,
Cht a0, r,w is equipped with an action of M(A), thus an action of P(A) by the projection
P(A) — M(A). Note that R C U(A) acts trivially on Chtas oo 1,w. We define a Deligne-Mumford
stack

ChtMyooJ,W /(H/R)

We define the cohomology group H); ¢ ;s as in Definition 2.6.8 for Chtaseo,r,w /(H/R)
(instead of Chtas n 7.w). Concretely, we have a morphism Chtas oo 7w /(H/R)E — Chtarrw /Z,
where Chtyy 1w is the stack of M-shtukas without level structure. Let ]-"%47007 ow be the inverse
image of ]:J%/L rw- We define

] : j <Hs = TE
Hy spiw = @HHg(ChtJ\ffoz,I,W (H/R)E, Fafoo,1,w)-
H v

Let R; C Rs be two subgroups of finite index in H NU(A) and normal in H. The projection
H/Ry - H/Rs induces a morphism

qRi,Rs : ChtM’oo’[’W /(H/Rl) — ChtMpngw /(H/Rg)

1133

https://doi.org/10.1112/50010437X20007058 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007058

C. XUE

It is a gerbe for the finite g-group Ry/R;. The counit morphism (which is equal to the trace map
because qg, g, is smooth of dimension 0) Co(qg, r,) : (4R, R, )1(qR,.R,) — Id is an isomorphism.
Indeed, just as in the proof (i) of Lemma 4.6.6, by proper base change and the fact that qg, g, is
smooth, we reduce to the case of Lemma 6.1.7 below with I' = Ry /Ry. The morphism Co(qr, r,)
induces an isomorphism of cohomology groups

! ~ !
Hyrsryiw = Huysporw- (6.7)

We define Hj; g7y to be any Hjy g g1y, where we identify Hy, o g rw and Hy g g, ry by
(6.7).

Recall that S has only one orbit. HMS’ Lw s independent of the choice of the point s
in S. In fact, let s1,s2 be two points of S, and let H; (respectively Hs) be the stabilizer
of s1 (respectively s2); then Hy = p~!Hjp for some p € P(A). The action of p induces an
isomorphism Cht s oo 1w /(H1/R) = Chtar o rw /(p~ Hip/p~ ! Rp). We deduce an isomorphism
of cohomology groups by the adjunction morphism.

In general, S = | ], 4 « is a finite union of orbits, and we define

/ L /
Hysrw = @ Hiyp o 1w
acA

When S = G(A)/K for some compact open subgroup K in G(Q), we write
HJ/\/I,K,I,W = HMS,I,W- (6.8)

LEMMA 6.1.7. Let I' be a finite group over an algebraically closed field k over F,. We denote by
BT the classifying stack of I over k. Let q : BI' — Speck be the structure morphism. Then the
counit morphism (equal to the trace map) Co(q) : qiq' — Id of functors on D.(Speck,Qy) is an
isomorphism.

Proof. The counit morphism Co(q) is the dual of the adjunction morphism adj(q) : Id — q.q*. For
any F € D.(Speck, Qy), q*F is a complex F of I'-modules with trivial action of I'. Since H7 (BT,
q*F) = HI(T, F) (group cohomology), we have H(BT,q*F) = F' = I and HI(BT,q*F) =0
for j > 0. So adj(q) is an isomorphism. By duality, we deduce the lemma. |

6.1.8 Let S € D. We define

/ P(A)
ChtP7S,I7W = ChtP,OOJ,W x S. (69)

For each orbit « in S, choose a representative, and let H® be the stabilizer (well defined up to
conjugation). Then

Cht'p 51w = | Chtp oo rw /H®.
ae{P(A)-orbits in S}

For each «, let R* be a subgroup of finite index in H* N U(A) and normal in H®. Let
R= (Ra)aE{P(A)—orbits in S}- We define

Chty s rrw = | | Cht s oorw /(HY/RY). (6.10)
ac{P(A)-orbits in S}

1134

https://doi.org/10.1112/50010437X20007058 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X20007058

CUSPIDAL COHOMOLOGY OF STACKS OF SHTUKAS

For each «, we have morphisms of prestacks
Chtpoo,rw /H* = Chtas o rw /H* = Chtaroo 1w /(HY/RY), (6.11)

where the first and third prestacks are Deligne-Mumford stacks, while the second is only a
prestack. Taking union over all the orbits, we deduce from (6.11) a morphism

7TS’R . Cht/P,S,I,W — Cht{]W,S,R,I,W' (612)

In particular, when S = G(A)/Ky, the stack Cht's ¢ 7y coincides with Cht'p  ; 7. For every
orbit o, we can choose a representative in G(0)/Ky (so that H* = Kp ) and choose R* = Ky N.
Then Cht)y g g ;w coincides with Cht)y ;. Hys g g coincides with Hy, y ;yyp defined in
Definition 3.4.9, and (6.12) coincides with 7" defined in (3.26).

6.1.9 For any compact open subgroup K C G(0), let S = G(A)/K. Note that in this case
we have Cht'p g 1y = Chtlp g 7 1y For any R as in 6.1.8, we have the following morphisms.

- Ch“f’ww;
% ’
Chtg, k1w pe Chty 5. r.r.w (6.13)
K
-7 p
771 M

Just as in Proposition 3.5.3 and Remark 3.5.4, the morphism ig is schematic and proper. Apply
the construction in §3 to (6.13). Similarly to (3.9), we have

Chtp 5 1w

XS R,d TSR
\

——
Chtys s prw ——= Chthyy s p 1w (6.14)

Td
€M,d €EM,d

[Pr,a\Grp,rw] — [Ma\Gra,rw]
Td

where 7g g g is smooth. Let Fg be the canonical Satake sheaf on Chtg i rw and Fys be the
canonical Satake sheaf on Cht); ¢z 7y, We construct a morphism céK s (s r) (i) Fa —
Fr similar to (3.22) and (3.23). Namely, cg, x 1s the composition of some isomorphisms and
the counit morphism (7TS7R7d)!(7TS,R7d)! — Id. Note that since 7g g4 is smooth, the composition
(ms,r,a)(7s,r.d)*[2m](m) = (mg)i(mg)' — Id is the trace map in [SGA4, XVIII 2], where m is the
dimension of mg g 4.

Similar to (3.33), we have a composition of morphisms of functors in D2(n?, Qy):

adj(z ck
(pe)Fe U (0ein ) (i) Fa = (par) (rsr)(ix) Fo -5 (parhFas.
We define

Hp 1w = Hpg 1w = (pp)(ix)" Fa.
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adj(i
The morphism (pg)1Fa M) (pe)i(ik)«(ix)*Fe induces a morphism

H]G,K,I,W d HJ/P,S,I,W' (6.15)

The morphism (par)i(7s,r)i(ix)* Fa RGLY (par)1Far induces a morphism
Hps,rw = Hyj g prw- (6.16)

We define the constant term morphism to be the composition of (6.15) and (6.16)

Py g 13
Cosr Hoxiw = Hyspriw: (6.17)

For R; C Ry as in 6.1.6, the following diagram is commutative

P
H] G,S,Ry H/j
G, K,I,W M,S,Rq,I,W
> :l(m) (6.18)
5]
C&s, Ry .
1)
Hy s roaw

because Cg:é Ry C’g”é, R, and (6.7) are defined by counit morphisms (which in these cases are
equal to trace maps), and by [SGA4, XVIII Théoréme 2.9], the trace morphism is compatible
with composition. '

In 6.1.6 we defined H]/\Z/,K,I,W' We deduce from (6.18) a morphism

P.j . 77 1j
CG,K CHe rw = Hypgrws (6.19)

. . e J 13 13
which is the composition HGKJ’W — HRKJ’W — HM,K,I,W'

6.1.10 Let S1,S52 € Dand f:S; — So be amorphism in D. Note that f is P(A)-equivariant
and it sends orbit to orbit. For each P(A)-orbit 8 in Sy, choose a representative s° € 8 with
stabilizer H?. If f~1() is empty, take any R” subgroup of finite index in H2’B NU(A) and normal
in HQB If f71(B) is non-empty, for every P(A)-orbit a € f~!(3), choose a representative s € «
such that f(s®) = s®. Let H{ be the stabilizer of s*. Then H{ C H§. Let R® be a subgroup of
finite index in (e p-1(5) HY') NU(A) C HZB NU(A) and normal in HQﬁ

The morphism H{/R? — Hg /RP for B = f(a) induces a morphism

an’ : Chtaroorw /(HY/R) — Chtyr oo rw /(HS /RP). (6.20)

Let R = ((Rﬁ)ﬁe{P(A)_orbits in Sp}). Similarly to (6.10), we define Cht’MSl,RJ’W and
Cht)y s, r.rw- Then (6.20) for every orbit a induces a morphism

ay’ : Chthy s, rrw — Chthr s, prw- (6.21)

Similarly to 6.1.2, the adjunction morphism Id — (qy )*(q}w )* induces a morphism

adj(a}’) : Hyp s, 1w = Hirs, 1w (6.22)

The counit morphism (q?/[ )g(q?/[ ) = Id induces a morphism

Co(a}") : Hyrs,.1.w = Hipsy 1w (6.23)
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In the following, we will apply the functoriality to the cases:

- K'CK,S =G(A)/K', Sy = G(A)/K and f is the projection G(A)/K" — G(A)/K;
- S = GA)/K, S = G(@)/g_lkg and f is the isomorphism induced by the right
multiplication by ¢g: G(A)/K = G(A)/g 'Kg.

Remark 6.1.11. In 6.1.10, we can also first define morphisms of cohomology groups for each orbit
a: the adjunction morphism Id — (qM).(gM)* induces a morphism

adj(qn’) : Hjlw,f(a),I,W — Hio 1w (6.24)

where the orbit a (respectively f(«)) is considered as subset of S; (respectively S2). The counit
morphism (q);(¢)" — Id induces a morphism

Co(q%) : wa,a,I,W d HM,f(a),I,W- (6.25)

Then taking sum over all the orbits, we obtain (6.22) and (6.23).
Similarly, in 6.1.12 below, we can first prove the statement for cohomology groups orbit by
orbit, and then take the sum over all the orbits. But the notations would be more complicated.

6.1.12 Any 51,52 € D and f : 51 — S morphism in D induce a morphism

P
qy : Chtpg, w = Chtpg, 1y

*

The adjunction morphism Id — (qjlf )*(qjlf )* induces a morphism

adj(a}) : Hps, rw = Hps, 1w
The counit morphism (q}D )1(qJ]f ) = Id induces a morphism
Co(a}) : Hpg, 1w = Hp.gy 1w

For each orbit a in S} with 8 = f(a), let HY, Hg and R? as in 6.1.10. We have a Cartesian

square.
o 9% 8
Chtpoo,rw /Hi Chtpoo,rw/Hy
(6.11)l \L(&ll) (6.26)
a5/
Cht g o, 1w/ (H/ BY) Chtar oo, 1w/ (Hy | BY)
Taking union over all the orbits, with the notations in 6.1.8 and 6.1.10, we deduce a Cartesian
square.
/ qlf:’ /
Chtp g, yw ————Chtpg, 1w
”5173i iﬂ-SQ,R (6.27)
?4
Chtys s, rrw —— Chtlyy s, r 1w
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Diagram (6.27) induces a commutative diagram of cohomology groups

adj(q})

H;D,SQ,I,W H%,Sl,I,W
(6.16)l i(GlG) (6.28)
adj(q}’)

! /
Hy g, 1w —————=Hyg 1w

because (6.27) is Cartesian, (6.16) is given by a counit morphism (equal to the trace morphism),
and by [SGA4, XVIII Théoréme 2.9|, the trace morphism commutes with base change.
Diagram (6.27) induces a commutative diagram of cohomology groups

Co(q})

Hpg, 1w
i(6.16) (6.29)

/
HP,Sl,I,W

(6.16)i
, Co(a")
Hysiow — = Hy s 1w

because by [SGA4, XVIII Théoréme 2.9]|, the trace morphism is compatible with composition.

Remark 6.1.13. When S; = G(A)/Ky, and S2 = G(A)/Ky, with N7 D Nz, we have the
projection f : G(A)/Ky, - G(A)/Kn,. We have Cht'y; n, 1y = Chtyr o g, 1w with RY = Ky, n,
for each P(A)-orbit o in Sy and Cht)y, n, rw = Chty g, g, rw with RS = Ky, for each
P(A)-orbit 5 in Sy. Note that R # Rg (a), and thus the commutative diagram

/ /
Chtp ny rw ——— Chtpy, 1w

W’l lw’ (630)
Cht)y ny, rw — Cht)y n, 1w
does NOT coincide with diagram (6.27). In particular, diagram (6.30) is not Cartesian (the

morphism from Cht’p , - to the fiber product is finite étale of degree #(Ky,n,/Kuy,n,) which
is a power of q).

6.1.14 Let K' C K be two compact open subgroups of G(Q). Applying 6.1.10 to
S1 = G(A)/K', Sy = G(A)/K and the projection f: G(A)/K'" — G(A)/K, we deduce a finite
étale morphism (denoted by qﬁ\/[ in 6.1.10)
ri¢r g« Cht] — Cht
Prg/ i M,S1,R,I,W M,S2,R,I,W>

*

where R is defined in 6.1.10. The adjunction morphism adj(pr%,vK) :Id — (pr%vK)*(pr]\K/[, i)
induces

(e M .l 1
adj(pry: ) Hypwrw = HM,K,7[7W.

The counit morphism Co(pry, ) : (prd,  )i(prd )" — Id induces

M . 17'J 1
Co(pI"K/,K) : HM,K/,I,W - HM,K,I,W'
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LEMMA 6.1.15. For K' C K as in 6.1.14, the following diagram of cohomology groups commutes.

adi(prd, o)

J J
He k1w He 1w
P, j P, j . ].
cgj(l l%,i« (6.31)
; M
i adj(pryes ) Hi
M,K,IW M,K'.I,W

Proof. (1) By (6.4), we have a Cartesian square.

prIG(’,K
Chtg,k,,w < Chtg k1w

iKT TiK/ (6.32)

/ /
Chtp e rw =% Chtp 1w
KK

Since adjunction morphism is compatible with composition, we deduce that the following diagram
is commutative.
adj(pry, )

J J
Hg k1w Hg griw
adj(iK)l \Ladj(i;(/)
: P
" adj(pryg, ) i
P,K,I,W P,K',.I,W

(2) Applying 6.1.12 to S} = G(A)/K', So = G(A)/K and the projection f : G(A)/K' —
G(A)/K, we deduce from (6.28) that the following diagram is commutative.

adj (pril ,K)

1j 1j
Hp g 1w PK'.I,W
(6.16)i l(6'16)
: M
H/j adJ(er/’K) H/J
M,K,1,W M,K',1,W O

LEMMA 6.1.16. For K' C K as in 6.1.14, the following diagram of cohomology groups commutes.

. Co(prg, K) .
j ’ ]
HG,K’,I,W HG,K,LW
L] |t
, Co(pryls 1) ,
1] KK 1]
Hyp wrrw Hy grw
Proof. (1) By [SGA4, XVIII Théoréme 2.9|, the trace morphism commutes with base change.
Since (6.32) is Cartesian, we deduce that the following diagram is commutative.
. Co(pr}G(, K) .
J ’ ]
HG,K’,I,W HG,K,I,W
adj(iK/)l iadj(i[()
. CO(prP, ) .
1] KK 1]
Hp ko1 w HEp k1w
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(2) Applying 6.1.12 to S; = G(A)/K', So = G(A)/K and the projection f : G(A)/K' —
G(A)/K, we deduce from (6.29) that the following diagram is commutative.

H/j CO(FYQ/’K) H/
PK'I,W PK,I,W
(6-16)l i(6.16)
H,j CO(PYAK/[/’K) ’j
MK’ I,W = My k1w

6.2 Compatibility of constant term morphisms and actions of Hecke algebras
We first recall the action of the local Hecke algebras. The goal of this subsection is Lemmas 6.2.6
and 6.2.12.

6.2.1 Let v be a place in X. Let g € G(F,). By 6.1.3, the right action of g induces an
isomorphism
Chte o, r,w — Chte oo r,w- (6.33)

Let fg C G(0) be a compact open subgroup such that g 'Kg C G(0). The isomorphism
(6.33) is K-equivariant, where k € K acts on the second stack by g~1kg. It induces an isomorphism

Chtg,co,1,w JE S Chtg co,1,w /g 'Ky,

ie. Chth(,I’W S ChtG,gflf(g,I,W' It induces (by adjunction) an isomorphism of cohomology
groups
: . gJ X oryd
adj(g) : HG,g—lffg,I,W — HG,I?,I,W' (6.34)

6.2.2 We denote by QU the ring of integral adéles outside v. Let K = K'K, C
G(0")G(0,) = G(0) be an open compact subgroup. Let h = 1g, gx, € Co(K,\G(Fy)/ Ky, Qp)
be the characteristic function of K, gK, for some g € G(F,). The action of h on H, ]G K7W 1S given
by the following composition of morphisms

; adj ; adj(g) j Co  rrj
T(h) : He werw — Hexngricgrw == Hogrgoxrw — Hawnw (6.35)
where adj = adj(pr?mg_lKg 5) and Co = Co(pr?Kg_lﬁKK), the isomorphism adj(g) is induced

by (6.34) applied to K = gKg~! N K. Note that (6.35) depends only on the class K,gK, of
g in G(F,). The action of T'(h) is equivalent to the one constructed by Hecke correspondence
(see [Lafl8, 2.20 and 4.4]).

6.2.3 Let K and g as in 6.2.1. The right action of g (by right multiplication by g) on G(A)
induces an isomorphism

G(A)/K 5 G(A) /g 'Kg. (6.36)

Applying 6.1.10 to S; = G(A)/K, S, = G(A)/g*Kg and the isomorphism (6.36), we deduce an
isomorphism of cohomology groups

; . pgld ~ ol
adj(g) : HM,gﬂf(g,I,W — HM,I?,I,W' (6.37)
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6.2.4 Let K and h as in 6.2.2. The action of h on H]/\}KIW is given by the following
composition of morphisms

) 15 adj 15 adj(g) 13 Co 13
T(h) = Hyr g 1w — Hyp kng-1kg0w —= Hitgrg-1nrw — Hirxrw (6.38)

where adj = adj(pr%Dg,lKg’K) and Co = Co(pré\:}[(g,lvaK), the isomorphism adj(g) is induced

by (6.37) applied to K = gKg~!' N K. Note that K may not be normal in G(Q). Note that (6.38)
depends only on the class K,gK, of g in G(F}).

LEMMA 6.2.5. Let K and g as in 6.2.1. The following diagram of cohomology groups commutes.

i adj(g) j
~ —_— ~
G,g 1Kg,I,W ~ G,K, I W
P,j P, j
cGé_lf{gl iCG’ i (6.39)
15 adj(g) H'I
Mg~'KgIW ™~ MK, IW

Proof. (1) Since the isomorphism (6.3) is G(0)-equivariant, we deduce a Cartesian square.

ChtPJ,W X ChtG,oo,I,W /f? % Chth’W X ChtG,oo,I,W /g_lffg

ChtG,LW ChtG,I,W

P(4) ~ P(A) -
Chtp#,o,]’w X G(A)/K Chtppo,],w X G(A)/g‘lKg

~

We deduce a Cartesian square.

g
Chte krw —== Ot kg rw
. -/
ZRT Tlg_ll?g
/ 9 /
Chtp e == OBt g 1w
It induces a commutative diagram.
el adj(g) j
~ _— ~
G,g~1Kg,I,W ~ G,K,I,W
adj(i;_lf(g)l iadj(i%{)
14 adj(g) 15
~ —_— ~
Pg—1Kg,IW ~ P.K,I,W

(2) Applying 6.1.12 to S; = G(A)/K, S = G(A)/g ' Kg and f the isomorphism (6.36), we
deduce from (6.29) a commutative diagram.

14 adj(g) 15

~ —_— ~
Pg—1Kg,IW ~ P.K,I,W
(6.16)i j{(e.m) o
14 adj(g) 15

~ —_— ~
Mg 'KgIWw  ~ MK I,W
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LEMMA 6.2.6. For any place v of X, any K and h € C.(K,\G(Fy,)/K,,Q¢) as in 6.2.2, the
following diagram of cohomology groups commutes

) g

J
HG,K,I,W G,K,I,W

|t |t (6.40)
T(h)

P,

¥ 1J
HM,K,I,W HM,K,I,W

where the horizontal morphisms are defined in 6.2.2 and 6.2.4, the vertical morphisms are the
constant term morphism defined in (6.19).

Proof. By Lemma 6.1.15, Lemma 6.2.5 and Lemma 6.1.16. O

6.2.7 From now on let N C X be a closed subscheme and v be a place in X~ N. We have
the (unnormalized) Satake transform:

CC(G(O’U)\G(FU)/G(O’U)7 Qé) — CC(M(OU)\M(F’U)/M(OU)? QZ)

h — WM me Z h(mu). (6.41)
UGU(FD)/U(O’U)

6.2.8 We have Kynv = Kjy yEKmnw C M(QY)M(O,). For any Ky, C M(O,) open
compact subgroup, we have K}, yKa, C M(O")M(O,). We define wa K

]\/[’NK]\J,U:IJ/V as 1

Definition 2.6.8 (replacing Chtas 7w by Chtas iy, NKM,mLW)' We define

; J
M Hyppeo gy ot
KM,’U '
Asin 6.2.1 (by replacing G by M), for any m € M(F,) and Ky, such that m =1 Ky, ,m C M(O,),
. o prd N L
we have an isomorphism HM,mflKMNKM,vm,I,W — HM,KKLNKM,vaLW' Taking limit on Ky, we

deduce an action of M (F},) on ]ir;[)lKM’vH‘JYM»K}\}/]’NKIVI,leaw'
We have Ky = K{ Ky, C G(O")G(O,). For any K, C G(O,) open compact subgroup, we
have K} K, C G(0")G(O,). Applying 6.1.6 to S = G(A)/ K} K,, we define Hy} Ky Ko 1w We
define
. 14
%HH]\JI,K}(,KU,I,W‘

Note that v is a place in X\ N, so Ky, = G(O,) and Ky N = M(O,). We have
.y . . P(Oy) . P(Oy)
HJ\Z/,K}(,G(OU),I,W = H]\f[,N,I,W = H%/I,N,I,W x  G(On) = H]J\/[,K}\’/I’NM(OU),I,W x  G(On),

where Hg\f[ N.Iw 18 defined in Definition 3.4.9. We deduce

P(On)

: i G(F, : :
lim Hyp g e, 1w = Indpépvg <( lim HJJ\/I,K}’M’NKM’U,LW) X G(ON)>7 (6.42)
Ky Kurv

where Indgggg is the (unnormalized) parabolic induction.
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6.2.9 Let V be a Qp-vector space equipped with a continuous action of M (F;,), denoted by
o: M(F,) - GL(V). We recall that

Indgg:; V ={f:G(F,) — V continuous, f(pg) = o(p)f(g9),p € P(F,),g9 € G(Fy,)}.
We have a morphism

(Ind ) V)FO) — M@ f s f (1), (6.43)

LEMMA 6.2.10. Morphism (6.43) is an isomorphism. Moreover, for h € C.(G(O,)\G(F,)/G(O,),

Qp), the action of T'(h) on (Indggz; V)G(©O0) coincides with the action of T(hM) on VM(Ov),

Proof. Morphism (6.43) admits an inverse f(1) — f given by
f(x) = f(zpak) = o(zp)f(zk) = o(xp) f(1),

where z = 2pr € G(F,) = P(F,)G(O,). Thus (Indggzg V)G(Ou) — yM(Oy),

Moreover, for g = gpgrx € G(F,) and f € (Indggj; V)G(©O0)  we have

gf(1) = f(gpgx) = o(gp) f(9x) = o(gp) f(1). (6.44)

Note that G(Fy,) = M (F,)U(F,)G(O,). Denote by dg (respectively dm, du, dk) the Haar measure
on G(F,) (respectively M(F,),U(F,),G(O,)) such that the volume of G(O,) (respectively
M(O,),U(0y),G(Oy)) is 1. We have dg = dmdudk. Taking the integral over G(F,) of the

product by h(g) of (6.44), we deduce that the action of T'(h) on (Indggx V)G(Ov) coincides with
the action of T'(h™) on VM(©v), O

. » P(On)
6.2.11 LetV = (h_r)nK Hi/I,KXLNKM,v,LW) X G(Op). We have:

M,v

VM) _ i P(On)

_ i .
MK3, MOy I W % G(On) = Hyp 1w

G(O)

G(Fy) G(Oy) _ . 19 i _rrlJ

(Indp ) V) () — (h_Kn H]d[,K}(,Iﬁ;J,W) = Hyp v o = Hatwvrw
K.

By Lemma 6.2.10, the action of T'(h) on H]/\f['N] w (defined in (6.38)) coincides with the action

of T(hM) on HﬁNI w (induced by the action of T'(h™) on Hﬁ/[NI w)- Combining this fact and
Lemma 6.2.6, we deduce the following.

LEMMA 6.2.12. For any placev of X~\N and any h € C.(G(O,)\G(Fy)/G(O,),Qy), the following
diagram of cohomology groups is commutative

Jat QN7
G,N,I,W G,N,I,W
icg:fv lcé:;v (6.45)
. T(hM) .
1] 17
Hyr nvow Hyr now

where the vertical morphisms are the constant term morphism defined in Definition 3.5.10.
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Remark 6.2.13. For a direct proof of Lemma 6.2.12, see [Xuel7, Lemme 8.1.1].

Remark 6.2.14. We could normalize the constant term morphism Cg’ N and the Satake transform

(6.41) by 6/2 as usual, where ¢ is the modular function of P(F,). But we do not need this
normalization in this paper.

Remark 6.2.15. When I = ¢ and W =1, S = G(A)/K, we have HﬁS’R’LW included in
C(M(F)UA)\G(A)/KZ,Qp). In (6.17), we defined Cgig7R7I7W. Commutative diagram (6.18)
implies that for a given Haar measure du on U(A), ([, du) -C’g:g r.rw is independent on R. This

identifies Cg’ g 1w With the classical constant term morphism (3.44) associated to du.

6.3 Cuspidal cohomology and rational Hecke-finite cohomology
DEFINITION 6.3.1. We define

HE o o= e € By y > dimg, Co(BN\G(A)/Kn, Qi) - ¢ < +o0}.
Proposition 6.0.1 will follow from Lemmas 6.3.2 and 6.3.3 below.

LEMMA 6.3.2. We have an inclusion
J, cusp 4, Hf-rat
HiNiw CHG N w (6.46)

Proof. By Theorem 5.0.1, the Qg-vector space Hé’ C]t,lslpw has finite dimension. By Lemma 6.2.6,
it is stable under the action of the Hecke algebra C.(Kn\G(A)/Kn, Q). We complete the proof
by Definition 6.3.1. O

LEMMA 6.3.3. We have an inclusion
J, cusp 7, Hf-rat
Hg niw 2 Hg nrw- (6.47)

The proof of Lemma 6.3.3 will use the fact that any non-zero image of a constant term

morphism Cg’j is supported on the components Hﬁ’” indexed by v in a translated cone in
/\+7Q

AZG/ZM ) )
the Satake isomorphism.

. The proof will also need the following lemma, which is for example a consequence of

LEMMA 6.3.4. Under the Satake transformation (6.41), the algebra C.(M (O,)\M(F,)/M(O,),
Qp) is finite over C.(G(O,)\G(Fy)/G(Oy), Qp).

Proof of Lemma 6.3.5. Leta € Hgf]'\,r"}tw We argue by contradiction. Suppose that a ¢ H, é N LW

Then there exists a maximal parabolic subgroup P such that C’IGD’ J (a) # 0. We denote by M the
Levi quotient of P. Let v be a place in X~ N.

(1) On the one hand, by Definition 6.3.1, the Qg-vector subspace C.(G(O,)\G(Fy)/G(Oy),
Q) - a has finite dimension. Then Lemma 6.2.12 applied to K = Ky and Lemma 6.3.4 imply
that the Qg-vector space C.(M(Oy)\M (Fy)/M(Oy),Qy) - C’g’ 7(a) has finite dimension.

(2) On the other hand, since a € H&N,I’W, there exists p € /A\g;g such that a €
Im(HéE’fLW — Hg},N,I,W)' We deduce from (3.38) that C’g’j(a) is the image of an element
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a’ € H;\j]\f’; W in H;\/;NI w- By 3.4.8, a° is supported on the components H]/\/}K” w of H%NI W
: : N n . AP
indexed by v in the translated cone AZM/ZG C AZM/ZG' So is Cr 7/ (a).

Let g € Zy(F,) such that g ¢ Zy(Oy)Za(F,). We denote by £(g) the image of g by the

composition of morphisms

(1.16) ~
Zur(Fy) = Zur(A) — Bumyy(Fy) — Bumy ——> 8 |

The choice of g implies that £(g) # 0. Note that P is maximal, so jA\(gM 176 Q. Forallv € K%M =

the action of g on Chty; /Z induces an isomorphism g : Chty, /= = Chtg}g(g) /E (the inverse

is induced by g=1). We denote by T(g) € Ce(M(O,)\M (F,)/M(O,),Q;) the Hecke operator
associated to g. Then T'(¢g) induces an isomorphism HE\}]”V W = H;\}K,J}g%g,)

Suppose that £(g) > 0 (if not, we take g~! in place of g). Since Cg’j(a) # 0, there exists
m € Zso such that T'(g)™ - Cg’j(a) is supported on the cone K;LNES) > K%M/ZG’ but not
supported on JAX’}M = Therefore T'(g)?™ - Cg’ J (a) is supported on the cone Arctrame(y ), but not

(o) Pl
A Ht+mé(g
supported on A Tt )7 etc. We deduce that

P, j m  ~P,j m  ~P,j m P,
Cq !(a),T(g)™ - Cq ’(a), T(g)2 -Cq ’(a), T(9)3 -Cq (a),...
are linearly independent. So the Qg-vector space generated by T'(g)% - Cg’j (a) has infinite

dimension. Hence C.(M (O,)\M (F,)/M(O,),Qy) - Cg’ 7(a) has infinite dimension.
(3) We deduce from (1) and (2) a contradiction. So a € HZ, 7y - O

DEFINITION 6.3.5 [Laf18, Définition 8.19]. We define

Hé%flw ={ce Hé’N’I’W, Co(KN\G(A)/KN,Zy) - ¢ is a finitely generated Z-submodule}.
By definition, H é gf] w C H, g %f}r{a,;. Thus Proposition 6.0.1 has the following corollary.

COROLLARY 6.3.6.
7, Hf 4, Hf-rat 477, cusp
HG N rw CHg nvpw = He yrw

In particular, Hg;’ %fl w has finite dimension.
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Appendix A. Exact sequences associated to an open and a closed
substack of the stack of shtukas

For simplicity of the notation, we do not write the indices N, I and W.

A.0.1 In the following, we use KZS But everything remains true if we replace it by (1/ r)]?EJGrad.
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A.0.2 Asin |[DG15, 7.4.10|, we equip the set A59 with the order topology, i.e. the one where a

Gdd
base of open subsets is formed by subsets of the form {\ € AR < Ao} for N\ € AZ;S Let S

be a subset of Agg We define

Bung := | J Bung*, Chtg =  J Chtg, Chty7:= (] Chti7*
AES AES AES

where Chtz* and Cht’;* are defined in Definition 4.1.10. If the subset S is open (respectively
closed) in Agg, then Bung is open (respectively closed) in Bung. So Chtg is open (respectively
closed) in Chte and Cht is open (respectively closed) in Cht),.

If S is a bounded locally closed subset of A2 then Cht2 and Chtyj are Deligne-Mumford

Gad>»
stacks of finite type.

A.0.3 Let p € AGad Let So ={\ € AGadl | A < p}. By definition it is an open subset of AJCSS for

the order topology of G24. It is also open in A%Q for the order topology of M = M/Z¢ (because
A <M,u implies A < p).

Let S; be an open subset of Sy for the order topology of G®. Thus the morphism of
stacks ChtS SELN Cht (respectlvely Cht’s1 ZAll Cht%%) is an open immersion. By definition,
Cht —51 (respectlvely Cht'; 22751 is the closed substack in ChtG (respectively Cht7 27°) which is
the Complement of ChtG (respectlvely Cht Sl)

We define Ch‘L/PS2 (respectively Cht’ Sl) to be the inverse image of Chtg2 (respectively Chtgl)
in Cht’p. Just as in Lemma 1.7.4, we have 73 : Ch‘c's2 — Cht’s2 (respectively 7y : Ch‘c's1

Cht’sl) We have Cht'S1 iLi Cht'sz, which is an open immersion. We define Cht'S2 51—
Chtlps2 ﬁ7r_1(Cht/J\/5['2 Sl) It is a closed substack in the complement of Cht/ S1in Cht'PSQ, but
may not be equal to it.

LEMMA A.0.4. The following diagram of algebraic stacks is commutative.

Cht22~51 <2 Cht) =S T2 Cht) S

B

Chtg? <—2— Cht)5” — = Cht/? (A1)

| ] ij

Chtg} <—— Cht/" — ™ Cht/"

Moreover, the left bottom square and the right top square are Cartesian.

A+Q

Gad» We define

A.0.5 For any j, any v € K%M /7 and any bounded locally closed subset S C

g ) _ s . rs —
H® = HI(Chtf, 7 /S, Fo); Hyp ™" = HI(Cht 2% /26, Fiy).
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A.0.6 By Proposition 3.5.3, the restriction of morphism i; (respectively iz) to n! is proper. The

restriction of morphism 419 to W is also proper because Cht’PSQ_S b — Chtgrs box Cht'PS 2is a

Sa
Cht;
closed immersion. Moreover i1, o and i1 are schematic. Applying the construction in § 3 to each

line in diagram (A.1l), respectively, we obtain the constant term morphism C’g’j’ St Hg;’ 51y

: ~ o _ B _—715,-8) .
H]/\f[ Sl, Cg’]’s2 and C’g’]’SQ 51 (note that the morphism 719 q : Cht/PS2 St Ch‘cM2 " is smooth

because the right top square of diagram (A.1) is Cartesian).

A.0.7 Diagram (A.1) induces a diagram of cohomology groups with compact support for which
we will study the commutativity.

j—1,52—51 7,51 3,52 7, S52—51
e — HG HG HG’ R HG’ R ——
P,j—1,89—8 P,j, S P,j, S P, j,S9—8 A2
iCG] 27"1 iCGJ 1 i’CG] 2 lcgj 2771 ( . )

H;\g_LSQ_Sl H;\}’ S1 HJI\ZI" So HJ/\}" S2—51

The horizontal maps are the long exact sequences associated to an open substack and the
complementary closed substack. The vertical maps are the constant term morphisms.
LEMMA A.0.8. For any j, the following diagram is commutative.

Hg S1 Hé 52 Héz 32*51

lcgvjvsl \chyj,SQ icgajvSQSl

H;\ff S1 HE\? Sa H;\}’ So—51
Proof. We denote the morphisms of paws by pg : Ch‘cg2 — n! and pyy : Cht’]\‘/[92 —n!. For S = 5
or So or So — S1, denote .7:5 = fG‘cmg and .7:]\% = ],V[‘Cht’]\f' Note that .7-"21 = (jg)*.?’-"g2 and

.7:22_51 = (ig)*ng. Similarly 3! = (]’1\/[)*.7:]‘\942 and .7:]‘\5;12_51 = (iM)*f]*\gf. Lemma A.0.8 will follow
from the commutativity of the following diagram of complexes in D2%(n!, Q).

(el (ic) Fot — (pa)For — (pa) (i) (i) Fo?
T Y
(P )1 G (e ) Fap —— (panFap — (oar)i (ia)i(ing)* Fyp

The commutativity of the left square is induced by (1) and (2) below. The commutativity of
the right square is induced by (3) and (4) below.

We consider the left square of (A.3)

(pen(ic) (o) Fe? R (pe ) F&
(1) l
. . . S. Trjp . S
(e (Gae ()1 (31)* (Ja)* Fod —— (P (w2 (i2)* F? (A4)
ifl (2) lfz
(par) (a1 (Gine )* F 32 . (P Fat
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where (1) and (2) are detailed below.
(1) The following diagram of functors is commutative

(pa)i(ieh(ja)* (pa )

adj;,
adj;, adj;,,
TI‘j

~

(pa)i(G )1 (i) (61)* (ja)* ———= (P )1(i2)1(32)* (G ) (Ja ) —= (pe)1(i2 )1 (i2)*

l ) i
(par)1 (G )1 (1)1 (i1)* () ——= (pan)1(m2)1(Gip )1 (jip)* (i2)* o, (paa )i (m2)1(d2)*

where (x) is given by (jg)i(i1)1(41)* ~ (i2)1(Gp)i(i1)* = (i2)1(i2)*(jg )1, the last isomorphism is
the proper base change for the left bottom square of diagram (A.1). The commutativity of (1)
follows from the fact that the adjunction morphism commutes with base change and the trace
morphism commutes with base change [SGA4, XVIII Théoréme 2.9].

(2) Taking (3.9) into account, we have a commutative diagram, where my (respectively 1) is

Ter

the composition 79 joms 4 (vespectively ¥ jomy 4) for some d large enough as in Proposition 2.2.1.

71'0
Cht/5> — ™%, Chtyy® — 2%+ Cht!
jPJ (b) JEJ (Acl J\jM (A.5)
T1,d —157 ¢

Cht/* —%~ Cht,;" —%> Cht/3"

The square (c) is Cartesian. The square (b) may not be Cartesian. As in Lemma 3.1.8, m 4 and
ma,q are smooth. We have dim(m; 4) = dim(myq) = d - |[I| dim U. We denote this dimension by m.

By (3.22) and (3.23), the morphism f; (respectively f2) defined in diagram (A.4) is the
composition of Trr, , @ (m14)1(71,4)" — Id[-2m](—m) (respectively Trr,, : (m2,4)1(m2,4)" —
Id[—2m](—m)) with some isomorphisms. By [SGA4, XVIII Théoréme 2.9|, the trace morphism
is compatible with composition, and thus

Tr oTr]P_TrTrMo]P_Tr ~Tr~ oTr

72,d JMOT1,4 M TL,d?

where the middle isomorphism is due to the commutativity of square (b). Moreover, by [SGA4]
the trace morphism is compatible with base change, and thus

TrN = (71'1 d) Trjy, -
We deduce that (2) is commutative.

Now we consider the right square of (A.3)

(PG )1 F? "V (pe )i (i) (i) Fe?
l (3)
(pan)i(ma)i(in)* Fof — "y — (par) (i i(mi2h (i) (i) F & (A-6)
PR
() TS —— o (i ian)*
where (3) and (4) are detailed below.
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(3) The following diagram of functors is commutative.

adj;

(pa) (pa)i(ia)(ic)*

ladji2 iadjiu
adj; ,,

~

(pa)i(i2)(i2)* — (pa)i(i2)1(ip)1(ip)*(i2)" —— (pa)i(ic)i(i12)1(i12)* (iq)*

o T -

~

(pa)i(m2)1(i2)* —— (par)i(m2)1(ip )1 (ip)* (i2)* ——= (Par )i (i )1 (m12)1(12)* (i)™

(4) Taking (3.9) into account, we have a commutative diagram, where 712 is the composition

0
9,4 © T12,d-

1Sy—Sy T12d  ~—/52=8 .4 182—51
Cht/$2=51 T2 G Cht'S

iP£ (e) zzﬂ\}[ @ &M
0

S 2,
Cht/? — % . Cht),

The squares (e) and (f) are Cartesian.

By (3.22) and (3.23), fi2 defined in diagram (A.6) is the composition of Trs,,
(m12,a)1(m12,0)* — Id[—2(dim 72 4)](—dimmi2 4) with some isomorphisms. By [SGA4, XVIII
Théoréme 2.9], the trace morphism is compatible with base change, and thus

Trrpy = (inr)" Trr, 4

We deduce that (4) is commutative. O

Remark A.0.9. We do not know if the complete diagram (A.2) is commutative.

Appendix B. Lemma of the cubic commutative diagram

LEMMA B.0.1. Let 2", %, 2, W, 2", %", %', #' be algebraic stacks. Suppose that we have two

Cartesian squares.

¥ ¥ sy
Voo Vo
2 Loy A/

If these two squares are the front and back faces of a commutative diagram

Z! @’
! f
\fg \@
& 78
v (B.1)
!/ !/
%\ff{ oy -
x /4

then the fibers fo, f9, fo and fy form a Cartesian square.
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Concretely, let T be a scheme. For any morphism T — %, we have the compositions of
morphisms ' - 2 - 2, T - Z - % and T — Z — # . We denote by Z7 (respectively
Zr, %, Wr) the fiber of fo (respectively fo-, fo, fy) over T. The lemma says that 27 is
equivalent to 27 X Y.

W

Proof. We will prove a more general statement. Suppose that we have another Cartesian square

g/! . @/l

b

n g Wl

and a commutative diagram.

Z 8
\L v k (B.2)

<%‘// - W//
Z vz
Then we have a canonical isomorphism:
L' xg 2" S5 (X' xa X")  x (W' xgP"). (B.3)
WXy W

In fact, by definition, we have

Qf’xpag QPHZ (%/XW/ ?,7//) X (%”Xy{/// ?,7///),
%Xwgy

For any scheme S, the S-points of both sides of (B.3) classify the data of S-points 2’ in 2”7, 2" in
2"y in 2’ y" in " an isomorphism between the images of ' and z” in 2", an isomorphism
between the images of 4/ and 3 in %/, an isomorphism between the images of 2’ and ¢/ in #”, an
isomorphism between the images of z” and 3" in #”, such that the diagram deduced from these
four isomorphisms between the images of a/, 2", ¢/, " in # is commutative. We deduce (B.3).

The lemma is the special case when 2" =%" =w" =" =T. a
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