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INVERSE LIMITS AS LIMITS WITH RESPECT TO
THE HAUSDORFF METRIC

IZTOK BANIC

We show that the inverse limit of any inverse sequence of compact metric spaces and
surjective bonding maps is in fact the limit of a sequence of homeomorphic copies of
the same spaces with respect to the Hausdorff metric.

1. INTRODUCTION

Inverse limits of inverse sequences of compact metric spaces have been the subject of
research for many years. As very complicated spaces may be presented as inverse limits
of simple spaces and simple bonding maps, a representation of spaces as inverse limits
can be very useful when studying their properties. For examples see [8, p. 205], [4, 5].

It is well known that the limits of the sequences of compact metric spaces with respect
to the Hausdorff metric in a hyperspace are also very useful when studying properties
of compact metric spaces. For example, Bing [3] proved, using such limits, that two
nondegenerate hereditarily indecomposable continua are homeomorphic if each can be
chained.

Ingram [7] and Mahavier [7, 9] introduced the concept of inverse limits of inverse
sequences of compact Hausdorff spaces with upper semicontinuous multi-valued bonding
functions.

The author [1, 2] introduced a standard procedure for obtaining inverse sequences
of compact metric spaces Xn and upper semicontinuous multi-valued bonding functions
/„ : Xn+i —> Xn from one-valued maps /„. The procedure defines the graph P(/n)
as the union of r ( / n ) and the product An+i x Xn, for a closed subset An+i of Xn+\.
He obtained results on dimension of inverse limits of {Xn, fn}%Li and applied it to the
problem of finding nontrivial examples of continua, in which given inverse limits are
convergence continua.

In this article we show, using ideas from [1, 2], that the inverse limit of any inverse
sequence of compact metric spaces and surjective bonding maps is in fact the limit of a
sequence of homeomorphic copies of the same spaces in an appropriate hyperspace, with
respect to the Hausdorff metric. Our main goal is to prove the following theorem.
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18 I. Banic [2]

THEOREM 1 . 1 . Let {Xn, fn}%Li be an inverse sequence of compact metric spa-
ces Xn and surjective maps /„ : Xn+i -¥ Xn, such that only finitely many spaces are

oo

degenerate. Then there is a sequence {Vn}"=1 of compact metric spaces in Y\Xn, such
that n=1

(1) for each positive integer n, Yn is homeomorphic to Xn;

(2) for each positive integer n, Yn D (hjn {Xn, fn}^Li) = 0;

(3) limY^
n K X

2. DEFINITIONS AND NOTATIONS

When referring to a space, the term degenerate is synonymous with being a one-
point space, while the term nondegenerate means that the space consists of more than
one point.

A map is a continuous function. Let / be a function from X onto X, then f2

denotes the composition / o / , and inductively / " denotes the composition / " - 1 o / . We
use f~n(Y) to denote (fn)~l(Y) = {* € X | fn(x) e Y).

Let (Xi,di),(X2,d,2),(X3,d3),... be metric spaces with each of the metrics dn
oo

bounded by 1. The metric we use on the product Yi Xn is given by
n=l

i , x 2 , x 3 , • • • ) , ( 2 / 1 , 2 / 2 , J / 3 , • • • ) ) =
2

n=l

Let (X, d) be a compact metric space and 2X be the set of all nonempty closed
subsets of X. We shall use the Hausdorff metric (for details see [11, p. 52]) on the
hyperspace 2X given by

Hd(A, B) = inf{<r > 0 | B C Ne(A), A C Nt(B)}.

For further reading on hyperspaces we recommend [6, 11].
Given an inverse sequence {Xn, / n } ^ i of compact metric spaces Xn and maps /„ :

Xn+i —> Xn, we define the inverse limit space Um{Xn, fn}%Li as the subspace of the
oo

product n Xn, which consists of all sequences { i n }" = 1 such that fn{xn+i) = xn for
n=l

every positive integer n.
Let X and Y be compact metric spaces and let / : X —> 2Y be a function. The

function / is upper semicontinuous at a point x € X provided that for each open set V
in Y containing f(x), there is an open set U in X containing x such that if y £ U, then
f(y) Q V• The function / is upper semicontinuous if it is upper semicontinuous at i G X
for all x € X. The graph T(f) of / : X -> 2y is the set of all points {x,y)e X xY such
that y € f{x).

https://doi.org/10.1017/S0004972700038946 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700038946


[3] Inverse limits 19

For a given inverse sequence {Xn, f n } ^ = l , where all Xn are compact metric spaces
and every /„ is an upper semicontinuous function Xn+i -> 2Xn, the inverse limit

oo

Lim{Xn) /n}^Li is the subspace of the product f j Xn, which consists of all sequences

{zn}^L1 such that xn € / n (xn + 1) for every positive integer n.

We shall also say that a function / : X —* 2Y is a multi-valued function from X to

Y, while writing f : X -*Y.

Let X and Y be compact metric spaces and / : X —¥ Y a map. For a closed subset

A C X we define the multi-valued function / : X —> Y as

V- T c A

It was proved in [2], that / is an upper semicontinuous set-valued function from X to Y.

Let {Xn, fn}^=\ be an inverse sequence of compact metric spaces Xn and maps /„ :
Xn+i —> Xn, and let for each n — 1,2,3, • •., An be a closed subset of Xn. Then we define

oo

D n a s t h e s u b s p a c e o f t h e p r o d u c t \\ X u c o n s i s t i n g o f a l l p o i n t s x , x = ( x \ , x 2 , £ 3 , • • •),
i=n

such that

(1) xxeAn;

(2) for each i = 1,2,3,.. . , x{ € ^ + n _ 1 (x i + 1 ) .

We call £»„ the n-tree for sequences {Xn}%Lv {An}^=1 and {fn}%Lv

Let for each n — 1,2,3,..., Xn be a compact metric space, /„ a map from Xn+i to

Xn, and An a closed subset of Xn. For all m — 1,2,... and each a € Dm+2 we define

L(a,m) as follows.

L{a,m) =

and

We shall use the following theorem.

THEOREM 2 . 1 . ([2]) For a J J m ^ O and all a € Dm+2, L(a,m) is homeomorphic

to Xm+l.

3. INVERSE LIMITS AS LIMITS WITH RESPECT TO THE HAUSDORFF METRIC

In this section we prove Theorem 1.1. Before proving it, let us prove the following

easy lemma, that will be used to prove Theorem 1.1.

LEMMA 3 . 1 . Let {Xn, fn}%Li be an inverse sequence of compact metric spaces

Xn, such that only finitely many spaces are degenerate, and arbitrary maps fn : Xn+i
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oo

—> Xn. Then there exists a point x = (xi,Z2, X3,...) G f] X*> sucn taat xn ^ /n(xn +i)
n=l

for infinitely many integers n.

P R O O F : Let A; be the greatest integer, such that Xk is degenerate.

C A S E 1. There is an integer n0 > k, such that for all n ^ n0, /„ is a constant map.

For each n ^ n0, let yn £ Xn be such that for each x G Xn+i, fn(x) = yn. For

xn, n — 1 ,2,3, . . . ,7io — 1, we may choose any element from Xn. For n ^ n0, let

xn e Xn\ {yn}. Obviously, for x = (xi,x2,x3, . . . ) , x G UXm and xn ^ fn{xn+\) for
infinitely many integers n.

CASE 2. For each integer no > 0, there is an integer n > no, such that /„ is not a
constant map. Let n i , n 2 l . . . be the increasing sequence of all positive integers such
that fnk is not constant. First we take an element Zi € X\. For n > 1 we proceed
as follows. If n £ {ni + 1 | £ = 1,2,3,...} we take for xn any element from Xn-

If n 6 {n, + 1 I £ = 1,2,3,...}. Clearly, for x = ( i i , i 2 , i 3 l . . . ) , x € f\Xn, and
xn r̂  fn(zn+i) for infinitely many integers n. "~

D
Now let us prove Theorem 1.1.
P R O O F : By Lemma 3.1 we choose and fix

x - (xi,x2ix3,...) €
n=l

such that xn ^ / n(xn +i) , for infinitely many integers n. For each positive integer n, let
00 00

x^ = (xn ,xn + 1 ,xn + 2 , . . . ) € n Xi. We shall construct the spaces Yn in f] Xn, using
t=n n=l

the upper semicontinuous functions /„ for An — {xn}. Let for each n, Dn be the n-
tree for sequences {A"n}^.!, {^l,,}^! and {fn}%Li- Hence 57 € Dn for all n. For each
positive integer n, define Yn = L(xn+1, n - 1). By Theorem 2.1, Yn is homeomorphic
to A"n for each n. As xm ^ /m(xm+i) for infinitely many integers m, it follows that
Yn D (bm {A"n, /n}^=i) = 0 for all n. To complete the proof, we only need to show that
lim Yn = }im{Xn,fn}'^Ll. We shall prove that by showing that for each e > 0, there is

n—too ^

a positive integer no such that

for all n > n0. Take e > 0, 0 < e' < e and a positive integer n0 such that

1=1

Let n > n0. First we show that for each y 6 Yn, there is z €

such that d(2/,z) ^ e'. Take y = (2/1,2/2,2/3, ••• ,yn-i,yn.J/n+i. •••) G ^n and let
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z = {yuV2,y3,- • • ,yn-i,yn,Zn+i,zn+2,- • • ) , w h e r e z n + 1 6 Z " 1 ({*/„}) a n d for

i = n + 2, n + 3 , . . . , zt € f~_\({.Zj_i}) (recall that all the bonding maps are surjective, so
all zt may be chosen). Clearly

Now we show that for each y € Um {Xn, fn}%Li, there is z € Yn such that d(y, 2) ^ e'.

Take y = (2/1,1/2,2/3, ••• ,2/n-i,2/n,2/n+i,- • •) € I m f l n . / n } ^ . Let

z = (2/1,2/2,- •-,2/n-l,2/n,a;n+l,

where (xn+i,xn,...) — z^jT- Clearly z € Vn, and d(y, z) ^ e' < e. Therefore

REMARK 3.2. If infinitely many spaces Xn were degenerate, then, as all the bonding
maps are surjective, all the spaces would be degenerate. In this case the inverse limit

oo

Urn{Xn, /n}jJLi equals to the product Y[ Xn, which is also a degenerate space.
n=l

4. AN APPLICATION IN CONTINUUM THEORY

In this section we give an application of Theorem 1.1 in continuum theory, precisely,

to P- l ike continua. First look at the basic definitions.

A continuum is a nonempty, compact and connected metric space.

Let X and Y be metric spaces. A map / : X —> Y is an e—map if the set f'1 ({/(z)})

has the diameter less than e for all x € X. We say that for a family of connected polyhedra

P , a continuum K is P-like, if for every e > 0 there is a surjective e - m a p f : K -* P

for a continuum P € P .

THEOREM 4 . 1 . Let P be a nonempty collection of connected polybedra and K

a nondegenerate V-like continuum. Then there is an inverse sequence {Ln, fn}%L\ such

that for each n, Ln 6 P and /„ : Ln + 1 -»• Ln is a surjective map, and a sequence {Vn}^Li
oo

ofsubspaces of f ] Ln, such that
n = l

(1) K is homeomorphic to Um {Ln, fn}%Li;

(2) for each positive integer n, Yn is homeomorphic to Ln;

(3) for each positive integer n, Yn n (l^n {!„, /n}~=1) = 0;

(4) n l imr n = Um{Ln, / „ } - , .

PROOF: It is well known that every P-like continuum can be represented as an
inverse limit of an inverse sequence of elements Ln e P and surjective bonding maps
/„ : Ln+1 -¥ Ln (for details see [10, p. 148], [11, p. 247]). So K is homeomorphic to an
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inverse limit Urn {Ln, fn}%Li, where for each n, Ln e P and /„ : Ln+\ -> Ln is a surjective
oo

map. Hence, by Theorem 1.1, there is a sequence of continua Yn C fT^*' s u c n t n a t f°r

each n, Yn is homeomorphic to Ln, and Urn{in,/n}^Li n Yn = 0. fc=1 D

It is a well known fact that every continuum can be arbitrarily approximated by arcs

with respect to the Hausdorff metric. Let X = [0,1] x [0,1]. It is easy to construct a

sequence of arcs in plane {£„}£!, such that lim Ln = X with respect to the Hausdorff

metric. Obviously X is not arclike (X contains a triod [11, p. 231]) but every inverse

limit of arcs and surjective bonding maps is arclike (for details see [11, p. 246]). Therefore

there are limits lim Xn of compact metric spaces with respect to the Hausdorff metric
n->oo

that are not homeomorphic to any of inverse limits of homeomorphic copies of Xn and
surjective bonding maps.
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