ON THE SECOND COHOMOLOGY OF GL(n, 2)

Dedicated to the memory of Hanna Neumann

U. DEMPWOLFF

(Received 10 May 1972)

Communicated by M. F. Newman

The purpose of this note is to prove the following result.

THEOREM A. Let G be a finite group with the following properties

- (i) $V \triangleleft G$, $|V| = 2^n$ and V is elementary abelian,
- (ii) $G/V \simeq GL(n,2)$,
- (iii) $C_c(V) \subseteq V$.

If $n \ge 6$ then G splits over V.

We also may state this result in terms of the second cohomology group $H^2(GL(n,2), V)$ where V is the standard n-dimensional F_2 -module for GL(n,2).

THEOREM B. $H^2(GL(n,2), V) = 0$ if $n \ge 6$.

REMARK. By [4; p. 124] we know that $H^i(GL(n,q), V) = 0$ for $1 \le i \le 2$ and q > 2 where V is the standard F_q -module for GL(n,q). A simple counting argument shows $H^1(GL(n,2), V) = 0$ with the sole exeption n = 3 where $\dim F_2 H^1(GL(3,2), V) = 1$.

It is known that there is a unique nonsplit extension of V by GL(n, 2) for n = 3 and 4 with S_2 -subgroups of type $G_2(3)$ and $\cdot 3$ respectively. The case of a faithful extension of V of order 2^5 by GL(5, 2) will be treated somewhere else.

For results concerning $H^{i}(G, V)$ where $1 \leq i \leq 2$ and G is either a symplectic or an orthogonal group the reader may consult [3] and [5].

Proof of the theorem

By the assumptions of theorem A we may think about V as an F_2 -vectorspace acted upon G/V as the full automorphism group. We prove the assertion by a series of lemmas.

This work was supported by the FAZIT-Stiftung

U. Dempwolff

(1) If $\tau \in G - V$ acts as a transvection on V then there is a $t \in \tau V$ such that $t^2 = 1$.

PROOF. Choose a suitable basis v_1, \dots, v_n of V such that $C_V(\tau) = \langle v_2, \dots, v_n \rangle$ and $v_1 = v_1 + v_2$. If n is even choose elements $\rho_1, \dots, \rho_{n/2}$ of order 3 in G such that $C_V(\rho_i) = \langle v_1, \dots, v_{2i-3}, v_{2i-2}, v_{2i+1}, v_{2i+2}, \dots, v_n \rangle$ and permutes the non trivial elements in $\langle v_{2i-1}, v_{2i} \rangle$. If n-1 is even choose ρ_i for $1 \leq i \leq (n-1)/2 - 1$ as above and choose $\rho_{(n-1)/2}$ as an element of order 7 with $C_V(\rho_{(n-1)/2})$ $= \langle v_1, \dots, v_{n-3} \rangle$ and which acts irreducibly on $\langle v_{n-2}, v_{n-1}, v_n \rangle$. Let X be the group generated by V and the ρ_i 's. Then X/V acts fixed-point-free on V and τ normalizes X. A Frattini-argument gives us the assertion.

(2) Let v_1 be a nontrivial element in V and H be its stabilizer in G. Then $O_2(H)$ is an extraspecial group of width n-1 and type (+) (this means $|O_2(H)| = 2^{2n-1}$ and $O_2(H)$ possesses an elementary abelian subgroup of order 2^n) extended faithfully by a group isomorphic to GL(n-1,2).

PROOF. Set $A = O_2(H)$ and fix a basis v_1, \dots, v_n of V. Then the action of H/V on V in respect to this basis is described by matrices of the form $\begin{bmatrix} 1 & 0 \\ F & L \end{bmatrix}$ where L is a regular $(n-1) \times (n-1)$ -matrix over F_2 and F is a $(n-1) \times 1$ -matrix over F_2 . The elements of A/V correspond to those matrices where L is the identity matrix. Hence $[A, V] = \langle v_1 \rangle$. By (1) we know that for $a \in A^*$ either $a^2 = 1$ or $a^2 = v_1$ holds. But then $A/\langle v_1 \rangle$ is elementary abelian and as $Z(A) = D(A) = A' = \langle v_1 \rangle$ it follows that A is extraspecial. As A contains the elementary abelian group V of order 2^n it follows that A is of type (+) and we are done.

(3) G splits over V.

PROOF. We use the same notation as in (2). A result in [1; (2.2)] tells us:

Assume \mathscr{V} is a 2m-dimensional orthogonal F_2 -vectorspace of type (+)and $X \simeq GL(m,2)$ is a subgroup of $O(\mathscr{V})$ such that X normalizes an isotropic subspace \mathscr{U} of dimension m. If $m \ge 5$ then there is a X-invariant, isotropic subspace \mathscr{W} of \mathscr{V} such that $\mathscr{V} = \mathscr{U} \oplus \mathscr{W}$.

So we can find an elementary abelian subgroup W of A, $|W| = 2^n$ such that W is H/A-admissible, VW = A and $V \cap W = \langle v_1 \rangle$. As H/W acts faithfully as a subgroup of GL(n,2) on W there is a subgroup $H_1 \subset H$ such that $H_1 \supset W$, $H_1/W \simeq GL(n-1,2)$ and $H_1 \cap A = W$. Similarly, we have a subgroup H_2 such that $H_2 \supset V$, $H_2/V \simeq GL(n-1,2)$ and $H_2 \cap A = V$. Then by the modular law:

$$H_1 = H_1 \cap H = H_1 \cap H_2 W = (H_1 \cap H_2) W$$

and so

$$GL(n-1,2) \simeq H_1/W \simeq (H_1 \cap H_2)/\langle v_1 \rangle.$$

Set $H_3 = H_1 \cap H_2$. Then H_3 is an extension of the group $\langle v_1 \rangle$ by GL(n-1,2). By [2] this extension splits. So there is a group $H_4 \subset H$, $H_4 \simeq GL(n-1,2)$ and $H_4A = H$. Furthermore there is a H_4 -admissible subgroup W_0 of W with $W = \langle v_1 \rangle \times W_0$. So $W_0H_4 \cap V = 1$ and by a result of Gaschütz the assertion follows (see [4; 1, 17.4]).

References

- [1] Ulrich Dempwolff, 'Zentralisation zentraler Involutionen in L_n (2)' (submitted for publica tion III. J. Math.).
- [2] Robert L. Griess, Jr. 'Schur multipliers of the known finite simple groups', Bull. Amer. Math. Soc. 78 (1972), 68-71.
- [3] Robert L. Gliess, Jr. 'Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology', (to appear).
- [4] Bertram Huppert. Endliche Gruppern I (Springer, Berlin, 1967).
- [5] Harriet Pollatsek, 'First cohomology groups of some linear groups over fields of characteristic two'. Ill. J. Math. 15 (1971), 393-417.

Ohio State University Department of Mathematics Columbus, Ohio 43210 U.S.A.

[3]

Present Address: 69 Heidelberg Mat. Inst. der Universität Germany