ON THE SECOND COHOMOLOGY OF GL (n, 2)

Dedicated to the memory of Hanna Neumann

U. DEMPWOLFF

(Received 10 May 1972)

Communicated by M. F. Newman

The purpose of this note is to prove the following result.
Theorem A. Let G be a finite group with the following properties
(i) $V \triangleleft G,|V|=2^{n}$ and V is elementary abelian,
(ii) $G / V \simeq G L(n, 2)$,
(iii) $C_{G}(V) \subseteq V$.

If $n \geqq 6$ then G splits over V.
We also may state this result in terms of the second cohomology group $H^{2}(G L(n, 2), V)$ where V is the standard n-dimensional F_{2}-module for $G L(n, 2)$.

Theorem B. $H^{2}(G L(n, 2), V)=0$ if $n \geqq 6$.
Remark. By [4; p. 124] we know that $H^{i}(G L(n, q), V)=0$ for $1 \leqq i \leqq 2$ and $q>2$ where V is the standard F_{u}-module for $G L(n, q)$. A simple counting argument shows $H^{1}(G L(n, 2), V)=0$ with the sole exeption $n=3$ where $\operatorname{dim} F_{2} H^{1}(G L(3,2), V)=1$.

It is known that there is a unique nonsplit extension of V by $G L(n, 2)$ for $n=3$ and 4 with S_{2}-subgroups of type $G_{2}(3)$ and $\cdot 3$ respectively. The case of a faithful extension of V of order 2^{5} by $G L(5,2)$ will be treated somewhere else.

For results concerning $H^{i}(G, V)$ where $1 \leqq i \leqq 2$ and G is either a symplectic or an orthogonal group the reader may consult [3] and [5].

Proof of the theorem

By the assumptions of theorem A we may think about V as an F_{2}-vectorspace acted upon G / V as the full automorphism group. We prove the assertion by a series of lemmas.

This work was supported by the FAZIT-Stiftung
(1) If $\tau \in G-V$ acts as a transvection on V then there is a $t \in \tau V$ such that $t^{2}=1$.

Proof. Choose a suitable basis v_{1}, \cdots, v_{n} of V such that $C_{V}(\tau)=\left\langle v_{2}, \cdots, v_{n}\right\rangle$ and $v_{1}=v_{1}+v_{2}$. If n is even choose elements $\rho_{1}, \cdots, \rho_{n / 2}$ of order 3 in G such that $C_{V}\left(\rho_{i}\right)=\left\langle v_{1}, \cdots, v_{2 i-3}, v_{2 i-2}, v_{2 i+1}, v_{2 i+2}, \cdots, v_{n}\right\rangle$ and permutes the non trivial elements in $\left\langle\nu_{2 i-1}, v_{2 i}\right\rangle$. If $n-1$ is even choose ρ_{i} for $1 \leqq i \leqq(n-1) / 2-1$ as above and choose $\rho_{(n-1) / 2}$ as an element of order 7 with $C_{V}\left(\rho_{(n-1) / 2}\right)$ $=\left\langle v_{1}, \cdots, v_{n-3}\right\rangle$ and which acts irreducibly on $\left\langle v_{n-2}, v_{n-1}, v_{n}\right\rangle$. Let X be the group generated by V and the ρ_{i} 's. Then X / V acts fixed-point-free on V and τ normalizes X. A Frattini-argument gives us the assertion.
(2) Let v_{1} be a nontrivial element in V and H be its stabilizer in G. Then $\mathrm{O}_{2}(H)$ is an extraspecial group of width $n-1$ and type $(+)$ (this means $\left|O_{2}(H)\right|$ $=2^{2 n-1}$ and $O_{2}(H)$ possesses an elementary abelian subgroup of order 2^{n}) extended faithfully by a group isomorphic to $G L(n-1,2)$.

Proof. Set $A=O_{2}(H)$ and fix a basis v_{1}, \cdots, v_{n} of V. Then the action of H / V on V in respect to this basis is described by matrices of the form $\left[\begin{array}{ll}1 & 0 \\ F & L\end{array}\right]$ where L is a regular $(n-1) \times(n-1)$-matrix over F_{2} and F is a $(n-1) \times 1$-matrix over F_{2}. The elements of A / V correspond to those matrices where L is the identity matrix. Hence $[A, V]=\left\langle v_{1}\right\rangle$. By (1) we know that for $a \in A^{\#}$ either $a^{2}=1$ or $a^{2}=v_{1}$ holds. But then $A /\left\langle v_{1}\right\rangle$ is elementary abelian and as $Z(A)=D(A)$ $=A^{\prime}=\left\langle v_{1}\right\rangle$ it follows that A is extraspecial. As A contains the elementary abelian group V of order 2^{n} it follows that A is of type $(+)$ and we are done.
(3) G splits over V.

Proof. We use the same notation as in (2). A result in $[1 ;(2.2)]$ tells us:
Assume \mathscr{V} is a $2 m$-dimensional orthogonal F_{2}-vectorspace of type (+) and $X \simeq G L(m, 2)$ is a subgroup of $O(\mathscr{V})$ such that X normalizes an isotropic subspace \mathscr{U} of dimension m. If $m \geqq 5$ then there is a X-invariant, isotropic subspace \mathscr{W} of \mathscr{V} such that $\mathscr{V}=\mathscr{U} \oplus \mathscr{W}$.

So we can find an elementary abelian subgroup W of $A,|W|=2^{n}$ such that W is H / A-admissible, $V W=A$ and $V \cap W=\left\langle v_{1}\right\rangle$. As H / W acts faithfully as a subgroup of $G L(n, 2)$ on W there is a subgroup $H_{1} \subset H$ such that $H_{1} \supset W, H_{1} / W \simeq G L(n-1,2)$ and $H_{1} \cap A=W$. Similarly, we have a subgroup H_{2} such that $H_{2} \supset V, H_{2} / V \simeq G L(n-1,2)$ and $H_{2} \cap A=V$. Then by the modular law:

$$
H_{1}=H_{1} \cap H=H_{1} \cap H_{2} W=\left(H_{1} \cap H_{2}\right) W
$$

and so

$$
G L(n-1,2) \simeq H_{1} / W \simeq\left(H_{1} \cap H_{2}\right) /\left\langle v_{1}\right\rangle
$$

Set $H_{3}=H_{1} \cap H_{2}$. Then H_{3} is an extension of the group $\left\langle v_{1}\right\rangle$ by $G L(n-1,2)$. By [2] this extension splits. So there is a group $H_{4} \subset H, H_{4} \simeq G L(n-1,2)$ and $H_{4} A=H$. Furthermore there is a H_{4}-admissible subgroup W_{0} of W with $W=\left\langle v_{1}\right\rangle \times W_{0}$. So $W_{0} H_{4} \cap V=1$ and by a result of Gaschütz the assertion follows (see $[4 ;$ I, 17.4]).

References

[1] Ulrich Dempwolff, 'Zentralisation zentraler Involutionen in L_{n} (2)' (submitted for publica tion Ill. J. Math.).
[2] Robert L. Griess, Jr. 'Schur multipliers of the known finite simple groups', Bull. Amer. Math. Soc. 78 (1972), 68-71.
[3] Robert L. Griess, Jr. 'Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology', (to appear).
[4] Bertram Huppert. Endliche Gruppern I (Springer, Berlin, 1967).
[5] Harriet Pollatsek, 'First cohomology groups of some linear groups over fields of characteristic two'. Ill. J. Math. 15 (1971), 393-417.

Ohio State University
Department of Mathematics
Columbus, Ohio 43210
U.S.A.

Present Address:
69 Heidelberg
Mat. Inst. der Universität
Germany

