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The purpose of this note is to prove the following result.

THEOREM A. Let G be a finite group with the following properties

(i) F<i G, | V\ = 2 " and V is elementary abelian,

(ii) G\V a GL(n,2),

(iii) CG(V) s V.

If n }t 6 then G splits over V.

We also may state this result in terms of the second cohomology group
H2(GL(n,2),V) where Kis the standard w-dimensional F2-module for GL(n,2).

THEOREM B. H2(GL(n,2), V) = 0 if n ^ 6.

REMARK. By [4; p. 124] we know that H'(GL(n,q), V) = 0 for 1 ^ i ^ 2
and q > 2 where V is the standard Fu-module for GL{n, q). A simple counting
argument shows Hl{GL{n,2), V) = 0 with the .sole exeption n = 3 where
dimF2H

l(GL(3,2),V) = 1.
It is known that there is a unique nonsplit extension of V by GL(n, 2) for

n = 3 and 4 with S2-subgroups of type G2(3) and -3 respectively. The case of a
faithful extension of V of order 25 by GL(5,2) will be treated somewhere else.

For results concerning H'(G, V) where 1 g i g 2 and G is either a symplectic
or an orthogonal group the reader may consult [3] and [5].

Proof of the theorem

By the assumptions of theorem A we may think about Fas an F 2 " v e c t o r s P a c e

acted upon G/V as the full automorphism group. We prove the assertion by a
series of lemmas.
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(1) If teG — Vacts as a transvection on Vthen there is a tezVsuch that
t2 = 1 .

PROOF. Choose a suitable basis vu •••,vn of V such that Cv(t) = <D2, ••-,»„>

and vl = i>t + y2 • If n is even choose elements Pi,---,pn/2 of order 3 in G such

that CV(pj) = (v1,---,v2i_3,v2i_2,v2i+l,v2i+2,---,vnya.nd permutes the non trivial
elements in <v2j_t, v2i>. If n — 1 is even choose pf for 1 ^ i g (n —1)/2 — 1
as above and choose P(n-i)/2 as an element of order 7 with CK(p(B_1)/2)
= <«!,•••,fB-3> and which acts irreducibly on <i;n_2,t)n_,,i;n>. Let X be the
group generated by V and the pf's. Then XjV acts fixed-point-free on V and T
normalizes X . A Frattini-argument gives us the assertion.

(2) Let Vi be a nontrivial element in V and H be its stabilizer in G. Then
O2(H) is an extraspecial group of width n — \ and type ( + ) (this means I O2(H)\
_ 22n~1 and O2(H) possesses an elementary abelian subgroup of order 2)
extended faithfully by a group isomorphic to GL(n —1,2).

PROOF. Set A = 02{H) and fix a basis t>i, •••,«„ of V. Then the action of

H\V on V in respect to this basis is described by matrices of the form
[ F L J

where Lis a regular (n — 1) x (n — l)-matrix over F2 and F is a (« — 1) x 1-matrix
over F2 . The elements of A\Vcorrespond to those matrices where Lis the identity
matrix. Hence [A, F ] = <>!>. By (1) we know that for aeA* either a2 = 1
or a2 = !>! holds. But then ^4/<i>i> is elementary abelian and as Z(A) = D(A)
= A' = <!>!> it follows that yl is extraspecial. As 4̂ contains the elementary abelian
group Fof order 2" it follows that A is of type ( + ) and we are done.

(3) G splits over V.

PROOF. We use the same notation as in (2). A result in [1 ; (2.2)] tells us:

Assume V is a 2m-dimensional orthogonal F2-vectorspace of type ( + )
and X ~ GL(m,2) is a subgroup of O(T "̂) such that X normalizes an isotropic
subspace °U of dimension m. If m ^ 5 then there is a X-invariant, isotropic
subspace W of V such that "T = % ®W.

So we can find an elementary abelian subgroup W of A, I WI = 2" such
that Wis HM-admissible, VW = A and V(~\ W = (v^. As HjW acts faithfully
as a subgroup of GL(n,2) on W there is a subgroup Ht <=H such that
# ! => W, HJW ~ GL(n-1,2) and Ht n A = W. Similarly, we have a sub-
group H2 such that H2 => V, H2/V~ GL{n-1,2) and if2 n 4 = V. Then by
the modular law:

Hy = Hi OH = /*! Oif2W = (tfx r\H2)W
and so

GL(n-1,2) ~ HJW ~ ( ^ nff2)/<0l>.
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Set H3 = Hi n H2. Then H3 is an extension of the group (vt} by GL(n — 1,2).

By [2] this extension splits. So there is a group H4 cH, H4 ~ GL(«-1,2) and

H 4 4 = H. Furthermore there is a /^-admissible subgroup Wo of W with

W = <i;,> x Wo. So W0H4 O V = 1 and by a result of Gaschiitz the assertion

follows (see [4; I, 17.4]).
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