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Abstract

A bipartite graph � = (+1, +2; �) with |+1 | + |+2 | = = is semilinear if +8 ⊆ R
38 for some 38 and the edge relation E

consists of the pairs of points (G1, G2) ∈ +1 × +2 satisfying a fixed Boolean combination of s linear equalities and

inequalities in 31+32 variables for some s. We show that for a fixed k, the number of edges in a  :,: -free semilinear

H is almost linear in n, namely |� | = $B,:, Y

(
=1+Y

)
for any Y > 0; and more generally, |� | = $B,:,A , Y

(
=A−1+Y

)

for a  :,...,: -free semilinear r-partite r-uniform hypergraph.

As an application, we obtain the following incidence bound: given =1 points and =2 open boxes with axis-parallel

sides in R3 such that their incidence graph is  :,: -free, there can be at most $:,Y

(
=1+Y

)
incidences. The same

bound holds if instead of boxes, one takes polytopes cut out by the translates of an arbitrary fixed finite set of

half-spaces.

We also obtain matching upper and (superlinear) lower bounds in the case of dyadic boxes on the plane, and

point out some connections to the model-theoretic trichotomy in o-minimal structures (showing that the failure of

an almost-linear bound for some definable graph allows one to recover the field operations from that graph in a

definable manner).
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1. Introduction

We fix A ∈ N≥2 and let � = (+1, . . . , +A ; �) be an r-partite and r-uniform hypergraph (or just an

r-hypergraph for brevity) with vertex sets +1, . . . , +A having |+8 | = =8 , (hyper-) edge set E and a total

number = =
∑A

8=1 =8 of vertices.

Zarankiewicz’s problem asks for the maximum number of edges in such a hypergraph H (as a function

of =1, . . . , =A ) assuming that it does not contain the complete r-hypergraph  :,...,: with : > 0 a fixed

number of vertices in each part. The following classical upper bound is due to Kővári, Sós and Turán [14]

for A = 2 and Erdős [9] for a general r: if H is  :,...,: -free, then |� | = $A ,:

(
=
A− 1

:A−1

)
. A probabilistic

construction in [9] also shows that the exponent cannot be substantially improved.

However, stronger bounds are known for restricted families of hypergraphs arising in geometric

settings. For example, if H is the incidence graph of a set of =1 points and =2 lines in R2, then H is

 2,2-free, and the Kővári–Sós–Turán Theorem implies |� | = $
(
=3/2

)
. The Szemerédi–Trotter Theorem

[20] improves this and gives the optimal bound |� | = $
(
=4/3

)
. More generally, [12] gives improved

bounds for semialgebraic graphs of bounded description complexity. This is generalised to semialgebraic

hypergraphs in [8]. In a different direction, the results in [12] are generalised to graphs definable in

o-minimal structures in [2] and, more generally, in distal structures in [4].

A related highly nontrivial problem is to understand when the bounds offered by the results in the

preceding paragraph are sharp. When H is the incidence graph of =1 points and =2 circles of unit radius

in R2, the best known upper bound is |� | = $
(
=4/3

)
, proven in [19] and also implied by the general

bound for semialgebraic graphs. Any improvement to this bound will be a step toward resolving the long-

standing unit-distance conjecture of Erdős (an almost-linear bound of the form |� | = $
(
=1+2/log log =

)

will positively resolve it).

This paper was originally motivated by the following incidence problem: Let H be the incidence

graph of a set of =1 points and a set of =2 solid rectangles with axis-parallel sides (which we refer

to as boxes) in R2. Assuming that H is  2,2-free – that is, no two points belong to two rectangles

simultaneously – what is the maximum number of incidences |� |? In the following theorem, we obtain

an almost-linear bound (which is much stronger than the bound implied by the aforementioned general

result for semialgebraic graphs) and demonstrate that it is close to optimal:

Theorem (A). 1. For any set P of =1 points in R2 and any set R of =2 boxes in R2, if the incidence graph

on %×' is  :,: -free, then it contains at most$:

(
= log4(=)

)
incidences (Corollary 2.38 with 3 = 2).

2. If all boxes in R are dyadic (i.e., direct products of intervals of the form [B2C , (B + 1)2C ) for some

integers B, C), then the number of incidences is at most $:

(
=

log(100+=1)

log log(100+=1)

)
(Theorem 4.7).

3. For an arbitrarily large n, there exists a set of n points and n dyadic boxes in R2 so that the incidence

graph is  2,2-free and the number of incidences is Ω
(
=

log(=)

log log(=)

)
(Proposition 3.5).

Problem 1.1. While the bound for dyadic boxes is tight, we leave it as an open problem to close the gap

between the upper and lower bounds for arbitrary boxes.

Remark 1.2. A related result in [11] demonstrates that every  :,: -free intersection graph of n convex

sets on the plane satisfies |� | = $: (=). Note that in Theorem (B) we consider a  :,: -free bipartite

graph, so in particular there is no restriction on the intersection graph of the boxes in R.
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Theorem (A.1) admits the following generalisation to higher dimensions and more general polytopes:

Theorem (B). 1. For any set P of =1 points and any set B of =2 boxes in R3 , if the incidence graph on

% × � is  :,: -free, then it contains at most $3,:

(
= log23 =

)
incidences (Corollary 2.38).

2. More generally, given finitely many half-spaces �1, . . . , �B in R3 , let F be the family of all possible

polytopes in R3 cut out by arbitrary translates of �1, . . . , �B . Then for any set P of =1 points in R3

and any set F of =2 polytopes in F, if the incidence graph on % × � is  :,: -free, then it contains at

most $:,B (= logB =) incidences (Corollary 2.37).

Problem 1.3. What is the optimal bound on the power of log = in Theorem (B)? In particular, does it

actually have to grow with the dimension d?

Remark 1.4. A bound similar to Theorem (B.1) and an improved bound for Theorem (A.1) in the  2,2-

free case are established independently by Tomon and Zakharov in [22], in which they also use our

Theorem (A.3) to provide a counterexample to a conjecture of Alon et al. [1] about the number of edges

in a graph of bounded separation dimension, as well as to a conjecture of Kostochka from [13]. Some

further Ramsey properties of semilinear graphs are demonstrated by Tomon in [21].

The upper bounds in Theorems (A.1) and (B) are obtained as immediate applications of a general

upper bound for Zarankiewicz’s problem for semilinear hypergraphs of bounded description complexity.

Definition 1.5. Let V be an ordered vector space over an ordered division ring R (e.g., R viewed as a

vector space over itself). A set - ⊆ +3 is semilinear, of description complexity (B, C), if X is a union of

at most t sets of the form

{
Ḡ ∈ +3 : 51 (Ḡ) ≤ 0, . . . , 5? (Ḡ) ≤ 0, 5?+1 (Ḡ) < 0, . . . , 5B (Ḡ) < 0

}
,

where ? ≤ B ∈ N and each 58 : +3 → + is a linear function – that is, of the form

5 (G1, . . . , G3) = _1G1 + · · · + _3G3 + 0

for some _8 ∈ ' and 0 ∈ + .

We focus on the case + = ' = R in the introduction, when these are precisely the semialgebraic sets

that can be defined using only linear polynomials.

Remark 1.6. By a standard quantifier elimination result [23, §7], every set definable in an ordered

vector space over an ordered division ring, in the sense of model theory, is semilinear (equivalently, a

projection of a semilinear set is a finite union of semilinear sets).

Definition 1.7. We say that an r-hypergraph H is semilinear, of description complexity (B, C), if there

exist some 38 ∈ N, +8 ⊆ R
38 and a semilinear set - ⊆ R3 =

∏
8∈[A ] R

38 of description complexity (B, C)

so that H is isomorphic to the r-hypergraph
(
+1, . . . , +A ; - ∩

∏
8∈[A ] +8

)
.

We stress that there is no restriction on the dimensions 38 in this definition. We obtain the following

general upper bound:

Theorem (C). If H is a semilinear r-hypergraph of description complexity (B, C) and H is  :,...,: -free,

then

|� | = $A ,B,C ,:

(
=A−1 logB(2

A−1−1) (=)
)
.

In particular, |� | = $A ,B,C ,:, Y

(
=A−1+Y

)
for any Y > 0 in this case. For a more precise statement, see

Corollary 2.36 (in particular, the dependence of the constant in $A ,B,C ,: on k is at most linear).

Remark 1.8. It is demonstrated in [17] that a similar bound holds in the situation when H is the

intersection hypergraph of (3 − 1)-dimensional simplices in R3 .
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One can get rid of the logarithmic factor entirely by restricting to the family of all finite r-hypergraphs

induced by a given  :,...,: -free semilinear relation (as opposed to all  :,...,: -free r-hypergraphs induced

by a given arbitrary semilinear relation, as in Theorem (C)).

Theorem (D). Assume that - ⊆ R3 =
∏

8∈[A ] R
38 is semilinear and X does not contain the direct

product of r infinite sets (e.g., if X is  :,...,: -free for some k). Then for any r-hypergraph H of the form(
+1, . . . , +A ; - ∩

∏
8∈[A ] +8

)
for some finite +8 ⊆ R

38 , we have |� | = $-

(
=A−1

)
.

This is Corollary 5.12 and follows from a more general Theorem 5.6 connecting linear Zarankiewicz

bounds to a model-theoretic notion of linearity of a first-order structure (in the sense that the matroid

given by the algebraic closure operator behaves like the linear span in a vector space, as opposed to the

algebraic closure in an algebraically closed field – see Definition 5.3).

In particular, for every  :,: -free semilinear relation - ⊆ R31 × R32 (equivalently, X definable with

parameters in the first-order structure (R, <, +) by Remark 1.6) we have |- ∩ (+1 × +2) | = $ (=) for all

+8 ⊆ R
38
8

, |+8 | = =8 , = = =1 + =2. One the other hand, by optimality of the Szemerédi–Trotter bound, for

the semialgebraic  2,2-free point-line incidence graph - =
{
(G1, G2; H1, H2) ∈ R

4 : G2 = H1G1 + H2

}
⊆

R2 × R2 we have |- ∩ (+1 × +2) | = Ω

(
=

4
3

)
. Note that in order to define it we use both addition and

multiplication – that is, the field structure. This is not coincidental; as a consequence of the trichotomy

theorem in o-minimal structures [18], we observe that the failure of a linear Zarankiewicz bound always

allows us to recover the field in a definable way (Corollary 5.11). In the semialgebraic case, we have the

following corollary that is easy to state (Corollary 5.14):

Theorem (E). Assume that - ⊆ R3 =
∏

8∈[A ] R
38 for some A, 38 ∈ N is semialgebraic and  :,...,: -free,

but |- ∩
∏

8∈[A ] +8 | ≠ $
(
=A−1

)
. Then the graph of multiplication × ↾[0,1] restricted to the unit box is

definable in (R, <, +, -).

We conclude with a brief overview of the paper.

In Section 2 we introduce a more general class of hypergraphs definable in terms of coordinate-wise

monotone functions (Definition 2.1) and prove an upper Zarankiewicz bound for it (Theorem 2.17).

Theorems (A.1), (B) and (C) are then deduced from it in Section 2.5.

In Section 3 we prove Theorem (A.3) by establishing a lower bound on the number of incidences

between points and dyadic boxes on the plane, demonstrating that the logarithmic factor is unavoidable

(Proposition 3.5).

In Section 4, we establish Theorem (A.2) by obtaining a stronger bound on the number of incidences

with dyadic boxes on the plane (Theorem 4.7). We use a different argument, relying on a certain partial

order specific to the dyadic case, to reduce from log4(=) given by the general theorem to log(=). Up to

a constant factor, this implies the same bound for incidences with general boxes when one counts only

incidences that are bounded away from the border (Remark 4.8).

Finally, in Section 5 we prove a general Zarankiewicz bound for definable relations in weakly locally

modular geometric first-order structures (Theorem 5.6), deduce Theorem (D) from it (Corollary 5.12)

and observe how to recover a real closed field from the failure of Theorem (D) in the o-minimal case

(Corollary 5.11).

2. Upper bounds

2.1. Coordinate-wise monotone functions and basic sets

For an integer A ∈ N>0, by an r-grid (or a grid, if r is clear from the context) we mean a cartesian

product � = �1× · · · ×�A of some sets �1, . . . , �A . As usual, [A] denotes the set {1, 2, . . . , A}.

If � = �1× · · · ×�A is a grid, then by a subgrid we mean a subset� ⊆ � of the form� = �1× · · · ×�A

for some �8 ⊆ �8 .
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Let B be an r-grid, S an arbitrary set and 5 : � → ( a function. For 8 ∈ [A], set

�8
= �1× · · · ×�8−1 × �8+1× · · · ×�A ,

and let c8 : � → �8 and c8 : � → �8 be the projection maps.

For 0 ∈ �8 and 1 ∈ �8 , we write 0 ⊕8 1 for the element 2 ∈ � with c8 (2) = 0 and c8 (2) = 1. In

particular, when 8 = A , 0 ⊕A 1 = (0, 1).

Definition 2.1. Let B be an r-grid and ((, <) a linearly ordered set. A function 5 : � → ( is coordinate-

wise monotone if for any 8 ∈ [A], 0, 0′ ∈ �8 and 1, 1′ ∈ �8 , we have

5 (0 ⊕8 1) ≤ 5 (0 ⊕8 1
′) ⇐⇒ 5 (0′ ⊕8 1) ≤ 5 (0′ ⊕8 1

′).

Remark 2.2. Let � = �1× · · · ×�A be an r-grid and Γ an ordered abelian group. We say that a function

5 : � → Γ is quasi-linear if there exist some functions 58 : �8 → Γ, 8 ∈ [A], such that

5 (G1, . . . , GA ) = 51(G1) + · · · + 5A (GA ).

Then every quasi-linear function is coordinate-wise monotone (as 5 (0⊕8 1) ≤ 5 (0⊕8 1
′) ⇔ 58 (1) ≤

58 (1
′) for any 0 ∈ �8).

Example 2.3. Suppose that V is an ordered vector space over an ordered division ring R, 38 ∈ N for

8 ∈ [A], and 5 : +31× · · · ×+3A → + is a linear function. Then f is obviously quasi-linear, and hence

coordinate-wise monotone.

Remark 2.4. Let B be a grid and� ⊆ � a subgrid. If 5 : � → ( is a coordinate-wise monotone function,

then the restriction 5 ↾ � is a coordinate-wise monotone function on C.

Definition 2.5. Let B be an r-grid. A subset - ⊆ � is a basic set if there exists a linearly ordered set

((, <), a coordinate-wise monotone function 5 : � → ( and ; ∈ ( such that - = {1 ∈ � : 5 (1) < ;}.

Remark 2.6. If A = 1, then every subset of � = �1 is basic.

Remark 2.7. If - ⊆ � is given by - = {1 ∈ � : 5 (1) ≤ ;} for some coordinate-wise monotone function

5 : � → (, then X is a basic set as well. Indeed, we can just add a new element ; ′ to S so that it is a

successor of l, and then - = {1 ∈ � : 5 (1) < ; ′}.

Similarly, the sets {1 ∈ � : 5 (1) > ;} , {1 ∈ � : 5 (1) ≥ ;} are basic, by inverting the order on S.

We have the following ‘coordinate-splitting’ presentation for basic sets:

Proposition 2.8. Let � = �1× · · · ×�A be an r-grid and - ⊆ � a basic set. Then there is a linearly

ordered set ((, <), a coordinate-wise monotone function 5 A : �A → ( and a function 5A : �A → ( such

that - = {1A ⊕A 1A : 5 A (1A ) < 5A (1A )}.

Remark 2.9. The converse of this proposition is also true: an arbitrary linear order ((, <) can be realised

as a subset of some ordered abelian group (�, +, <) with the induced ordering (we can take � := Q

when S is at most countable); then define 5 : � → ( by setting

5 (1A ⊕A 1A ) := 5 A (1A ) − 5A (1A ), and ; := 0.

Proof of Proposition 2.8. Assume that we are given a coordinate-wise monotone function 5 : � → (

and ; ∈ ( with - = {1 ∈ � : 5 (1) < ;}.

For 8 ∈ [A], let ≤8 be the preorder on �8 induced by f – namely, for 1, 1′ ∈ �8 we set 1 ≤8 1
′ if and

only if for some (equivalently, any) 0 ∈ �8 we have 5 (0 ⊕8 1) ≤ 5 (0 ⊕8 1
′).

Quotienting �8 by the equivalence relation corresponding to the preorder ≤8 if needed, we may

assume that each ≤8 is actually a linear order.
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Let <A be the partial order on �A with (11, . . . , 1A−1) <
A
(
1′

1
, . . . , 1′

A−1

)
if and only if

(11, . . . , 1A−1) ≠
(
1′1, . . . , 1

′
A−1

)
and 1 9 ≤ 9 1

′
9 for all 9 ∈ [A − 1] .

Define ) := �A ¤∪�A , where ¤∪ denotes the disjoint union. Clearly <A is a strict partial order on T –

that is, a transitive and antisymmetric (hence irreflexive) relation.

For any 1A ∈ �A and 1A ∈ �A , we define

1A ⊳ 1A if 5 (1A ⊕A 1A ) < ;, and 1A ⊳ 1
A otherwise.

Claim 2.10. Set 01, 02 ∈ �A and 11, 12 ∈ �A .

1. If 01 ⊳ 11 ⊳ 02 ⊳ 12, then 12 <A 11 and 01 ⊳ 12.

2. If 11 ⊳ 01 ⊳ 12 ⊳ 02, then 12 <A 11 and 11 ⊳ 02.

Proof. (1). We have 5 (02 ⊕A 11) ≥ ; and 5 (02 ⊕A 12) < ;, hence 12 <A 11. Since 5 (01 ⊕A 11) < ; and

12 <A 11 we also have 5 (01 ⊕A 12) < ;.

(2) is similar. �

Let ⊳C be the transitive closure of ⊳. It follows from the preceding claim that ⊳C = ⊳ ∪ ⊳◦⊳. More

explicitly, for 11, 12 ∈ �A , we have 11 ⊳
C 12 if 12 <A 11, and for 01, 02 ∈ �A , we have 01 ⊳

C 02 if

5 (01 ⊕ 1) < ; < 5 (02 ⊕ 1) for some 1 ∈ �A . It is not hard to see then that ⊳C is antisymmetric, and

hence it is a strict partial order on T.

Claim 2.11. The union <A ∪⊳C is a strict partial order on T.

Proof. We first show transitivity. Note that <A and ⊳C are both transitive, so it suffices to show for

G, H, I ∈ ) that if either G <A H ⊳C I or G ⊳C H <A I, then G ⊳C I. Furthermore, since ⊳C = ⊳ ∪ ⊳◦⊳, we

may restrict our attention to the following cases: If 01 <
A 02 ⊳ 1 with 01, 02 ∈ �A and 1 ∈ �A , then

5 (01 ⊕A 1) < 5 (02 ⊕A 1) < ;, and so 01 ⊳ 1. If 1 ⊳ 01 <
A 02 with 01, 02 ∈ �A and 1 ∈ �A , then

5 (02 ⊕A 1) > 5 (01 ⊕A 1) ≥ ;, and so 1 ⊳ 02.

To check antisymmetry, assume 01 <
A 02 and 02 ⊳

C 01. Since 01, 02 ∈ �A , we have 02 ⊳ 1 ⊳ 01 for

some 1 ∈ �A . We have 5 (01 ⊕A 1) ≥ ; > 5 (02 ⊕A 1), contradicting 01 <
A 02. �

Finally, let ≺ be an arbitrary linear order on ) = �A ¤∪�A extending <A ∪⊳C . Since ≺ extends ⊳, for

0 ∈ �A and 1 ∈ �A we have (0, 1) ∈ - if and only if 0 ≺ 1.

We take 5 A : �A → ) and 5A : �A → ) to be the identity maps. Since ≺ extends <A , the map 5 A is

coordinate-wise monotone. �

2.2. Main theorem

Definition 2.12. Let � = �1× · · · ×�A be an r-grid.

1. Given B ∈ N, we say that a set - ⊆ � has grid-complexity s (in B) if X is the intersection of B with

at most s basic subsets of B.

We say that X has finite grid-complexity if it has grid-complexity s for some B ∈ N.

2. For integers :1, . . . , :A we say that - ⊆ � is  :1 ,...,:A -free if X does not contain a subgrid

�1× · · · ×�A ⊆ ( with |�8 | = :8 .

In particular, B itself is the only subset of B of grid-complexity 0.

Example 2.13. Suppose that V is an ordered vector space over an ordered division ring, 3 = 31+· · ·+3A ∈

N and

- =
{
Ḡ ∈ +3 : 51 (Ḡ) ≤ 0, . . . , 5? (Ḡ) ≤ 0, 5?+1 (Ḡ) < 0, . . . , 5B (Ḡ) < 0

}
,
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for some linear functions 58 : +3 → +, 8 ∈ [B]. Then each 58 is coordinate-wise monotone (Example

2.3), and hence each of the sets

{
Ḡ ∈ +3 : 58 (Ḡ) < 0

}
,
{
Ḡ ∈ +3 : 58 (Ḡ) ≤ 0

}

is a basic subset of the grid +31× · · · ×+3A (the latter by Remark 2.7), and - ⊆ +31× · · · ×+3A as an

intersection of these s basic sets has grid-complexity s.

Remark 2.14. 1. Let B be an r-grid and � ⊆ � a subset of B of grid-complexity s. If� ⊆ � is a subgrid

containing A, then A is also a subset of C of grid-complexity s.

2. In particular, if � ⊆ � is a subset of grid-complexity s, then A is a subset of grid-complexity B of

the grid �1× · · · ×�A , where �8 := c8 (�) is the projection of A on �8 (it is the smallest subgrid of B

containing A).

Definition 2.15. Let � = �1× · · · ×�A be a finite r-grid and set =8 := |�8 |. For 9 ∈ {0, . . . , A}, we will

denote by XA9 (�) the integer

XA9 (�) :=
∑

81<82< · · ·<8 9 ∈[A ]

=81 · =82 · · · · · =8 9 .

Example 2.16. We have XA
0
(�) = 1, XA

1
(�) = =1 + · · · + =A , XAA (�) = =1=2 · · · =A .

We can now state the main theorem:

Theorem 2.17. For all integers A ≥ 2, B ≥ 0, : ≥ 2, there are U = U(A, B, :) ∈ R and V = V(A, B) ∈ N

such that for any finite r-grid B and  :,...,: -free subset � ⊆ � of grid-complexity s, we have

|�| ≤ UXAA−1(�) logV
(
XAA−1(�) + 1

)
.

Moreover, we can take V(A, B) := B
(
2A−1 − 1

)
.

Remark 2.18. Inspecting the proof in Sections 2.3 and 2.4, it can be verified that the dependence of U

on k in Theorem 2.17 s at most linear.

Remark 2.19. We use logV
(
XA
A−1

(�) + 1
)

instead of logV
(
XA
A−1

(�)
)

to include the case XA
A−1

(�) ≤ 1.

Remark 2.20. If, in Theorem 2.17, A is only assumed to be a union of at most t sets of grid-complexity

s, then the same bound holds with U′ := C · U (if � =
⋃

8∈[C ] �8 is  :,...,: -free, then each �8 is also

 :,...,: -free, so we can apply Theorem 2.17 to each �8 and bound |�| by the sum of their bounds).

Definition 2.21. Let � = �1× · · · ×�A be a grid. We extend the definition of XA9 to arbitrary finite subsets

of B as follows: let � ⊆ � be a finite subset, and let �8 := c8 (�), 8 ∈ [A], be the projections of A. We

define XA9 (�) := XA9 (�1× · · · ×�A ).

If B is a finite r-grid and � ⊆ �, then obviously XA9 (�) ≤ X
A
9 (�). Thus Theorem 2.17 is equivalent to

the following:

Proposition 2.22. For all integers A ≥ 2, B ≥ 0, : ≥ 2, there are U = U(A, B, :) ∈ R and V =

B
(
2A−1 − 1

)
∈ N such that for any r-grid B and  :,...,: -free finite subset � ⊆ � of grid-complexity ≤ B,

we have

|�| ≤ UXAA−1(�) logV
(
XAA−1(�) + 1

)
.

Definition 2.23. For A ≥ 1, B ≥ 0, : ≥ 2 and = ∈ N, let �A ,: (B, =) be the maximal size of a  :,...,: -free

subset A of grid-complexity s of some r-grid B with XA
A−1

(�) ≤ =.

https://doi.org/10.1017/fms.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.52


8 Abdul Basit et al.

Then Proposition 2.22 can be restated as follows:

Proposition 2.24. For all integers A ≥ 2, B ≥ 0, : ≥ 2, there are U = U(A, B, :) ∈ R and V = V(A, B) ∈ N

such that

�A ,: (B, =) ≤ U= logV (= + 1).

Remark 2.25. Notice that �A ,: (B, 0) = 0.

In the rest of the section we prove Proposition 2.24 by induction on r, where for each r it is proved

by induction on s. We will use the following simple recurrence bound:

Fact 2.26. Let ` : N→ N be a function satisfying `(0) = 0 and `(=) ≤ 2`(⌊=/2⌋) + U= logV (= + 1)

for some U ∈ R and V ∈ N. Then `(=) ≤ U′= logV+1(= + 1) for some U′ = U′(U, V) ∈ R.

2.3. The base case A = 2

Let � = �1×�2 be a finite grid and � ⊆ � a subset of grid-complexity s. We will proceed by induction

on s.

If B = 0, then � = �1 × �2. If A is  :,: -free, then one of the sets �1, �2 must have size at most k.

Hence |�| ≤ : (|�1 | + |�2 |) = :X
2
1
(�).

Thus

�2,: (0, =) ≤ :=.

Remark 2.27. The same argument shows that �A ,: (0, =) ≤ := for all A ≥ 2.

Assume now that the theorem is proved for A = 2 and all B′ < B. Define =1 := |�1 |, =2 := |�2 | and

= := X2
1
(�) = =1 + =2.

We choose basic sets -1, . . . , -B ⊆ � such that � = � ∩
⋂

9∈[B] - 9 .

By Proposition 2.8, we can choose a finite linear order ((, <) and functions 51 : �1 → ( and

52 : �2 → ( so that

-B = {(G1, G2) ∈ �1 × �2 : 51 (G1) < 52(G2)} .

For ; ∈ (, 8 ∈ {1, 2} and � ∈ {<,=, >, ≤, ≥}, let

��;8 = {1 ∈ �8 : 58 (1)�;} .

We choose ℎ ∈ ( such that

���<ℎ
1

�� +
���<ℎ

2

�� ≤ =/2 and
���>ℎ

1

�� +
���>ℎ

2

�� ≤ =/2.

For example, we can take h to be the minimal element in 51(�1)∪ 52 (�2) with
���≤ℎ

1

��+
���≤ℎ

2

�� ≥ =/2. Then

-B =

[(
�<ℎ

1 × �<ℎ
2

)
∩ -B

]
∪
[(
�>ℎ

1 × �>ℎ
2

)
∩ -B

]
∪
(
�<ℎ

1 × �≥ℎ
2

)
∪
(
�=ℎ

1 × �>ℎ
2

)
.

Hence we conclude

�2,: (B, =) ≤ 2�2,: (B, ⌊=/2⌋) + 2�2,: (B − 1, =).

Applying the induction hypothesis on s and using Fact 2.26 and Remark 2.25, we obtain �2,: (B, =) ≤

U=(log =)V for some U = U(B, :) ∈ R and V = V(B) ∈ N.

This finishes the base case A = 2.
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2.4. Induction step

We fix A ∈ N≥3 and assume that Proposition 2.24 holds for all pairs (A ′, B) with A ′ < A and B ∈ N.

Definition 2.28. Let � = �1× · · · ×�A be a finite r-grid.

1. For integers C, D ∈ N, we say that a subset � ⊆ � is of split grid-complexity (C, D) if there are basic

sets -1, . . . , -D ⊆ �, a subset �A ⊆ �1× · · · ×�A−1 of grid-complexity t and a subset �A ⊆ �A such

that � = (�A × �A ) ∩
⋂

8∈[D ] -8 .

2. For C, D ≥ 0, : ≥ 2 and = ∈ N, let �: (C, D, =) be the maximal size of a  :,...,: -free subset A of an

r-grid B of split grid-complexity (C, D) with XA
A−1

(�) ≤ =.

Remark 2.29. 1. Note that �A has grid-complexity at most 1, which is the reason we do not include a

parameter for the grid-complexity of �A in the split grid-complexity of A.

2. If � ⊆ � is of grid-complexity s, then it is of split grid-complexity (0, B).

3. If � ⊆ � is of split grid-complexity (C, D), then it is of grid-complexity C + D.

For the rest of the proof, we abuse notation slightly and refer to the split grid-complexity of a set as

simply the grid-complexity. To complete the induction step we will prove the following proposition:

Proposition 2.30. For any integers C, D ≥ 0, : ≥ 2, A ≥ 3, there are U′ = U′(A, :, C, D) ∈ R and

V′ = V′(A, :, C, D) ∈ N such that

�: (C, D, =) ≤ U
′= logV′

(= + 1).

We will use the following notations throughout the section:

◦ � = �1× · · · ×�A is a finite grid with = = XA
A−1

(�);

◦ � ⊆ � is a subset of grid-complexity (C, D);

◦ �A is the (A − 1)-grid �A := �1× · · · ×�A−1;

◦ �A ⊆ �A is a subset of grid-complexity t, �A ⊆ �A , and -1, . . . -D ⊆ � are basic subsets such that

� = (�A×�A ) ∩
⋂

8∈[D ] -8 .

We proceed by induction on u.

The base case D = 0 of Proposition 2.30.

In this case, � = �A × �A . If A is  :,...,: -free, then either �A is  :,...,: -free or |�A | < : .

In the first case, by the induction hypothesis on r, there are U = U(A −1, C, :) and V = V(A −1, C) such

that |�A | ≤ UXA−1
A−2

(�A ) logV
(
XA−1
A−2

(�A ) + 1
)
. In the second case, we have |�| ≤ |�A |: = XA−1

A−1
(�A ): .

Since = = XA
A−1

(�) = XA−1
A−1

(�A ) + XA−1
A−2

(�A ) |�A |, the conclusion of the proposition follows with

U′ := U, V′ := V.

Induction step of Proposition 2.30.

We assume now that the proposition holds for all pairs (C, D′) with D′ < D and C ∈ N.

Given a tuple G = (G1, . . . , GA ) ∈ �, we set GA := (G1, . . . , GA−1). By Proposition 2.8, we can choose a

finite linear order ((, <), a coordinate-wise monotone function 5 A : �A → ( and a function 5A : �A → (

so that

-D = {GA ⊕A GA ∈ �A × �A : 5 A (GA ) < 5A (GA )} .

Moreover, by Remark 2.9 we may assume without loss of generality that the coordinate-wise monotone

function defining -D is given by

5 (GA ⊕A GA ) = 5 A (GA ) − 5A (GA ).

Definition 2.31. Given an arbitrary set �A ⊆ �A , we say that a set �A ⊆ �A is an 5 A -strip in �A if

�A
= {GA ∈ �A : ;1 ⊳1 5

A (GA ) ⊳2 ;2}
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for some ;1, ;2 ∈ (, ⊳1, ⊳2 ∈ {<, ≤}. Likewise, given an arbitrary set �A ⊆ �A , we say that �A ⊆ �A is

an 5A -strip in �A if

�A = {GA ∈ �A : ;1 ⊳1 5A (GA ) ⊳2 ;2}

for some ;1, ;2 ∈ (, ⊳1, ⊳2 ∈ {<, ≤}. If �A = �A or �A = �A , we simply say an 5 A -strip or 5A -strip,

respectively.

Remark 2.32. Note the following:

1. �A is an 5 A -strip, and �A is an 5A -strip.

2. Every 5 A -strip is a subset of the (A − 1)-grid �A of grid-complexity C + 2 (using Remark 2.7).

3. The intersection of any two 5 A -strips is an 5 A -strip; the same conclusion holds for 5A -strips.

Definition 2.33. 1. We say that a subset � ⊆ � is an f-grid if � = �A × �A , where �A ⊆ �A is an

5 A -strip in �A and �A ⊆ �A is an 5A -strip in �A .

2. If � = �A × �A is an f -grid, we set

Δ (�) := |�A | + XA−1
A−2 (�

A ) |�A | (see Definition 2.21 for XA−1
A−2).

Note that if H is a sub-grid of B, then Δ (�) = XA
A−1

(�).

3. For an f -grid H, we will denote by �� the set � ∩ �.

The induction step for Proposition 2.30 will follow from the following proposition:

Proposition 2.34. For all integers : ≥ 2, A ≥ 3, there areU′ = U′(A, :, C, D) ∈ R and V′ = V′(A, C, D) ∈ N

such that, for any f-grid H, if the set �� is  :,...,: -free then

|�� | ≤ U′
Δ (�) logV′

(Δ (�) + 1).

We should stress that in this proposition, U′ and V′ do not depend on 5 A , 5A , B, �A , and �A , but they

may depend on our fixed t and u.

Given Proposition 2.34, we can apply it to the f -grid � := �A × �A (so �� = �) and get

|�| ≤ U′
Δ (�) logV′

(Δ (�) + 1).

It is easy to see that Δ (�A ×�A ) ≤ X
A
A−1

(�), and hence Proposition 2.30 follows with the same U′ and V′.

We proceed with the proof of Proposition 2.34:

Proof of Proposition 2.34. Fix< ∈ N, and let !(<) be the maximal size of a  :,...,: -free set �� among

all f -grids � ⊆ � with Δ (�) ≤ <. We need to show that for some U′ = U′(:) ∈ R and V′ ∈ N we have

!(<) ≤ U′< logV′

(< + 1).

Let � = �A × �A be an f -grid with Δ (�) ≤ <.

For ; ∈ ( and � ∈ {<,=, >, ≤, ≥}, define

�A ,�; := {GA ∈ �A : 5 A (GA )�;}

and

��;A := {GA ∈ �A : 5A (GA )�;} .

Note that for every ; ∈ (, �A ,�; is an 5 A -strip in �A , ��;A is an 5A -strip in �A and their product is an

f -grid.
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Claim 2.35. There is ℎ ∈ ( such that

Δ

(
�A ,<ℎ × �<ℎ

A

)
≤ </2 and Δ

(
�A ,>ℎ × �>ℎ

A

)
≤ </2.

Proof. Set X := XA−1
A−2

(�A ).

Let h be the minimal element in 5 A (�A ) ∪ 5A (�A ) with

���A ,≤ℎ
�� + X

���≤ℎ
A

�� ≥ </2.

Then
���A ,<ℎ

�� + X
���<ℎ

A

�� ≤ </2 and
���A ,>ℎ

�� + X
���>ℎ

A

�� ≤ </2. Since �A ,<ℎ , �A ,>ℎ ⊆ �A , we have

XA−1
A−2

(
�A ,<ℎ

)
, XA−1

A−2

(
�A ,>ℎ

)
≤ X. The claim follows. �

Let h be as in the claim. It is not hard to see that the following hold:

(
�A ,≤ℎ × �≥ℎ

A

)
∩ -D =

(
�A ,<ℎ × �≥ℎ

A

)
∪
(
�A ,=ℎ × �>ℎ

A

)
,

(
�A ,≥ℎ × �≤ℎ

A

)
∩ -D = ∅.

It follows that

�� ∩ -D =

[(
�A ,<ℎ × �<ℎ

A

)
∩ -D

]
∪
[(
�A ,>ℎ × �>ℎ

A

)
∩ -D

]
∪
(
�A ,<ℎ × �≥ℎ

A

)
∪
(
�A ,=ℎ × �>ℎ

A

)
.

Hence, by the choice of h and using Remark 2.32(2),

!(<) ≤ 2!(⌊</2⌋) + 2�: (C + 2, D − 1, <).

Applying the induction hypothesis on u and using Fact 2.26, we obtain !(<) ≤ U′< logV′

(< + 1) for

some U′ = U′(:) ∈ R and V′ ∈ N.

This finishes the proof of Proposition 2.34, and hence of the induction step of Proposition 2.24. �

Finally, inspecting the proof, we have shown the following:

1. V(2, B) ≤ B for all B ∈ N.

2. V′(A, C, 0) ≤ V(A − 1, C) for all A ≥ 3 and C ∈ N.

3. V′(A, C, D) ≤ V′(A, C + 2, D − 1) + 1 for all A ≥ 3, C ≥ 0, D ≥ 1.

Iterating (3), for every A ≥ 3, B ≥ 1 we have V(A, B) ≤ V′(A, 0, B) ≤ V′(A, 2B, 0) + B. Hence, by (2),

V(A, B) ≤ V(A−1, 2B)+B for every A ≥ 3 and B ≥ 1. Iterating this, we get V(A, B) ≤ V
(
2, 2A−2B

)
+B

∑A−3
8=0 28 .

Using (1), this implies V(A, B) ≤ B
∑A−2

8=0 28 = B
(
2A−1 − 1

)
for all A ≥ 3, B ≥ 1. Hence, by Remark 2.27

and (1) again, V(A, B) ≤ B
(
2A−1 − 1

)
for all A ≥ 2, B ≥ 0.

2.5. Some applications

We observe several immediate applications of Theorem 2.17, starting with the following bound for

semilinear hypergraphs:

Corollary 2.36. For every A, B, C, : ∈ N, A ≥ 2, there exist some U = U(A, B, C, :) ∈ R and V(A, B) :=

B
(
2A−1 − 1

)
satisfying the following: for any semilinear  :,...,: -free r-hypergraph � = (+1, . . . , +A ; �)

of description complexity (B, C) (see Definition 1.7), taking + :=
∏

8∈[A ] +8 we have

|� | ≤ UXAA−1(+) logV
(
XAA−1(+) + 1

)
.

Proof. By assumption, the edge relation E can be defined by a union of t sets, each of which is defined

by s linear equalities and inequalities, hence of grid-complexity ≤ B (see Example 2.13). The conclusion

follows by Theorem 2.17 and Remark 2.20. �
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As a special case with A = 2, this implies a bound for the following incidence problem:

Corollary 2.37. For every B, : ∈ N there exists some U = U(B, :) ∈ R satisfying the following:

Let 3 ∈ N and �1, . . . , �B ⊆ R3 be finitely many (closed or open) half-spaces in R3 . Let F be the

(infinite) family of all possible polytopes in R3 cut out by arbitrary translates of �1, . . . , �B .

For any set P of =1 points in R3 and any set F of =2 polytopes in F, if the incidence graph on % × �

is  :,: -free, then it contains at most U= logB = incidences.

Proof. We can write

�8 =



Ḡ = (G1, . . . , G3) ∈ R

3 :
∑

9∈[3 ]

08, 9G 9�818



,

where 08, 9 , 18 ∈ R and �8 ∈ {>, ≥} for 8 ∈ [B], 9 ∈ [3] depending on whether �8 is an open or a closed

half-space.

Every polytope � ∈ F is of the form
⋂

8∈[B] ( H̄8 + �8) for some ( H̄1, . . . , H̄B) ∈ R
B3 , where H̄8 + �8 is

the translate of �8 by the vector H̄8 =
(
H8,1, . . . , H8,3

)
∈ R3 – that is,

H̄8 + �8 =



Ḡ ∈ R3 :

∑

9∈[3 ]

08, 9G 9 +
∑

9∈[3 ]

(
−08, 9

)
H 9�818



.

Then the incidence relation between points in R3 and polytopes in F can be identified with the

semilinear set





(
Ḡ;

(
H8, 9

)
8∈[B], 9∈[3 ]

)
∈ R3 × RB3 :

∧

8∈[B]

∑

9∈[3 ]

08, 9G 9 +
∑

9∈[3 ]

(
−08, 9

)
H8, 9�818





defined by s linear inequalities. The conclusion now follows by Corollary 2.36 with A = 2. �

In particular, we get a bound for the original question that motivated this paper.

Corollary 2.38. Let F3 be the family of all (closed or open) boxes in R3 . Then for every k there exists

some U = U(3, :) satisfying the following: for any set P of =1 points in R3 and any set F of =2 boxes in

F3 , if the incidence graph on % × � is  :,: -free, then it contains at most U= log23 = incidences.

Proof. This is immediate from Corollary 2.37, since we have 23 half-spaces in R3 such that every box

in R3 is cut out by the intersection of their translates. �

3. Lower bounds

While we do not know if the bound V(2, B) ≤ B in Theorem 2.17 is optimal, in this section we show

that at least the logarithmic factor is unavoidable already for the incidence relation between points and

dyadic boxes in R2.

We describe a slightly more general construction first. Fix 3 ∈ N>0.

Definition 3.1. Given finite tuples ?̄ = (?1, . . . , ?=), @̄ = (@1, . . . , @=) and Ā = (A1, . . . , A<) with

?8 , @8 , A8 ∈ R
3 – say ?8 =

(
?8,1, . . . , ?8,3

)
, @8 =

(
@8,1, . . . , @8,3

)
, A8 =

(
A8,1, . . . , A8,3

)
– we say that ?̄

and @̄ have the same order-type over Ā if

?8, 9�?8′, 9′ ⇐⇒ @8, 9�@8′, 9′ and

?8, 9�A:, 9′ ⇐⇒ @8, 9�A:, 9′

for all � ∈ {<, >, =}, 1 ≤ 8, 8′ ≤ =, 1 ≤ 9 , 9 ′ ≤ 3 and 1 ≤ : ≤ <.

https://doi.org/10.1017/fms.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.52


Forum of Mathematics, Sigma 13

In other words, the tuples
(
?8, 9 : 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ 3

)
and

(
@8, 9 : 1 ≤ 8 ≤ =, 1 ≤ 9 ≤ 3

)
have the

same quantifier-free type over the set
{
A8, 9 : 1 ≤ 8 ≤ <, 1 ≤ 9 ≤ 3

}
in the structure (R, <).

Remark 3.2. Assume that % = {?1, . . . , ?=} ⊆ R3 is a finite set of points and B is a finite set of

d-dimensional open boxes with axis-parallel sides, with I incidences between P and B.

1. By perturbing P and B slightly, we may assume that for every 1 ≤ 9 ≤ 3, all points in P have pairwise

distinct jth coordinates ?1, 9 , . . . , ?=, 9 , and none of the points in P belongs to the border of any of

the boxes in B, while the incidence graph between P and B remains unchanged.

2. Let Ā be the tuple listing all corners of all boxes in B. If %′ =
{
?′

1
, . . . , ?′=

}
⊆ R3 is an arbitrary set

of points with the same order-type as P over Ā , then the incidence graph on % × � is isomorphic to

the incidence graph on %′ × �.

We have the following lemma for combining point-box incidence configurations in a higher-

dimensional space:

Lemma 3.3. Given any 3, =1, =2, =
′
1
, =′

2
, <, <′ ∈ N>0, assume that:

1. there exists a set of points %3−1 ⊆ R3−1 with
��%3−1

�� = =1 and a set of (3 − 1)-dimensional boxes

�3−1 with
���3−1

�� = =2, with m incidences between them and the incidence graph  2,2-free; and

2. there exists a set of points %3 ⊆ R3 with
��%3

�� = =′
1

and a set of d-dimensional boxes �3 with���3
�� = =′

2
, with <′ incidences between them and the incidence graph  2,2-free.

Then there exists a set of points % ⊆ R3 with |% | = =1=
′
1

and a set of d-dimensional boxes B with

|� | = =1=
′
2
+ =′

1
=2, so that there are =1<

′ + <=′
1

incidences between P and B and their incidence graph

is still  2,2-free.

Proof. By Remark 3.2(1) we may assume that for every 1 ≤ 9 ≤ 3, all points in %3 have pairwise

distinct jth coordinates; for every 1 ≤ 9 ≤ 3−1, all points in %3−1 have pairwise distinct jth coordinates;

and none of the points is on the border of any of the boxes. Write %3−1 as ?1, . . . , ?=1
. Let Ā be the tuple

listing all corners of all boxes in �3−1.

Using this, for each ?8 we can choose a very small (3 − 1)-dimensional box V8 with ?8 ∈ V8 and such

that for any choice of points ?′8 ∈ V8 , 1 ≤ 8 ≤ =1, we have that
(
?′

1
, . . . , ?′=1

)
has the same order-type as

(?1, . . . , ?=1
) over Ā . In particular, every V8 is pairwise disjoint, and the incidence graph between %3−1

and �3−1 is isomorphic to the incidence graph between
(
?′8 , . . . , ?

′
=1

)
and �3−1 by Remark 3.2(2).

Contracting and translating while keeping the dth coordinate unchanged, for each 1 ≤ 8 ≤ =1 we can

find a copy
(
%3
8
, �3

8

)
of the configuration

(
%3 , �3

)
entirely contained in the box V8 × R – that is,

◦ all points in %3
8

and boxes in �3
8

are contained in V8 × R;

◦ the incidence graph on
(
%3
8
, �3

8

)
is isomorphic to the incidence graph on

(
%3 , �3

)
; and

◦ for all i, the dth coordinate of every point in %3
8

is the same as the dth coordinate of the

corresponding point in %3 .

Set % :=
⋃

1≤8≤=1
%3
8

and �′ :=
⋃

1≤8≤=1
�3
8
; then |% | = =1=

′
1
, |�′ | = =1=

′
2

and there are =1<
′ incidences

between P and �′.

Write %3 as @1, . . . , @=′
1

and �3−1 as 21, . . . , 2=2
. As all of the dth coordinates of the points in %3 are

pairwise disjoint, for each 1 ≤ 9 ≤ =′
1

we can choose a small interval � 9 ⊆ R with @ 9 ,3 ∈ � 9 and such

that all of the intervals � 9 , 1 ≤ 9 ≤ =′
1
, are pairwise disjoint. For each 1 ≤ 9 ≤ =′

1
and 2; ∈ �

3−1, we

consider the d-dimensional box 2 9 ,; := 2; × � 9 . Define � 9 :=
{
2 9 ,; : 1 ≤ ; ≤ =2

}
. For each 1 ≤ 8 ≤ =1

and 1 ≤ 9 ≤ =′
1
, (V8 × R) ∩

(
R3−1 × � 9

)
contains exactly one point @8, 9 (given by the copy of @ 9 in

%3
8
), and the projection @′8, 9 of @8, 9 onto the first 3 − 1 coordinates is in V8 . Hence the incidence graph

between P and � 9 is isomorphic to the incidence graph between %3−1 and �3−1 by the choice of the

V8s, and in particular the number of incidences is m.

Finally, define � := �′∪
⋃

1≤ 9≤=′
1
� 9 ; then |� | = =1=

′
2
+=′

1
=2. Note that 2 9 ,; ∩ 2 9′,;′ = ∅ for 9 ≠ 9 ′ and

any ;, ; ′ – that is, no box in � 9 intersects any of the boxes in � 9′ for 9 ≠ 9 ′. It is now not hard to check that
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the incidence graph between P and B is  2,2-free, by construction and the assumptions of  2,2-freeness

of
(
%3 , �3

)
and

(
%3−1, �3−1

)
, and that there are =1<

′ + <=′
1

incidences between P and B. �

Remark 3.4. It follows from the proof that if all the boxes in �3−1 and �3 are dyadic (see Definition

4.6), then we can choose the boxes in B to be dyadic as well.

Proposition 3.5. For any ℓ ∈ N, there exist a set P of ℓℓ points and a set B of ℓℓ dyadic boxes in R2

such that their incidence graph is  2,2-free and the number of incidences is ℓℓℓ .

In particular, substituting = := ℓℓ , this shows that the number of incidences grows as Ω
(
=

log =

log log =

)
.

Proof. Given d, assume that there exist  2,2-free ‘point–dyadic box’ configurations satisfying Lemma

3.3(1) and (2) for some parameters 3, =1, =2, =
′
1
, =′

2
, <, <′. Then for any 9 ∈ N, we can iterate the lemma

j times and find a  2,2-free ‘point–dyadic box’ configuration in R3 with =
9

1
=′

1
points, =

9

1
=′

2
+ 9=

9−1

1
=′

1
=2

dyadic boxes (Remark 3.4) and =
9

1
<′ + 9=

9−1

1
=′

1
< incidences.

In particular, let 3 = 2 and let ℓ be arbitrary. We can start with =1 = ℓ, =2 = 1, < = ℓ (one dyadic

interval containing =1 points in R) and =′
1
= 1, =′

2
= 0, <′ = 0 (one point and zero dyadic boxes in R2).

Taking 9 := ℓ, we then find a  2,2-free configuration with ℓℓ points, ℓℓ dyadic boxes and ℓℓℓ incidences.

Hence for = := : : , we have n points, n boxes and Ω

(
=

log =

log log =

)
incidences. �

Remark 3.6. We remark that the construction in Lemma 3.3 cannot produce a  2,2-free configuration

with more than $
(
=

log =

log log =

)
incidences in R3 for any d.

Indeed, using the ‘coordinates’
(
log =′

1
,
=′

2

=′
1
, <

′

=′
1

)
instead of

(
=′

1
, =′

2
, <′

)
, where the coordinates

correspond to the number of points, boxes and incidences, respectively, the lemma says that if(
log =1,

=2

=1
, <
=1

)
is attainable in 3 − 1 dimensions and

(
log =′

1
,
=′

2

=′
1
, <

′

=′
1

)
is attainable in d dimensions,

then
(
log =′

1
+ log =1,

=′
2

=′
1
+ =2

=1
, <

′

=′
1
+ <

=1

)
is attainable in d dimensions. Thus, one adds the vector

(
=2

=1
, <
=1

)

to
(
=′

2

=′
1
, <

′

=′
1

)
. We want to maximise the second coordinate of this vector while keeping the first coordinate

below 1, and the optimal way to do this essentially is to add =1 times the vector
(

1
=1
, 1
)
, which increases

log =′
1

by =1 log =1 and gives the
log =

log log =
lower bound.

We thus ask whether in the ‘point-box’ incidence bound in R3 the power of log = has to grow with

the dimension d (see Problem 1.3).

4. Dyadic rectangles

In this section we strengthen the bound on the number of incidences with rectangles on the plane

with axis-parallel sides given by Corollary 2.38 – that is, $:

(
= log4 =

)
– in the special case of dyadic

rectangles, using a different argument (which relies on a certain partial order specific to the dyadic case).

4.1. Locally d-linear orders

Throughout this section, let (%, ≤) be a partially ordered set of size at most =1, and let L be a collection

of subsets of P (possibly with repetitions) of size at most =2. As before, we let = = =1 + =2.

Definition 4.1. We say that a set ( ⊆ % is d-linear if it contains no antichains of size greater than d, and

(%, ≤) is locally d-linear if any interval [0, 1] = {G ∈ % : 0 ≤ G ≤ 1} is d-linear.

Note that d-linearity is preserved under removing points from P.

Definition 4.2. The collection L is said to be a  :,: -free arrangement if for any 01 ≠ · · · ≠ 0: ∈ %,

there are at most : − 1 sets from L containing all of them simultaneously.
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Observe that if one removes any number of points from P or removes any number of sets from L, one

still obtains a  :,: -free arrangement. We now state the main theorem of this section:

Theorem 4.3. Suppose (%, <) is locally d-linear and L is a  :,: -free arrangement of d-linear subsets

of P. Then

∑

ℓ∈!

|ℓ | = $3,:

(
=

log(100 + =1)

log log(100 + =1)

)
.

To prove this theorem, we first need some definitions and a lemma. If G ∈ %, define a parent of x to

be an element H ∈ % with H > G and no element between x and y, and similarly define a child of x to be

an element I ∈ % with I < G and no element between z and x. We say that z is a strict t-descendant of

x if there are some elements I0 = G > I1 > · · · > IC = I such that I8+1 is a child of I8 , and that z is a

t-descendant of x if it is a strict s-descendant for some 0 ≤ B ≤ C.

Lemma 4.4. Fix 3, : ∈ N. Let L be a  :,: -free arrangement of d-linear subsets of P and let < > 0. Let

%′ denote the set of all elements in P which have a (: − 1)-descendant with more than m children. Then

∑

ℓ∈!

|ℓ | ≤
∑

ℓ∈!

|ℓ ∩ %′ | + 3 (: − 1) |! | + (: − 1)<:−1(|% | − |%′ |).

Proof. Let %′′ := %\%′ denote the set of elements G ∈ % such that every (: − 1)-descendant of x has at

most m children. Then we can rearrange the desired inequality as

∑

ℓ∈!

|ℓ ∩ %′′ | ≤ 3 (: − 1) |! | + (: − 1)<:−1 |%′′ |.

The quantity
∑

ℓ∈! |ℓ ∩ %
′′ | is counting incidences (G, ℓ) where ℓ ∈ ! and G ∈ %′′ ∩ ℓ.

Given ℓ ∈ !, call a point G ∈ ℓ low if it has no descending chain of length : − 1 under it in ℓ. Every

ℓ can contain at most 3 (: − 1) low points. Indeed, as ℓ is d-linear, it has at most d minimal elements.

Removing them, we obtain a d-linear set ℓ1 ⊆ ℓ such that every point in it contains an element under it

in ℓ, and ℓ1 itself has at most d minimal elements. Remove them to obtain a d-linear set ℓ2 ⊆ ℓ1 such

that each point in it contains a descending chain of length 2 under it in ℓ, and so on.

Hence each ℓ ∈ ! contributes at most 3 (: − 1) incidences with its low points, giving a total

contribution of at most 3 (: − 1) |! | to the sum. If x is not a low point on ℓ, then there are some

I1 < · · · < I:−1 < G in ℓ, with each one a child of the next one. As L is a  :,: -free arrangement, among

the sets ℓ ∈ ! there are at most : −1 containing all these points. By the definition of %′′, for each G ∈ %′′

there are at most <:−1 choices for such tuples (I1, . . . , I:−1). Hence x is incident to at most (: −1)<:−1

sets ℓ ∈ ! for which it is not low, and the total number of contributions of incidences in this case is at

most (: − 1)<:−1 |%′′ |, so the claim follows. �

Now we prove Theorem 4.3. Let t be a natural number to be chosen later and < > 0 be another

parameter to be chosen later. Define the subsets

% = %0 ⊃ %1 ⊃ · · · ⊃ %C

of P by defining %0 := %, and for each 8 = 0, . . . , C − 1, defining %8+1 to be the set of points in %8 that

have a (: − 1)-descendant with more than m children in (%8 , <). By Lemma 4.4, we have

∑

ℓ∈!

|ℓ ∩ %8 | ≤
∑

ℓ∈!

|ℓ ∩ %8+1 | + 3 (: − 1) |! | + (: − 1)<:−1(|%8 | − |%8+1 |)

https://doi.org/10.1017/fms.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.52


16 Abdul Basit et al.

for all 8 = 0, . . . , C − 1, and hence on telescoping,

∑

ℓ∈!

|ℓ | ≤
∑

ℓ∈!

|ℓ ∩ %C | + 3 (: − 1)C |! | + (: − 1)<:−1=1.

Claim 4.5. Let x be a point in %C . Then it has at least <C

(:3:)
C−1 distinct descendants in P.

Proof. By definition of %C there is some (: − 1)-descendant G ′ ∈ %C−1 of x which has at least <

children in %C−1. Let (C−1 ⊆ %C−1 denote the set of children of G ′, so |(C−1 | ≥ <. By reverse induction

for 8 = C − 1, C − 2, . . . , 0, we choose sets (8 ⊆ %8 of descendants of x so that |(8−1 | ≥
|(8 |<

:3: . Then

|(0 | ≥
<C

(:3:)
C−1 , as wanted.

Let (8 be given. By the definition of %8 and the pigeonhole principle, there is some 0 ≤ B ≤ : −1 and

(′8 ⊆ (8 such that
��(′8

�� ≥ |(8 |
:

and every H ∈ (′8 has a strict s-descendant IH ∈ %8−1 with at least m children

in %8−1. Fix a path �H of length s connecting y to IH , and for 0 ≤ A ≤ B let IAH denote the rth element on

the path �H (so I0H = H, IBH = IH and IA+1
H is a child of IAH). Define �A :=

{
IAH : H ∈ (′8

}
, so �0 = (′8 . Then

���A+1
�� ≥ |� A |

3
(otherwise there is some element I ∈ �A+1 which has at least 3 + 1 different parents in �A ,

which would then form an antichain of size 3 + 1, contradicting the local d-linearity of P). Hence

|�B | ≥

���0
��

3B
≥

��(′8
��

3:−1
≥

|(8 |

:3:−1
.

Now by hypothesis every element in �B has at least m children in %8−1; denote the set of all the children

of the elements in �B by (8−1 ⊆ %8−1. Then, again by d-linearity, |(8−1 | ≥
|� B |<
3

≥
|(8 |<

:3: . �

Thus if we choose <, C such that

( <
:3:

) C
> =1,

then we will get a contradiction, unless %C is empty. We conclude, for such m and t, that

∑

ℓ∈!

|ℓ | ≤ 3 (: − 1)C |! | + (: − 1)<:−1=1.

If we take < :=
(

2 log(100+=1)

log log(100+=1)

) 1
:−1

and t to be the integer part of
2 log(100+=1)

log log(100+=1)
, and assume that c is

sufficiently large relative to k and d, then the claim follows.

4.2. Reduction for dyadic rectangles

Definition 4.6. 1. Define a dyadic interval to be a half-open interval I of the form � = [B2C , (B + 1)2C )

for integers B, C; we use |� | = 2C to denote the length of such an interval.

2. Define a dyadic box in R3 (a dyadic rectangle when 3 = 2) to be a product �1× · · · ×�3 of dyadic

intervals.

Note that if two dyadic intervals intersect, then one must be contained in the other.

Theorem 4.7. Fix : ∈ N. Assume we have a collection P of =1 points in R2 and a collection R of =2

dyadic rectangles in R2, with the property that the incidence graph contains no  :,: , and = = =1 + =2.

Then the number of incidences (?, � × �) with ? ∈ % and ? ∈ � × � ∈ ' is at most

$:

(
=

log(100 + =1)

log log(100 + =1)

)
.
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Proof. Suppose that we have some nested dyadic rectangles �1 ⊇ �2 ⊇ · · · ⊇ �: in R. As the

incidence graph is  :,: -free by hypothesis, �: may contain at most (: − 1) points from P. Removing

all such rectangles repeatedly, we lose only (: − 1)=2 incidences, and thus may assume that any nested

sequence in R is of length at most : − 1. In particular, any rectangle can be repeated at most : − 1 times

in R. Then, possibly increasing the number of incidences by a multiple of (: − 1), we may assume that

there are no repetitions in R.

We now define a relation ≤ on R by declaring � × � ≤ � ′ × � ′ if � ⊆ � ′ and � ⊇ � ′. This is a locally

(: − 1)-linear partial order (by the previous paragraph: antisymmetry holds, as there are no repetitions

in R, and using the fact that all rectangles are dyadic, any antichain of size k inside an interval would

give a nested sequence of rectangles of length k).

For each point p in P, let ℓ? be a subset of R consisting of all those rectangles in R that contain p;

then ℓ? is a (: − 1)-linear set (again, any antichain gives a nested sequence of rectangles of the same

length). Finally, ? ∈ ' ⇐⇒ ' ∈ ℓ?, hence the collection
{
ℓ? : ? ∈ %

}
is a  :,: -free arrangement and

the claim now follows from Theorem 4.3 with 3 := : − 1. �

Remark 4.8. For a nondyadic rectangle R, let 0.99' denote the rectangle with the same centre as R

but whose lengths and heights have been shrunk by a factor of 0.99. Define a good incidence to be a

pair (?, ') where p is a point lying in 0.99', not just in R. Then the dyadic bound in Theorem 4.7

implies that for a family of arbitrary (not necessarily dyadic) rectangles with no  :,:s, one still gets the

$
(

= log =

log log =

)
-type bound for the number of good incidences.

The reason is as follows. First, we can randomly translate and dilate (nonisotropically, with the

horizontal and vertical coordinates dilated separately) the configuration of points and rectangles by some

translation parameter and a pair of dilation parameters (B, C) for each of the coordinates. While there is

no invariant probability measure on the space of dilations, one can, for instance, pick a large number

N (much larger than the number of points and rectangles, etc.) and dilate horizontally by a random

dilation between 1/# and N (using, say, the 3C/C Haar measure), making (with positive probability) the

horizontal side length close to a power of 2; then a vertical dilation will achieve a similar effect for the

vertical side length; and then one can translate by a random amount in [−#, #]2 (chosen uniformly at

random), placing the rectangle very close to a dyadic one with positive probability. If R is a rectangle

that is randomly dilated and translated in this way, then with probability > 10−10, there will be a dyadic

rectangle '′ stuck between R and 0.99'. If the original rectangles have no  :,: , then neither will

these new dyadic rectangles. The expected number of incidences amongst the dyadic rectangles is at

least 10−10 times the number of good incidences amongst the original rectangles. Hence any incidence

bound we get on dyadic rectangles implies the corresponding bound for good incidences for nondyadic

rectangles (losing a factor of 1010).

5. A connection to model-theoretic linearity

In this section we obtain a stronger bound in Theorem 2.17 (without the logarithmic factor) under a

stronger assumption that the whole semilinear relation X is  :,...,: -free (Corollary 5.12). And we show

that if this stronger bound does not hold for a given semialgebraic relation, then the field operations can

be recovered from this relation (see Corollary 5.14 for the precise statement). These results are deduced

in Section 5.2 from a more general model-theoretic theorem proved in Section 5.1.

5.1. Main theorem

We recall some standard model-theoretic notation and definitions, and refer to [15] for a general

introduction to model theory and [3] for further details on geometric structures.

Recall that acl denotes the algebraic closure operator – that is, if M = (", . . . ) is a first-order

structure, � ⊆ " and a is a finite tuple in M, then 0 ∈ acl(�) if it belongs to some finite A-

definable subset of " |0 | (this generalises the linear span in vector spaces and algebraic closure in fields).
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Throughout this section, we follow the standard model-theoretic notation: depending on the context,

writing �� denotes either the union of two subsets �,� of M or the tuple obtained by concatenating

the (possibly infinite) tuples �,� of elements of M.

Definition 5.1. A complete first-order theory T in a language L is geometric if for any model M =

(", . . . ) |= ) we have the following:

1. The algebraic closure in M satisfies the exchange principle:

if 0, 1 are singletons in M, � ⊆ " and 1 ∈ acl(�, 0) \ acl(�), then 0 ∈ acl(�, 1).

2. T eliminates the ∃∞ quantifier:

for every L-formula i(G, H) with x a single variable and y a tuple of variables, there exists some

: ∈ N such that for every 1 ∈ " |H | , if i(G, 1) has more than k solutions in M, then it has infinitely

many solutions in M.

In models of a geometric theory, the algebraic closure operator acl gives rise to a matroid, and given

a a finite tuple in M and � ⊆ " , dim(0/�) is the minimal cardinality of a subtuple 0′ of a such that

acl(0 ∪ �) = acl(0′ ∪ �) (in an algebraically closed field, this is just the transcendence degree of a over

the field generated by A). Finally, given a finite tuple a and sets �, � ⊆ " , we write0 |⌣�
� to denote

that dim (0/��) = dim (0/�).

Remark 5.2. If T is geometric, then it is easy to check that |⌣ is an independence relation – that is, it

satisfies the following properties for all tuples 0, 0′, 1, 1′, 3 and �, � ⊆ ":

◦ 0 |⌣�
1 ⇐⇒ acl(0, �) |⌣�

acl(1, �).

◦ (Extension) If 0 |⌣�
1 and d is arbitrary, then there exists some 0′ such that 0′ |⌣�

13 and 0′ ≡�1 0

(which means that 0′ belongs to exactly the same �1-definable subsets of " |0 | as a).

◦ (Monotonicity) 00′ |⌣�
11′ =⇒ 0 |⌣�

1.

◦ (Symmetry) 0 |⌣�
1 =⇒ 1 |⌣�

0.

◦ (Transitivity) 0 |⌣�
11′ ⇐⇒ 0 |⌣�1

1′ and 0 |⌣�
1.

◦ (Nondegeneracy) If 0 |⌣�
1 and 3 ∈ acl(0, �) ∩ acl(1, �), then 3 ∈ acl(�).

The following property expresses that the matroid defined by the algebraic closure is linear, in the

sense that the closure operator behaves more like the span in vector spaces, as opposed to algebraic

closure in fields:

Definition 5.3 ([3, Definition 2.1].). A geometric theory T is weakly locally modular if for any

saturated M |= ) and �, � small subsets of M there exists some small set � |⌣∅
�� such that

� |⌣acl(��)∩acl(��)
�.

Recall that a linearly ordered structure M = (", <, . . . ) is o-minimal if every definable subset of M

is a finite union of intervals (see, e.g., [23]).

Example 5.4 ([3, Section 3.2].). An o-minimal structure is linear (i.e., any normal interpretable family

of plane curves in T has dimension ≤ 1) if and only if it is weakly locally modular.

In particular, every theory of an ordered vector space over an ordered division ring is weakly locally

modular (so Theorem 5.6 applies to semilinear relations).

The following is a key model-theoretic lemma:

Lemma 5.5. Assume that T is geometric and weakly locally modular, and M = (", . . . ) |= ) is ℵ1-

saturated. Assume that � ⊆ "31× · · · ×"3A is an r-ary relation defined by a formula with parameters

in a finite tuple b, and E contains no r-grid � =
∏

8∈[A ] �8 with each �8 ⊆ "38 infinite. Then for any

(01, . . . , 0A ) ∈ � there exists some 8 ∈ [A] such that 08 ∈ acl
({
0 9 : 9 ∈ [A] \ {8}

}
, 1

)
.

Proof. Assume the lemma is untrue; then there exist some (01, . . . , 0A ) inM such that (01, . . . , 0A ) ∈ � ,

but 08 ∉ acl (0≠8 , 1) for every 8 ∈ [A], where 0≠8 :=
{
0 9 : 9 ∈ [A] \ {8}

}
.
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By weak local modularity, for each 8 ∈ [A] there exists some small set �8 ⊆ M such that

�8 |⌣
∅

{01, . . . , 0A } ∪ {1} and 08 |⌣
acl(08 ,�8)∩acl(0≠8 ,1,�8 )

0≠81.

By extension of |⌣, we may assume that�8 |⌣∅
01, . . . , 0A , 1, �<8 for all 8 ∈ [A]. Hence by transitivity,

� |⌣∅
01, . . . , 0A , 1, where � :=

⋃
8∈[A ] �8 .

Set � :=
⋂

8∈[A ] acl (0≠8 , 1, �).

Claim A. For every 8 ∈ [A], 08 |⌣�
0≠8 .

Proof. Fix 8 ∈ [A]. As � |⌣∅
01, . . . , 0A , 1 and 08 |⌣acl(08 ,�8)∩acl(0≠8 ,1,�8)

0≠81, by symmetry and transi-

tivity we have

08 |⌣
acl(08 ,�8)∩acl(0≠8 ,1,�8 )

0≠81�.

Note that acl(08 , �8) ⊆ acl
(
0≠ 9 , �

)
for every 8 ≠ 9 ∈ [A], and hence acl(08 , �8)∩acl(0≠8 , 1, �8) ⊆ �,

and clearly � ⊆ acl(0≠8 , 1, �). Hence 08 |⌣�
0≠81�, and in particular 08 |⌣�

0≠8 . �

Claim B. For every 8 ∈ [A], 08 ∉ acl(�).

Proof. Fix 8 ∈ [A]. Then acl(�) ⊆ acl(0≠8 , 1, �) by definition. But as � |⌣0≠81
08 by transitivity, if

08 ∈ acl(0≠8 , 1, �) then we would get 08 ∈ acl(0≠8 , 1), contradicting the assumption. �

By induction we will choose sequences of tuples Ū8 =
(
0C
8

)
C ∈N

, 8 ∈ [A], in M such that for every

8 ∈ [A] we have:

1. 0C
8
≡�Ū<80>8 08 for all C ∈ N;

2. 0C
8
≠ 0B

8
(as tuples) for all B ≠ C ∈ N;

3. Ū8 |⌣�
Ū<80>8 .

Fix 8 ∈ [A] and assume that we already chose some sequences 0̄ 9 for 1 ≤ 9 < 8 satisfying (1)–(3).

Claim C. We have 08 |⌣�
Ū<80>8 .

Proof. If 8 = 1, this claim becomes 08 |⌣�
0≠8 , hence holds by Claim (A). So assume 8 ≥ 2. We will

show by induction that for each ; = 1, . . . , 8 − 1 we have

Ū8−1 · · · Ū8−; |⌣
�

Ū<8−;0>8−1.

For ; = 1 this is equivalent to Ū8−1 |⌣�
Ū<8−10>8−1, which holds by (3) for 8 − 1. So we assume this

holds for ; < 8 − 1 – that is, we have Ū8−1 · · · Ū8−; |⌣�
Ū<8−;0>8−1 – and show it for ; + 1. By assumption

and transitivity, we have

Ū8−1 · · · Ū8−; |⌣
�Ū8−(;+1)

Ū<8−(;+1)0>8−1.

Also, Ū8−(;+1) |⌣�
Ū<8−(;+1)0>8−1 by (3) for 8 − (; + 1) < 8. Then by transitivity again,

Ū8−1 · · · Ū8−;Ū8−(;+1) |⌣�
Ū<8−(;+1)0>8−1, which concludes the inductive step.

In particular, for ; = 8 − 1 we get Ū<8 |⌣�
0>8−1 – that is, Ū<8 |⌣�

080>8 . By transitivity and Claim

(A), this implies Ū<80>8 |⌣�
08 , and we conclude by symmetry. �

Using Claim (C) and extension of |⌣, we can choose a sequence Ū8 =
(
0C
8

)
C ∈N

so that 0C
8
≡�Ū<80>8 08

and 0C
8
|⌣�

Ū<80>80
<C
8

for every C ∈ N. By Claim (B) we have 08 ∉ acl(�), hence 0C
8
∉ acl(�), hence

0C
8
∉ acl

(
Ū<8 , 0>8 , 0

<C
8

)
, so in particular all the tuples

(
0C
8

)
C ∈N

are pairwise-distinct and Ū8 satisfies (1)
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and (2). By symmetry and transitivity of |⌣, we get Ū8 |⌣�
Ū<80>8 . This concludes the inductive step in

the construction of the sequences.

Finally, as (1) holds for all 8 ∈ [A] and b is contained in D, it follows that
(
0
C1
1
, . . . , 0

CA
A

)
≡1

(01, . . . , 0A ), and hence
(
0
C1
1
, . . . , 0

CA
A

)
∈ � for every (C1, . . . , CA ) ∈ NA . By (1), each of the sets{

0C
8

: C ∈ N
}
, 8 ∈ [A], is infinite – contradicting the assumption on E. This concludes the proof of the

lemma. �

Theorem 5.6. Assume that T is a geometric, weakly locally modular theory, and M |= ) . Assume that

A ∈ N≥2 and i(Ḡ1, . . . , ḠA , H̄) is an L-formula without parameters, with |Ḡ8 | = 38 , | H̄ | = 4. Then there

exists some U = U(i) ∈ R>0 satisfying the following:

Given 1 ∈ "4, consider the r-ary relation

�1 :=
{
(01, . . . , 0A ) ∈ "

31× · · · ×"3A : M |= i(01, . . . , 0A , 1)
}
.

Then for every 1 ∈ "4, exactly one of the following two cases must occur:

1. �1 is not  :,...,: -free for any : ∈ N, or

2. for any finite r-grid � ⊆
∏

8∈[A ] "
38 , we have

|�1 ∩ � | ≤ UXAA−1(�).

Proof. Assume that N = (#, . . . ) is an elementary extension of M and 1 ∈ "4. Then for a fixed : ∈ N,

�1 =
{
(01, . . . , 0A ) ∈ "

31× · · · ×"3A : M |= i(01, . . . , 0A , 1)
}

is  :,...,: -free if and only if

� ′
1 =

{
(01, . . . , 0A ) ∈ #

31× · · · ×#3A : N |= i(01, . . . , 0A , 1)
}

is  :,...,: -free, as this can be expressed by a first-order formula k(H) and M |= k(1) ⇐⇒ N |= k(1).

Similarly, for a fixed U ∈ R, |�1 ∩ � | ≤ UXA
A−1

(�) for every finite r-grid � ⊆
∏

8∈[A ] "
38 if and only if��� ′

1
∩ �

�� ≤ UXA
A−1

(�) for every finite r-grid � ⊆
∏

8∈[A ] #
38 (as for all fixed sizes of �1, . . . , �A , this

condition can be expressed by a first-order formula). Hence, passing to an elementary extension, we

may assume that M is ℵ1-saturated.

As T eliminates ∃∞, there exists some < = <(i) ∈ N such that for any 8 ∈ [A], 1 ∈ "4 and tuple

0̄ :=
(
0 9 ∈ "

3 9 : 9 ∈ [A] \ {8}
)
, the fibre

� 8
0̄;1 :=

{
0∗ ∈ "38 : M |= i (01, . . . , 08−1, 0

∗, 08+1, . . . , 0A ; 1)
}

is finite if and only if it has size ≤ <.

Given an arbitrary 1 ∈ "4 such that �1 is  :,...,: -free, Lemma 5.5 and compactness imply that for

every tuple (01, . . . , 0A ) ∈ �1 , there exists some 8 ∈ [A] such that the fibre � 8
0̄;1

is finite, hence

���� 8
0̄;1

��� ≤

<. This easily implies that for any finite r-grid � ⊆
∏

8∈[A ] "
38 , we have |�1 ∩ � | ≤ <XA

A−1
(�). �

Remark 5.7. In the binary case, a similar observation was made by Evans in the context of certain

stable theories [10, Proposition 3.1].

Restricting to distal structures, we can relax the assumption ‘ �1 is  :,...,: -free for some k’ to ‘ �1

does not contain a direct product of infinite sets’ in Theorem 5.6 (we refer to, e.g., the introduction in

[6] or [4] for a general discussion of model-theoretic distality and its connections to combinatorics).

Corollary 5.8. Assume that T is a distal, geometric, weakly locally modular theory, M |= ) , A ∈ N≥2

and i(Ḡ1, . . . , ḠA , H̄) is an L-formula without parameters, with |Ḡ8 | = 38 , | H̄ | = 4. Then there exists some

U = U(i) ∈ R>0 satisfying the following:

https://doi.org/10.1017/fms.2021.52 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.52


Forum of Mathematics, Sigma 21

Assume that 1 ∈ "4 and the r-ary relation �1 does not contain an r-grid � =
∏

8∈[A ] �8 with each

�8 ⊆ "38 infinite. Then |�1 ∩ � | ≤ UXA
A−1

(�) for any finite r-grid B.

Proof. By [4, Theorem 5.12], if M is a distal structure with elimination of ∃∞, then there exists some

: = : (i) ∈ N such that for every 1 ∈ "4, �1 is not  :,...,: -free if and only if
∏

8∈[A ] �8 ⊆ �1 for some

infinite �8 ⊆ "38 . The conclusion now follows by Theorem 5.6. �

Remark 5.9. Weaker bounds for noncartesian relations definable in arbitrary distal theories are estab-

lished in [7, 5].

Now we show that in the o-minimal case, this result actually characterises weak local modularity. By

the trichotomy theorem in o-minimal structures [18], we have the following equivalence:

Fact 5.10. Let M be an o-minimal ( ℵ1-)saturated structure. The following are equivalent:

◦ M is not linear (see Example 5.4).

◦ M is not weakly locally modular.

◦ There exists a real closed field definable in M.

Corollary 5.11. Let M be an o-minimal structure. The following are equivalent:

1. M is weakly locally modular.

2. Corollary 5.8 holds in M.

3. For every 31, 32 ∈ N and every definable (with parameters) - ⊆ "31 × "32 , if X is  :,: -free for

some : ∈ N, then there exist some V < 4
3

and U such that for any n and �8 ⊆ "38 with |�8 | = =, we

have

|- ∩ �1 × �2 | ≤ U=
V .

4. There is no infinite field definable in M.

Proof. (1) ⇒ (2) by Corollary 5.8, and (2) ⇒ (3) is obvious.

For (3) ⇒ (4), assume that R is an infinite field definable in M, char(R) = 0 by o-minimality. Then

the point-line incidence relation on R2 corresponds to a  2,2-free definable relation � ⊆ M3 ×M3 for

some d. By the standard lower bound for Szemerédi–Trotter, the number of incidences satisfies Ω
(
=4/3

)
,

hence E cannot satisfy (3).

For (4) ⇒ (1), if M is not weakly locally modular, then by Fact 5.10 a real closed field R is definable

in M. �

5.2. Applications to semialgebraic relations

Corollary 5.12. Assume that - ⊆ R3 =
∏

8∈[A ] R
38 is semilinear and X does not contain a direct

product of r infinite sets (e.g., if X is  :,...,: -free for some k). Then there exists some U = U(-) such

that for any r-hypergraph H of the form
(
+1, . . . , +A ; - ∩

∏
8∈[A ] +8

)
for some finite +8 ⊆ R38 , with

∑A
8=1 |+8 | = =, we have |� | ≤ U=A−1.

Proof. As every o-minimal structure is distal and every semilinear relation is definable in an ordered

vector space over R which is o-minimal and locally modular (Example 5.4), the result follows by

Corollary 5.8. �

We recall the following special case of the trichotomy theorem in o-minimal structures restricted to

semialgebraic relations:

Fact 5.13. ([16, Theorem 1.3]). Let - ⊆ R= be a semialgebraic but not semilinear set. Then × ↾[0,1]2

(i.e., the graph of multiplication restricted to the unit box) is definable in the first-order structure

(R, <, +, -).
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Using this fact, we have the following more explicit variant of Corollary 5.11 in the semialgebraic

case:

Corollary 5.14. Let - ⊆ R3 be a semialgebraic set, and consider the first-order structure M = (R,

<, +, -). Then the following are equivalent:

1. For any A ∈ N and any r-ary relation . ⊆
∏

8∈[A ] R
38 not containing an r-grid � =

∏
8∈[A ] �8 with

each �8 ⊆ R
38 infinite, there exists some U ∈ R such that |. ∩� | ≤ UXA

A−1
(�) for every finite r-grid B.

2. For every 31, 32 ∈ N and. ⊆ R31 ×R32 definable (with parameters) in M, if Y is  :,: -free for some

: ∈ N, then there exist some V < 4
3

and U such that for any n and �8 ⊆ R
38 with |�8 | = =, we have

|- ∩ �1 × �2 | ≤ U=
V .

3. × ↾[0,1]2 is not definable in M.

Proof. (1) ⇒ (2) is obvious.

For (2) ⇒ (3), using × ↾[0,1]2 the  2,2-free point-line incidence relation in R2 is definable restricted

to [0, 1]2, and the standard configurations witnessing the lower bound in Szemerédi–Trotter can be

scaled down to the unit box.

For (3) ⇒ (1), assume that (1) does not hold in (R, <, +, -). Then necessarily some Y definable in

(R, <, +, -) is not semilinear, by Corollary 5.12. By Fact 5.13, if Y is not semilinear, then × ↾[0,1]2 is

definable in the structure (R, <, +, . ), hence in (R, <, +, -). �
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