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ABSTRACT

Uniform asymptotic formulae are obtained for solutions of the differential
equation

d? w
*f{6)uf{u,6,z)w,

for large positive values of the parameter u. Here p is a positive integer, 8 an
arbitrary parameter and z a complex variable whose domain of variation may
be unbounded. The function f(u, 6, z) is a regular function of z having an
asymptotic expansion of the form

for large u.
The results obtained include and extend those of earlier writers which are

applicable to this equation.

Introductory Note

F. W. J. OLVER1

Roger Thorne was killed in a road accident on May 19th, 1959, and this
paper is based on manuscripts he left behind. I have redrafted some of his
proofs to make them more clear and made certain other changes of detail;
in particular, I have added some new material at the beginning of § 7. The
essential results, however, are due to Thorne alone.

The results given in the paper apply to the first of three cases A, B and D
defined in § 1 below, but Thorne clearly intended to extend the work to the
other two cases. Some material by him on case B is in fact available, and I
hope to incorporate this in a paper in due course.

1 The National Physical Laboratory, Teddington, Middlesex.
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Acknowledgement is due to Dr. K. C. Westfold and Mr. W. B. Smith-
White for their work in sorting out and assembling the manuscript after
Roger Thome's death.

1. Introduction and Summary

This investigation is an attempt to unify work which has been carried out
in recent years by several writers, particularly T. M. Cherry, A. Erdelyi,
R. E. Langer and F. W. J. Olver, on the solution of homogeneous linear
second-order differential equations of the form

d2w
(1.1) — = u**f(u,z)w,

for large values of the real or complex parameter u. Here p is a positive in-
teger, and the function f(u, z) can be expanded for large \u\ in descending
powers of u:

(1.2) f(u, z) ~ / „ ( * ) + u - ^ z ) + u-*f2(z) + •••.

The object is to determine asymptotic representations of solutions of (1.1)
which hold uniformly with respect to the independent variable z throughout
a domain in the complex plane or an interval of the real axis.

The points in the 2-plane which determine the asymptotic character of the
solutions are called the transition points of (1.1). Clearly these include the
singularities, regular and irregular, of f(u, z) regarded as a function of z. The
other kind of transition points are the zeros of fo(z), for near these points the
leading term in (1.2) fails to dominate the behaviour of f(u, z). Zeros of fo(z)
are also called turning points.

In the simplest case, the z-domain (or interval) is free from transition
points and asymptotic solutions can be derived in terms of exponential
functions. In other cases it may be necessary to use higher transcendental
functions. In introducing higher functions, however, it is important to realize
that the most fundamental advances use only transcendental functions of a
single variable, for the asymptotic expressions obtained reduce the compu-
tation of the solution w, which depends on the two variables u and z, to the
evaluation of a few functions of a single variable.

Adopting this criterion Olver [9] showed that when p = 1 and all the
f,(z) vanish identically save for fo(z) and fz(z), the three most important cases
of (1.1) are those for which

(1.3) fo(z) = 1, /„(*) = z, fo(z) = 1/s,

and f(u, z) is a regular function of z, except that it may have a regular singu-
larity at the origin in the third case. Allcasesof (1.1) whose solutions can be
represented asymptotically in terms of functions of a single variable can be
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[3] Solutions of linear second-order differential equations 441

expressed in one of these forms with the aid of transformations due to Liou-
ville [6] and Langer [3, 4].

Following Olver, we designate these cases A, B and D respectively, and
we extend this classification to include all values of the positive integer p
and the functions /,(z) (s 2; 1). The cases correspond to problems in which
(A) the z-domain D, say, is free from transition points, (B) D includes a
simple turning point, (D) D includes a regular singularity, a simple pole of
fo(z) which may also be a double pole of fs(z) for s 2j 1. The basic functions
in terms of which the asymptotic solutions are constructed are respectively
exponential functions, Airy functions and Bessel functions of fixed order.

A further case considered by Olver, case C, occurs when D contains a
double pole of fo(z). By projecting the pole to infinity, however, this problem
can be reduced to one for which fo(z) = 1 and so included in case A (see [7]).
Similarly [11], the case in which D contains a simple turning point and a
double pole may be included in case B. An example of a case in which the
asymptotic solutions involve functions of more than one variable is provided
by Thorne [12]: "case E". Here D contains a double pole of fo(z) and two
simple turning points symmetrically placed on either side of the branch cut
for the solutions which emanates from the pole. The expansions are construct-
ed in terms of Bessel functions of variable order.

Using this classification, we now describe briefly the main features of the
works of the authors mentioned in the opening paragraph.

The relevant paper by Langer is [5] and it applies to cases A and B with
p = 1. Algorithms are given for determining formal series solutions of the
form

(1.4, .,(..,)_P,,..,>S^>+±£|^> ft'-.....
in which Pj{u, z) is an exponential function in case A and a Bessel function of
order one-third (equivalently, an Airy function) in case B. The coefficients
As(z) and B,(z) are given by recurrence relations. Langer shows that when z
lies in a bounded real interval, solutions wmj{u, z) of (1.1) exist such that

for large complex values of u, where m is an arbitrary positive integer and
the O's are uniform with respect to z.

The solutions wmi(u, z) depend on the integer m, accordingly (1.6) is not
an asymptotic expansion of a function in the usual sense. Results of this
kind we shall call asymptotic formulae.

ErdeTyi's contribution to the theory ([2], §§ 4.2, 4.3) was to extend Lan-
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ger's form of result for case A to all values of the positive integer p, again for
real bounded2 values of z.

Cherry [1] considers case B with the conditions p = 1, fs{z) = 0
(s = 1, 3, 5, • • •). He establishes uniform asymptotic formulae of the form

(1.6) WmwJ{u,z)

for large complex u, and z in a complex star-domain, the Ps being Airy
functions. Here 0m{u, z) is a regular function of z depending on the arbitrary
integer m, which can be expanded in a convergent series

a.,, *.<«,*) = * + i ^ > + £ %?>,
the coefficients in which are given by recurrence relations. Equation (1.6)
holds in unbounded sectors of the z-plane in which the condition 3

(1.8) /(«, z) = x(u)z + P(u) + Oflsl-1)

is fulfilled, a(w) and /3(w) being functions independent of z, which can be
expanded in convergent series of the form

(1.9) oc(«) = M2 + f asw-2', /J(u) = | / 3 S M - 2 8 .
»=0 «=0

Cherry further shows that when the z-domain is bounded, the asymptotic
formulae can be applied to prove the existence of solutions independent of m
having asymptotic expansions of the form

Pi U* Ut s = 0 U'

Olver [10] considers the three cases A, B and D, each with the conditions
p = 1, fx(z) = 0. For large complex u and complex z asymptotic expan-
sions of the form (1.10) are established directly for case B, with similar re-
sults for cases A and D. The z-regions are unbounded where the condition

(1.11) m = 0{\z\-) (S2>2)

is fulfilled, a being a constant such that

(1.12) a > 1 (case A), a > \ (case B), a > f (case D).

The condition (1.11) is stronger than Cherry's condition (1.8) above in case B

* A further extension, to infinite intervals, was made by the same author in Technical
Report No. 6, NR 043-121 (1955) of the dalifornia Institute of Technology.

• In an unpublished paper, H. F. Bohnenblust summarizing research undertaken at the
California Institute of Technology has shown that (1.8) may be replaced by f[u, z) = O(\z\)
as | ; | -*• ao.
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[5] Solutions of linear second-order differential equations 443

for the existence of asymptotic formulae, but less restrictive than Cherry's
own requirement (z bounded) for the existence of asymptotic expansions.

Another generalization of Olver is to extend the z-regions of validity by
permitting them to depend on arg u.

In brief, the main comparisons between the works of the four writers are as
follows. Langer's and Erdelyi's results concern only real bounded values of
the independent variable; those of Cherry and Olver apply to the complex
plane, and the last-named writer allows much freedom in the definition of
the regions of validity. Langer and Erde"lyi establish asymptotic formulae,
Olver asymptotic expansions, whilst Cherry investigates both of these forms.
Olver is the only writer to establish asymptotic expansions in unbounded
2-regions, but Cherry's asymptotic formulae hold in unbounded regions and
his conditions admitting this result are not included in the conditions of Olver.
Langer, Cherry and Olver confine their investigations to the case p = 1; the
last two writers also require fx (z) to vanish. Erdelyi has provided the only
extension so far to all values of the positive integer p; his results apply to
case A with z real and bounded.

In this paper we develop for case A a theory which is more general than
hitherto available, and includes all the results of the previous authors in so
far as they are relevant to this case. It is hoped that a similar theory may be
developable for cases B and D.

Using the notation of Olver, we take as our standard form of differential
equation

dw
(1.13) — = u*»f{u,d,z)w,

in which p is a fixed positive integer, z a complex variable, 0 an arbitrary
parameter and u a large parameter. The function f(u, 6, z) is a regular func-
tion of z and has an asymptotic expansion of the form

(1.14) f(u, 0, *) ~ 1 + M-VI(0, *) + «-2/2(0. *) + •••

for large u, uniformly valid with respect to 0 and z. We consider only positive
values of u, since the phase of complex u can always be incorporated in the
parameter 0 (see [10], § 1).

The principal result we shall obtain is that solutions wt(u, 0, z) (j = 1, 2)
of (1.13) exist such that

(1.15) w,{u, 6, z) = y—J exp {(-y-iu>0(u, 6, *)}{1 + O(ir^-i)}

as u -*• +oo» uniformly with respect to 0 and z, where 0(u, 6, z) is a regular
function of z having an asymptotic expansion of the form
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S 4>,W, z)
(1.16) 0(u, 9, z)~z + 2 . .

the coefficients <£s(0, 2) being given by recurrence relations. Here m is an
arbitrary integer, but 0 and the w, are independent of m. Even so, we regard
(1.15) as an asymptotic formula rather than an asymptotic expansion, be-
cause the remainder term associated with (1.16) occurs exponentially in
(1.15). This point is more fully discussed at the beginning of § 7 below.

The expression (1.15) is of Cherry's type (1.6) above and is valid in z-
domains of the kind formulated by Olver ([10], § 2). They extend to infinity
in regions where the condition

(1.17) /,(0, z) = 0(|2|-a) (a > 0, s ^ 1),

together with similar conditions on the coefficients in the corresponding
expansions of df/dz and d2f/8z2, are satisfied. By imposing the additional
restriction

(1.18) «>1,

we find that it is possible to expand the right of (1.15) in descending powers
of u to yield an asymptotic expansion of the Wj(u, 6, z) of Olver's form. The
condition (1.17) corresponds to Cherry's condition (1.8) above in case B with
p = 1, and (1.18) is exactly Olver's condition (1.11) above in case A with
p = 1. This expanded form of our result in fact reduces to Olver's theorem A
([10], § 2) in the circumstances considered by him.

The paper is arranged as follows. In § 2 we give some preliminary lemmas.
In § 3 the precise conditions adopted are stated, an algorithm is developed
for constructing formal solutions of the differential equation in descending
powers of u, and the main result given in existence form as theorem 1. The
proof of theorem 1 follows in §§ 4—6; in § 4 we investigate by methods of
Olver properties of the coefficients </>s(0, z) appearing in (1.16); in § 5 we
establish the existence of the function 0 having the expansion (1.16), and
investigate some of its other properties; in § 6 the proof of theorem 1 is com-
pleted by solving a transformed form of the differential equation by succes-
sive approximation. The final section, § 7, concerns the expansion of (1.15)
in asymptotic series, and the result obtained is stated in the form of a second
existence theorem.

2. Preliminary Transformations

LEMMA 1. (i) With the substitution

(2.1) y(z) = w(z) exp {-]
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the differential equation

(2.2) ^

becomes
d2w f 1 1 d

(2.3) — + [qiz) - ^ ( z ) } 2 - 2JZ

(ii) With the transformations f = |(z), W = i~£» wAere i = rfz/rff,
differential equation (1.13) becomes

d2W
(2.4) — = [««"/(«. 0. *)*2 ~ £{*. I}] W,

2i z — 3z2

(2-5) {*. i} = - ^ p — .

The proof of this lemma is elementary. The expression {z, £} is known as
the Schwarzian derivative of z with respect to £.

Some properties of the Schwarzian are as follows.

d i2ziv bz'z'z -\- 3S3

(2-8)

(2.9) K,^}-K,f}

Equation (2.8) may be proved by considering the transformation inverse to
that stated in part (ii) of the lemma, and equation (2.9) by considering the
effect of two successive transformations.

3. Theorem 1: Statement and Conditions

We consider the differential equation

dw
(3.1) — = «*»/(«, 0, z)w; / (« , 0,z) = l+ f*(u, 6, z),

where p is a positive integer, 6 is a parameter which may take any one of a
set of values ©, real or complex, u is a large positive parameter and z is a
complex variable lying in an open simply-connected domain D(0) which
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may be unbounded. The function /(«, 8, z) is, for each u and 6, a regular
function of z in D(0) such that for u 2g u0 (> 0) there exists for each
m = 1, 2, • • • an inequality

(3.2) *, 0, z)

for all z in D(0), 0 e 0. Here /o(0, z) = 1, and for s ^ 1 the /s(0, z) are regular
functions of z in D(0) which are independent of u except for the possible
dependence of 0 on u. The quantity a is a positive constant independent of
all parameters and variables. The constants km are independent of u, 0 and
z but may depend on m; the symbol km will be used generically to denote such
a constant and k will be used similarly to denote a constant independent of
u, 0, z and m. The inequalities (3.2) show that an asymptotic expansion of
the form (1.14) holds for f(u, 0, z), the remainder on truncating at the rath
term being of the form (1 + l^")-1 0{u-m).

We suppose further that for each m ^ 0 and z in D(0)

V W, z)
(3.3)

(3.4)

f{u,e,z)
,=0

6 z)
11+7

where here and elsewhere primes denote differentiation with respect to z,
and /9 and y are positive constants independent of u, 0, z and m. We note that
if, for example, D(0) consists of an infinite sector Ax < arg z < A2, then in
the subsector At + e < arg 2 < A2 — e the conditions (3.3) and (3.4) are sa-
tisfied with /? = \ + a and y = 1 + a, e being an arbitrary positive number.
This result follows by application of Cauchy's integral formulae for the deri-
vatives of an analytic function.

Olver ([10], § 2) obtains formal solutions of (3.1) for the case p = 1,
fift.z) = 0, by substituting in (3.1) series of the form

(3.5) and e-ul

u" «=o u'
(compare (1.4)), and then deriving recurrence relations for the coefficients
As(6, z) and A*(6, z). For the case p > 1 the formal series corresponding to
the first of (3.5) has the form

v °° A (Q z\

»=o »=o
(see [2], § 4.2). We shall not attempt to establish directly the asymptotic
nature of this series. We first prove in §§ 4—6 certain asymptotic formulae
and then show in § 7 that with the extra condition a > 1 these formulae can
be expanded in the above form.
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The asymptotic formulae are obtained by comparing (3.1) with a differ-
ential equation satisfied by the exponential function, namely

(3.6) |y(«,^)=«^Y(«,y).

Applying the transformations

°° /dd>\-i
(3.7) $ = 4>{u,e,z) = z + 2*.(0,*)«-. y (« ,e ,* ) = - r Y(M>9>^)>

,=i \ dzl
to (3.6), we see from lemma 1 of § 2 that y(u, 6, z) satisfies the equation

d
(3.8) — y(z) = [u»{t'(z)}* - W>(z), z}]y{z),

where <f>'(z) = d<f>(u, 6, z)/dz, the arguments u and 6 being suppressed for
convenience. Equations (3.1) and (3.8) are identical if

If it were possible to determine (f>(z) from this equation, w would be expres-
sible in terms of the known function y>'(z)}~iY{u, 6, <f>(z)}.

In general we cannot solve (3.9) explicitly. Instead, we substitute the
series (3.7), and formally equate powers of u. Suppressing the argument z,
we derive the equations

where

(3.11) (i) for s ^ 2p, gs =

(3.12) (ii) for s ^ 2f + 1, g i =
<

the quantities ha being coefficients in the expansion of the Schwarzian:

(3.13) ft, * } = * _ _

r= l

-1

Since g, depends only on the <j>'r, c/>'r', <f>'T" of suffices r not exceeding s — 1,
we may determine successively <f>v <f>2, <f>3, • • • (except for arbitrary constants
of integration) by integration of the equations (3.10). This gives

(3.14) ,£,(0, z) = | J ' {f,{6, t) - g,(e, t)}dt + constant.
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Since D(0) is simply connected and the fs(d, z) are regular there, it follows
that each <f>s{6, z) is a regular single-valued function of z in D(0).

We shall establish an asymptotic property of the expression

in regions of the z-plane which are essentially the same as those of the earlier
expansions of Olver [10]. As a preliminary we introduce the quantities:

(3.15) a i = min (a, 1 + 20, 1 + y), / S ^ m i n (0, \ + y), y i = min(2/J,y),

and

(3.16) K = max (1 - a, 0) (a ^ 1);

if a = 1 we take K to be an arbitrary positive number. We note in passing
that

(3.17) K = max (1 - ax, 0) (04 =£ 1),

because if a 5S 1, then 04 = a.
We define G(0) as a closed subdomain of D(0) with the following proper-

ties.

(i) The distance between each point of G(0) and each boundary point of
D(0) has a positive lower bound independent of 0.

(ii) For each value of 6, we can find a point c(0) in G(0), not at infinity,
and a path which lies wholly within G(0) joining c(0) and an arbitrary point
z in G(0) such that

Jee{$) 1 + |f| '

We suppose that the integration constants in (3.14) have been chosen so
that the quantities <f>s{6, c(0)} are bounded functions of 0; thus

(3.19) \<t>,{e,c(d)}\<K.

We define

(3.20) 01(m; «, 0, z) = z + f ^ ^f ,
r - l M*

and call &x the first approximating function. It is an approximate solution of
equation (3.9) when u is large. In § 5 we introduce two further approximating
functions 0z{u, 0, z) and <P3(«, 6, z). Each is a regular function of z in G(0),
and for large positive u they share the properties

(3.21) *,(«, 0, *) = z + | ^ % ^ + (1 + \z\
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m d>'(6 z) Oiu-™-1)

(3.22) «(*.,,)-, + £ *Lh> + T L_i ,

(3.23) <^,.,1-fgM+°"r7>

(3.24) ^M-i^+"1

where / = 2, 3; K, ax, /51( yx are defined by (3.16) and (3.15), and the O's are
uniform with respect to 0 in 0 and z in G(0). Here w is an arbitrary positive
integer or zero but &2 and &3, unlike 0V are independent of m.

Writing now &(z) for 0${u, 0, z), we express the asymptotic character of
the solutions of (3.1) by means of the following existence theorem, the proof
of which is given in §§ 4—6.

THEOREM 1. The differential equation (3.1) has solutions w}(u,B,z)
(j = 1, 2) with the properties

(3.25) »,(«, 6, z) = {0'{z)}-i exp {{-y-1u'0{z)}{l + 0(M-OT)},

;(M, 0, *) = [(-) ' - i

X exp {(-)'-1«»<P(z)}{l + 0{u-m)},

as u -v +oo, ze^ere Âe O's are uniform with respect to 6 in 9 awi 2 t« H,(0).
Here m is an arbitrary positive integer, and the wt (u, 0, z) are independent of m.

The regions of validity H,-(0) are defined as follows. Let Go(0) be the open
domain remaining after removing from G(d) all its boundary points, and let
aA®) (/ = 1» 2) be prescribed points of Go(0) or points at infinity on prescrib-
ed straight lines lying in Go(0). In the latter event we suppose that

(3.27) | axg{( - ) ' a , (0 )} |< i» -e ,

where e (< \n) is an arbitrary positive number independent of all variables.
Then H,(0) consists of the set of points z of Go(0) which can be joined to
a,(0) by a polygonal arc & having the following properties, t being a typical
point of 3P.

(a) & lies in Go(0).
(b) If at(6) is at infinity on a straight line Jif, then 0* coincides with J£?

for all sufficiently large \t\.

(c) (3.28) f ^— <k,

where y1 is defined by (3.15).
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(d) The angle of slope of 0* with the positive real axis lies in the open inter-
val (—\TC + s, \it — e) when 0* is traversed in the sense a^O) to z if / = 1,
and in the sense z to #,($) if j = 2.

The regions H3(0) are domains. For if z is a point of H.,(0), then clearly all
points of the path 0> joining z to a,(0) belong to Hs(0). Any two points zx, z2

of H,(0) can be joined by a polygonal arc consisting of the known paths
joining zx and «3-(0), and z2 and a.,(0). Therefore the set H3(0) is connex. To
determine whether H1(0), for example, is open, we surround a given point zx

of Hx(d) other than ax(0) by a square lying in Go(0) with centre zx and side
2(5 (> 0), and not containing ax(0). Condition (d) above shows that the path
0* from ax(6) to zx can intersect the boundary of the square only at a finite
number of points, all of which are to the left of the point z0 on the lower edge
such that Re z0 = Re zx — d tan £ (coincidence with z0 being excluded). If
tx is the extreme right of such points then it is evident from figure 1 that all
points of the square included in the open sector |arg (z — tx)\ < \n — e
belong to Hj(0), moreover this sector does contain a neighbourhood of zx.
Therefore Hx(0) consists of an open set of points plus a1(6), which is of course
a boundary point of the set if it is not at infinity. This proves the stated result.

Figure 1

REMARKS ON THEOREM 1.

(i) The definition of the regions Hj(0) adopted here is slightly more re-
strictive than the corresponding definition of Olver ([10], § 2). The present
restrictions ensure that the H,(0) are domains; as a consequence the proof of
the existence theorem can be shortened (compare [10], page 490).

(ii) For other remarks on the regions of validity see [10], § 3, (i) and (ii).
(iii) When a,(0) is at infinity, it is an irregular singularity of the differen-

tial equation (3.1). From (3.25) we see that wf(u, 0, z) is a subdominant
solution at a,(0), in the terminology of Langer, in the sense that all independ-
ent solutions are exponentially large compared with wj (u, 6, z) as z -> at (0).
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Let w(u, 0, z) be any other solution subdominant at «,-(0) whose limiting be-
haviour at a,j{d) is completely known. Then the ratio w(u, 0, z)/wi(u, 0, z) is
a function of u and 0 which may be determined, at least asymptotically for
large u, by letting z -> a^d). Indeed, in applications of theorenVl, this is
likely to be the commonest method of expressing given solutions of the
differential equation in terms of the asymptotic solutions wx(u, 6, z) and
w2{u, 0, z); see, for example, [1], §§ 4.4, 4.8 and [8], §§ 2, 4.

In passing, we may note that for some points z of H,(0), for example the
points on =Sf in the neighbourhood of #,(0), an inequality of the form

(3.29) f
Ja

\dt\
1+yi«,<«> i + \t\

is satisfied. For these points the error terms 0(u~m) in (3.25) and (3.26)
may both be replaced by (1 + Iz]71)'^ (u~m); this result easily follows
from the proof of theorem 1 given in § 6 on using (3.29) in place of (3.28).

(iv) Erd61yi ([2], § 4.3) has proved a result similar to as theorem 1 in the
case when z is real and bounded.

4. P r o p e r t i e s of <ps (6, z)

For convenience here and elsewhere in this paper we shall omit, on occa-
sion, some or all of the arguments of the functions used; thus / or f(z) may
be written for f(u, 0, z) when these forms are not ambiguous.

LEMMA 2. For z e G(0) and s 2: 1,

(4.1)

|e(fl.,)|<

(4.3) |{<pj(*)}« - Kap{<»>i(*).*} -

( n = 3 , 4 , 5 ) ,

Here xv fiv ylt K are defined by (3.15) and (3.16), and &x(z) = 0x(w; u, 6, z)
by (3.20).

The first, second and third inequalities in (4.1) will be denoted by (4.1a),
(4.1b) and (4.1c) respectively; a similar notation will be used elsewhere in
this paper.

We prove the lemma for z lying in a subdomain of D(0) which includes
G(0). Let d > 0 be the lower bound of the distances between points of G(0)
and boundary points of D(0) (see the definition of G(0) in § 3) and let
G(0, d) (0 < d < d) be the domain consisting of G(0) together with each
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point of D(0) whose distance from the boundary points of G(0) does not
exceed d; then G(0, d) is a subdomain of D(0).

From (3.1b), (3.2), (3.3) and (3.4), we deduce that for s = 1, 2, 3, • • •,
and zeD(0),

(4.4) \f*(u, e,z)\< j ^ - a , |/,(0, *)| < r A - ^ ;

(4.5) |/'K 9,z)\< 1+
k

]zlH/), \W, 2)1 < 1 + * f
 H , ;

(4.6) \f"{u,0,z)\ k " •• k-
l + |z |i+r' »• ""•"" ^ l + |z|i+r'

compare [10], relations (5.1) to (5.4).
Lemma 2 is proved by induction. Let us assume that when z e G(0, 6)

g

for r = 1, 2, • • •, s. Since # = £/x (see (3.10)) and $,' = ^ " = • • • = 0, it is
clear from (4.4b) that this assumption is correct when s = 1. We now show
that if (4.7) and (4.8) hold for r = 1, 2, • • •, s for arbitrary s :> 1, then they
also hold for r = s + 1. provided that z e G(0, rj), where r\ is an arbitrary
number in the range 0 < r\ < <5.

From (3.11), (3.12) and (3.13), we see that ga+1 is a polynomial in the
functions

J L ' J L ' JL ' J L " J L " . 1 " J L ' " J L ' " JL
<Pl, 9z> ' ' '< 9,' <Pl » Y»2 • ' • •' 9 . -2 IH-1 ' 9l >Y2 ' ' ' '• 9

Using (4.4), (4.7), (4.8) and the facts that 1 + y1 ^ a1( 1 + 2^ ^ a1( we
conclude that

This immediately establishes (4.7a) for r = s + 1-
Next, we have by differentiation of (3.10)

Calculating the differentiated forms of (3.11) to (3.13) by means of (2.6),
(2.7), and using (4.7), (4.8) and the facts that & ^ \ + yv yx ^ 2/3x, we
deduce that

(4-ii) Id < , , L I t f K
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Substitution of these inequalities and (4.5b), (4.6b) in (4.10) establishes
(4.7b) with r = s -f 1, and (4.8) with n = 3, r = s + 1.

To prove (4.8) for n = 4 and r = s + 1, we use the Cauchy formula

where C is the circle \t — z\ = d — r\. For 0 < r\ < d the domain G(0, ?j) is
contained in G(0, <5), and if z lies in G(0, ?j) then < lies in G(0, d) and

(43) L1 ' 1 +
compare [10], (5.10) and (5.11). Hence when z e G(0, rj)

(4.14) | # ( 0 , 2)| <

The proof of (4.8) for n = 5 and r = s + 1 is similar. This completes the
proof of (4.1b), (4.1c) and (4.2).

Next, we have from (3.14)

(4.15) 4.(6, z) = \ j ' c w {/.(fl, 0 - g.(fl, *)}* + UO. c(B)} .

Substitution of (4.9), with s + 1 replaced by s, and use of (3.19) and (3.18)
leads to (4.1a).

Finally, to establish (4.3) we substitute the right of equation (3.20) for 0 ,
in the expression

(4.16) {0[(z)Y - *«-»{*!(*). z) - f(z)

and expand in descending powers of u with the aid of (3.2). The terms in
1, M"1, M~2, • • •, u~m vanish as a consequence of (3.10) to (3.13), and using
(4.1) and (4.2) we may verify without difficulty that the remainder can be
expressed as (1 + |z|ai)-10(M-m-1). The proof of lemma 2 is now complete.

The function 01(tn; u, 6, z) is an approximate solution of the differential
equation (3.9); the inequality (4.3) is in fact an assessment of the approxi-
mation. Before proceeding to the proof of theorem 1, we shall improve upon
this approximate solution in two respects. First, we construct a function
0a(«, 0, z) which is independent of the integer m and satisfies (4.3) for all
values of m. Then using 02(

M> Q> z) w e construct a third approximating func-
tion 03(u, 8, z), also independent of tn, for which the inequality (4.3) is
sharpened by having the factor 1 + |z|"» in the denominator replaced by
1 + \z\wi.

5. The Second and Third Approximating Functions
In general the formal series 2 <t>,{Q> z)«~* diverges. In the first part of this

section we construct a function 02(u, 0, z) which is a continuous function of
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u and a regular function of z in G(6), has the asymptotic expansion

(5.1)
s=l

for large u, and satisfies (4.3) for any integer m. More precisely, we prove the
following.

LEMMA 3. When zeG(d) and de&, equations (3.21) to (3.24) hold for
I = 2, and

(5.3) {<P;W}» - \u-^{0t{z), z) - f(Z) = ~ ^

The method of constructing <Z>2 is similar to that given by Erdelyi ([2],
§ 1.7). Let clt c2, • • •, be a set of positive constants such that

(5.4)

(5.5) |<#n)(0, z)\ < —^ (n = 3, 4, 5),

when z e G(6); compare lemma 2 of § 4. We suppose uv u2, • • •, is a set of
positive numbers having the properties

(5.6) (a) ua+1 > ua, (b) u, -*• oo with s, (c) ca+1 < \uca when u > us.

Such a set obviously exists.
Let va(u) be a continuous function of u such that 0 ^ V,(M) 5S 1 and

(5.7) va(u) = 0 (« ^ u.), v,(u) = 1 (« ^ « m ) -

We might, for example, take vs(u) = (u — ua)/(us+1 — ua) when

M, < U < Ua+V

We now define

For any finite value of u, the va(u) vanish for sufficiently large s and this
series terminates. We note also that

(5.9) '.<«)*.('.*>
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For if u sS us the left-hand side vanishes, and if u > us we have from (5.4a)
and (5.6c)

(5-io) TTW <Cs< ( 'M) Cs^ < " ' < (2M ) S l q -
Hence the series (5.8) converges uniformly for u J2: uv

To prove the asymptotic property (3.21) for / = 2, we first observe that

(5.11)

the proof of this inequality being similar to that of (5.9). Hence if u 2j um+1,
where m is an arbitrary positive integer or zero,

m -M0. *
, z ) - z -

s=l

(5.12)

< 2
s=m+l

\AK) 2cm+l

U m+l \*\')

The inequalities (3.22), (3.23), (3.24) and (5.2) may be established in a
similar manner. The remaining result (5.3) follows from them in the same
way that (4.3) followed from (4.1) and (4.2).

Henceforth we shall use the notation um in the same generic sense as km to
denote a number depending on the integer m, but independent of u, 6 and z.

The third approximating function

We define &3{u, 6, z) to be the solution of the differential equation4

(5.13) {®'z{u, 6, z)}* = >-2»{02(«, 6, z), z] + /(«, 6, z)

with the condition

(5.14) 03{u, 0, c(d)} = 02{u, d, C(fl)}.

On integration, we have

(5.15) 03(u, 6, z) = f [\u-**{0z{u, 6, t), t) +/(« , 0, t)]Ut + 02{u, 6, c(0)}.

We suppose that the fractional power in the integrand takes its principal
value. From (3.2) with m = 1, we have

(5.16) /(«, 0, 0 = 1 + (1 + \t\*)-lO(u-i) = 1 + 0(u~l) (te G(0)),

and from (3.22), (3.23) and (3.24) with I = 2 and m = 0, we readily deduce
that

(5.17) {02{u, 6, t), t) = (1 + \t\a>)-W(u-i) = O(«-i) (t e G(0)).
4 The form of (5.13) was suggested to the author by an equation in the unpublished paper of

H. F. Bohnenblust mentioned in § 1.
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Hence the contents of the square brackets in (5.15) is 1 + (^(w"1), uniformly
for t in G(0), and so does not vanish when u is large. Thus &3(u, 6, z) is a
regular function of z in G(d) if, as we now suppose, u is sufficiently large.

LEMMA 4. Whenze G(0) anddeQ, equations (3.21) to (3.24) hold for I = 3,
and

(5.18) {*&)}* - *«-»{*,(*). z} - f(z) =°1
{U^P

1~™2

Let us set

(5.19) E(u, 6, z) = {02{z)}-*[-{02{z)Y + \u-**{®2{z), z] + f(z)}.

From (3.22) with / = 2 and m = 0, we see that {^{z)}-1 is bounded for all
sufficiently large u. Combining this result with (5.3), we obtain

k u~m~x

(5.20) |2? (« f0 ,* ) |<_=L__ (ZeG(B)).

We now write (5.15) in the form

03(u, 6, z) = j z
g 0'2{u, 6, t){l + E(u, 6, t)}idt + 02{u, 9, c(B)}

) + [' 02(u,e,t)[{i + E{u,e,t)}i - i]dt.
J c{0)

g

,e, z) + [
{0)

Now

(5.22) l f l ' 7 7 / J^ i " ^'
{1 + E(t)}i + 1

in consequence of (5.20). Substituting this result and a bound k for
0'%{u,9,t) in (5.21) and then using (3.18), we obtain immediately (3.21)
with / = 3. The equation (3.22) with / = 3, is proved in a similar way using
the differentiated form of (5.21).

Next, differentiating (5.13) with the aid of (2.6) and subtracting 20'^0'2
from both sides, we obtain

(5.23)
3#;/]

If we substitute on the right by means of (5.2), (3.22) to (3.24), and (3.3)
with m replaced by m + 1, the terms in 1, w1, • • •, u~m must cancel as a
consequence of the differentiated forms of equations (3.10) to (3.13), and
the remainder is expressible in the form (1 + Izli+^i)-10(u-™-1), since
1 + yx ^ \ + /Jj. Hence
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From (3.22) we see that

(5-25) _? = l -)- —^ 1 = l -f 0(M-">-i),

and substituting this result and (3.23) with 1 = 2, and using the fact that
(^j)"1 is bounded, we obtain (3.23) with Z = 3.

The equation (3.24) with / = 3 may be established in a similar manner.
To prove the remaining result (5.18), we find from (5.13)

(5.26) {$&)¥ - \u-to{$z{z), z] - f{z) = \u-^[{02{z), z) - {<P,(z), z}].

From the relations (3.22), (3.23) and (3.24) ,we see that the expansions in
descending powers of u of {02(

z)> z} a n ( i {®3{z)> z} a r e identical up to and
including the term in u~m, and that

k u~m~1

(5.27) \{0t{z), z] - {03(z), z}\ < - ^ — — ,

since 1 + 2/3x Sg 1 + yv This completes the proof of lemma 4.

Notes on other approximating functions

If we had by-passed the function 02{z) and constructed the function
directly from ^{z) by substituting ^ ( z ) for 02{z) in (5.13), the key result
(5.18) would hold, but 03(z) would contain the integer m in its definition
and this would result in our obtaining solutions of (3.1) which depend on m.
Another way of modifying (5.13) is used by Cherry ([1], page 234) in case B;
the approximating function he obtains also depends on m.

6. Proof of Theorem 1

We shall give a proof only for the case / = 1. A similar proof holds for
7 = 2.

In order to compare the solutions of equation (3.1) with those of (3.6),
we rearrange the former equation as

(6.1) ~w(z) - «»[{*'(z)}« - $«-»{*(*), z}]w(z) = u*>F(z)w{z),

where here and elsewhere in this section 0{z) = 0z(u, 6, z) and

(6.2) F(z) = /(*) - {4>'{z)¥ + iu-**{0(z), z).

The equation

(6.3) ^y{z) - u»[{0'(z)}* - \u-*>{0{z), z)}y{z) = 0

has the independent solutions

(6.4) yi(z) = {0'(z)}-hexp{u»0(z)}, y2(z) = {**(*)}-* exp {-«•*(*)};
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this follows immediately from lemma 1 (ii) of § 2 on replacing the f(u, 6, z)
occurring there by unity, and substituting 0 for z and z for £. We shall
suppose the branches of the fractional powers in (6.4) are the principal
ones. They are regular for sufficiently large u, since from (3.22) we
see that 0'(z) = 1 + Ofa'1), uniformly with respect to z and 6.

We suppose first that the point «x(0) of the open domain Go(0) introduced
in § 3 is not at infinity. We define wx (u, 0, z) = w1 (z) to be the solution of the
differential equation (3.1) which is regular in D(0) and satisfies the condi-
tions

(6.5) wx(u, d, «x) = yx{u, d, ax), w[{u, 6, at) = y[(u, d, a^,

primes denoting, as elsewhere, derivatives with respect to z.
Subtracting (6.3) from (6.1), we obtain

(6-6) = ut,F(z){Wl{z) _ yl{z)] + U*»F(z)yi(z).

This equation can also be written in the form

(6.7) ^ h ( z ) -y1(z)}=u»f(z){u>1(z) -y1(z)}+WF(z)y1(z).

We establish the asymptotic property (3.25) by iterative solution of the
inhomogeneous differential equation (6.6). Let z be a point of the domain
H1(0), defined in § 3. We shall need the following property of the polygonal
arc & joining z and av

LEMMA 5. As the -point t moves along 0* from ax to z, Re 0(t) is monotonic
strictly increasing if u is sufficiently large.

Condition (d) of the definition of 3P given in § 3, shows that the equation
of a typical segment of 0* can be expressed in the form

(6.8) t = t(r) = X + re**,

where A, % are constants, — \n + e < % < \n — e, and the real parameter r
ranges over a finite interval. If T1( T2 are points of this interval, then from the
mean value theorem

(6.9) 0{t(r2)} - 0{t{x1)} = (T, - rjt'(ts)0'{t(r3)},

where T3 lies in the interval (TX, T2). Using (6.8) and (3.22) with m = 0, we
deduce that

(6.10) 0{t(r2)} - 0{t{r1)} = (T2 -

from which the lemma follows immediately.
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We define a sequence of functions hn(u, 6, z) = hn(z) by ho(z) = 0 and
the differential equation

) , z}]hn{z)K()
= u*»F(z)hn^(Z) + u*>F{z)yi{z) (n ^

(compare (6.6)), with the conditions

(6-12) hn(ai) = h'M = 0.
Solving (6.11) by the method of variation of parameters, using the Wronsk-
ian relation

we obtain

(6.14) hn(z) = £«*£

We suppose that z is a point of H1(0), and that the path in (6.14) is the poly-
gonal arc 0* joining ax and z.

For n = 1, (6.14) becomes

(6.15) K{z) = |«» f' {yi(z)y*{t) - y^)yi(t)}yAt)F(t)dt.

From (6.4) and the fact that (0')-1 is bounded, we see that

(6.16) lyi(*)y>(*)yi(OI <k\exP {u»&(z)}\,

and

(6.17) \y2(z){yi(t)}
2\ < k lexP {-«*#(*) + 2^0(O} | ^ k |exp {u*&(z)}\,

in consequence of lemma 5. Also from (6.2) and (5.18), we have

k M-2J>-™-1

if u > um, where m is an arbitrary positive integer or zero. Substituting
(6.16), (6.17) and (6.18) in (6.15), we derive

kkm C* \dt.\
IM*)l<;^£ilexp{«*<P(z)}|J r

(6.19)
{U"0(Z)}\,

in consequence of (3.28). It is evident that (6.19) also holds with z replaced
by t, where t is any point of the path 0* joining at to z, since all such points
belong to H^d).

Again, from (6.14) we have

* ' S I ^Z) y{t) y^z)yM{K{t) K{t)}F{t)dt (n ̂  1).
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From (6.4) and (6.19) we see that

(6.21) \yx{z)y2{t)hx{t)\, \y2(z)yx(t)hx(t)\ < k*kmu-*-™-i\exp {u>0(z)}\

(compare (6.16) and (6.17)). Taking n = 1 in (6.20) and using (6.21), (6.18)
and (3.28), we find that

(6.22) \h2(z) - K{z)\ < ***i«-*-*»-» |exp {u*0(z)}\,

where k, km are the same constants as in (6.19). Continuing the argument,
we arrive at

(6.23) |AB+1(2) — hn(z)\ < ^»+2^+1
M-c+i)(J'+m+i) |exp {up&(z)}\ (n ^ 0).

Next, we have by differentiation of (6.15) and (6.20)

(6.24) h[(z) = \u* £ {y[(z) yt(t) - y't(z) yi{t)} yi(t)F{t) dt,

( 6 ' 2 5 )

Now from (6.4)

(6.26) yi(z) = u» [{®'{z)}i - %u-'&"{z){&'{z)}~l} exp

(6.27) y't(z) = - u*[{&'{z)}i + \u-»&"{z){<P'{z)}-l] exp {-u*0(z)}.

The contents of the square brackets in these two equations are bounded, as a
consequence of (3.22) and (3.23). Hence

(6.28) \y[(z)ya(t)yi(t)\, \y'2{z){yi{t)y\<ku*\exV{u*0{z)}\

(compare (6.16) and (6.17)). Substituting these inequalities and (6.23) in
(6.24) and (6.25), and again using (6.18) and (3.28), we obtain

(6.29)- \h'n+l (z) — h'n(z)\<k2n+2k%-1u*u-in+1"p+m+1)\exp {uv0{z)}\ (n ^ 0).

The inequalities (6.23) and (6.29) show that the series

(6.30) | {hn+1(z) - hn(z)}, | {h'n+1 (z) - h'n(z)}

converge uniformly with respect to z in any bounded subregion of H^fl) for
all sufficiently large u. Since 1^(0) is a domain, term-by-term differentiation
of the two series is valid at interior points. Hence from (6.11) it follows that
at the interior points of 1^(0) the sum (6.30a) satisfies the same inhomoge-
neous differential equation (6.6) as wx(z) — y1(z). Moreover, the sums
(6.30a) and (6.30b) are continuous at all points of 1^(0), hence from (6.5)
and (6.12) it follows that
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(6.3i) t r #

n=0

Again, if u > {2k2km)ini>+m+1) we deduce from (6.23) and (6.29) that

(6.32) [w^z) — y±{z)\ < 2k2kmu~''-m~1 |exp {u»&(z)}\,

(6.33) |M>J(Z) — 2/i(^)| < 2k2kmu~m-1 |exp {«»0(z)}|.

These results establish (3.25) and (3.26) for / = 1 and ^(fl) not at infinity.

If a,(0) is a point at infinity on a straight line =Sf lying in Go(0), we modify
the proof as follows. The function hy(z) is now defined by (6.15), the conver-
gence of the integral at its lower limit being assured in consequence of (6.16),
(6.17), (6.18) and (3.28). Clearly the inequality (6.19) again holds when
zeH^fl). Higher members of the sequence hn(z) we define by (6.14), the
convergence of each integral at its lower limit being readily proved by
induction. The inequalities (6.23) and (6.29) again hold, so that the series
(6.30) converge uniformly with respect to z in any bounded subregion of
Hx(0). The function w^z) is taken to be the sum of (6.30a) and yi{z); clearly
it satisfies (6.1) and (3.1), and it is independent of the integer m. The in-
equalities (3.25) and (3.26) for j = 1 now follow from (6.23) and (6.29) as
before.

This completes the proof of theorem 1.

7. Asymptotic Expansions of the Solutions

We begin this section by examining the usefulness of the form of the result
(3.25). We recall that the known properties of the function 0(z) = 03{u, 0, z)
defined in § 5 are of an asymptotic nature, typified by (3.21) to (3.24). In
(3.21) the quantity K appearing in the error term (1 + \z\K) 0(a-™-1) lies
in the range 0 5S K < 1; see (3.16). When K is not zero this error term
is unbounded for large \z\. Nevertheless, we can regard (3.21) as a satis-
factory formula for 0{z), because the relative error, which is obviously
z-1(l + \z\*)0[u~m~1), is bounded for large \z\. In other words, for a given
(large) value of u, the number of correct significant figures in values of 0(z)
computed from (3.21), will have a positive lower bound, independent of z.

Examining now the effect of substituting in (3.25) approximate values of
0(z) and 0'(z) obtained from (3.21) and (3.22), we reach a different kind of
conclusion concerning the resulting approximation for Wj{u, 6, z). The
error term (1 + \z\K)0(u-fn-1) in (3.21) gives rise to a relative error
exp {(1 4- |z|*)O(«J>~m~1)} in wf(u, d, z), which is unbounded if K > 0. Thus
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for any given value of u the number of correct significant figures in values of
Wj(u, 6, z) computed from (3.25) may decrease as \z\ increases, and for all
sufficiently large \z\ no accuracy may be obtainable.

The equation (3.25), and similarly also (3.26), is accordingly of restricted
value when \z\ is large. It would, however, be untrue to say that these equa-
tions have no value in these circumstances; in applications, for example, in
which the logarithms of w^u.d.z) and w'^u.d.z) were the quantities of
paramount importance the equations would be quite satisfactory.

To sharpen the results for other applications, we now impose the additional
condition

(7.1) oc> 1,

where a is the quantity introduced in (3.2). It then follows from (3.16) that
K = 0. The error term in (3.21) becomes 0{wm~1) and gives rise to a relative
error O(uv-m-1) in w^u, 6, z) on substituting (3.21) in (3.25), which is per-
fectly satisfactory when m 5: p.

We may note in passing that the condition (7.1) is fulfilled if D(0) is
bounded for all 0, for then the defining inequality (3.2), if it holds at all, will
hold for any positive value of a.

With the additional condition (7.1), it is possible to expand (3.25) and
(3.26) in asymptotic series. From (4.1a) with K = 0, we see that each
<f>s(d, z) (s ^ 1) is bounded. Hence when m Sr p the expression

may be expanded as a polynomial in w-1 of degree m — p, together with an
error term 0{uv~m~1). Combining this expansion with a similar one for
{0'(z)}~i, we obtain, in the case / = 1 for example,

,,3, , l ( . ,M,

where the coefficients A,(6, z) are given by the asymptotic identity

Clearly each As(6, z) is a regular function of z in D(0), and bounded when
dee, *eG(0).

An alternative way of deriving the As(d, z) is afforded by substituting (7.3)
directly in the differential equation (3.1) and equating coefficients (see [2],
§ 4.2). The derivatives of the term Ofa-™-1) in (7.3) also have the form
Ofa-™-1) at points whose distance from the boundary of Hx(0) has a positive
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lower bound; this is easily proved by application of Cauchy's integral for-
mulae for derivatives. The validity of the resulting expressions for the
Aa(d,z) at the other points of D(0) follows by analytical continuation.

In order to simplify the procedure, it is convenient to use the notation

/s.(0, z) = <f,.(e, z) (s = o,
(?-5) = 0 [s>p.

Carrying out the substitution described, we arrive at the asymptotic identity

(7.6)

'~t'tU~V^){1 ^I if)+ 2il + 1 §) I ^ + I ^ i = 0>

where

thus

(7-8) 7s = 2# +S|(5'X-r (s 2g 1).

Equating to zero the coefficients of w1, tr2, • • •, u~p in (7.6), we obtain

(7-9) ys = f. (s = 1, 2, • • -, p ) ,

and equating to zero the coefficients of the higher powers of M"1 and using
(7.9), we obtain

(7.10) 2 (yr -fr + /C,) AS_T + 2A's_p + 2 £ P'r-pA'_r + A'a'_2j) = 0
r=jH-l r=p+l

which becomes, on replacing s by s + p and r by r + p,

(7.11) 2^; = - ^ + i {(/r+P - yr+, - ft) AS_T - 2p'rA's_r} (s ^ 1),
r=l

the first term on the right being absent when s < p.
Equation (7.9) is simply the defining relation for <f>lt <f>2, • • -, ^>p; compare

(3.10) and (3.11). From (7.11) we obtain on integration

(7.12) A.= -\Alv

The functions y and ft on the right of this equation are known in terms of
4>v 4>i> ' ' '> 4>v accordingly (7.12) is a recurrence relation for the A,. It shows
immediately that the A, are regular in D(0).

On making obvious extensions to the above analysis, we may summarize
the results of this section in the following theorem.
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THEOREM 2. With the conditions of § 3 and the restriction a > 1, there exist
solutions wx(u, 6, z) and w2(u, 0, z) of the differential equation (3.1) such that

( " 3 >

(*« 11,(0)),

as M ->• + oo, where the O's are uniform with respect to z and 0 e Q, Here m is
an arbitrary integer or zero, and w^u, 6, z), w2(u, 6, z) are independent of m.

The functions <f>s(d, z) are given by (3.10) and (3.11), and As{6, z) by (7.12)
or, equivalently, (7.4). Also,

(7.15) Bs = A , + fcA^ + fl'2As_2 + . . . + # + A'_p.
Corresponding formulae for the starred coefficients are

(7.16) T~1

('> 1).
(7.17) B* = Af - &AU + &AU + (-)'/S; - (-)MtV

REMARK. Theorem A of Olver ([10], § 2) is the special case of theorem 2
obtained by taking p = 1, fi(Q, z) = 0. The condition a > 1 is contained
implicitly in Olver's inequality (2.2).
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