HANNOVER RADIOCARBON MEASUREMENTS IV

M. A. GEYH

Niedersächsisches Landesamt für Bodenforschung, Hannover, Germany

INTRODUCTION

This date list covers a selection of C^{14} results of archaeologic, hydrologic and speleologic samples that have been investigated in the period from March 1963 until July 1966. Dates of geologic samples will be presented in the following list.

The ages were calculated on a C¹⁴ half-life of 5568 yr and 0.95 of the activity of the NBS oxalic-acid standard, and are quoted in the years before 1950. The age errors encompass the "true C¹⁴ ages" with a probability of 68%. Included in the error calculations are the standard deviations of the background and of the NBS standard, which are each $3\%_{e}$, and the counting error of sample. C¹³ corrections have not been carried out. Infinite ages are stated on a criterion of 2σ above background.

The recent activity of water and calcareous sinter is assumed to be 85% modern. According to the model for age determination of water (Münnich, 1957; Münnich and Vogel, 1959) the δC^{13} value of the precipitated free and fixed carbonic acid (Pearson, 1965; Geyh and Wendt, 1965) would be given by the equation:

$$\delta C^{13}{}_{M} = \frac{1/2}{[HCO_{3}] + [CO_{2}]}{[HCO_{3}] + [CO_{2}]} \ \delta C^{13}{}_{org}$$

[HCO₃] and [CO₂] are the concentrations of the fixed and free carbonic acid in mM/L, and $\delta C^{13}_{\text{org}}$ is the C¹³-ratio of organic material, approximately equal to -25%. Owing to the low precision of CO₂ and HCO₃ determinations, δC^{13}_{M} can only be determined with an error of $\pm 2\%$. By comparison of the measured δC^{13} value of the precipitated free and fixed carbonic acid from a sample, with δC^{13}_{M} , it can be checked whether carbon dioxide other than that which is biogenic and recent contributed to the carbonic acid equilibrium.

The method is essentially the same as that used for the work described in the previous lists (Hannover I, II, III). For the preparation of the counting gases C_2H_2 and C_2H_6 , a new apparatus was constructed, by help of which one technician can prepare four samples per day.

After extensive general tests, five new counters were set in operation with the result that the number of samples to be dated per year could be increased to 600. Technical data of these counters are covered in the following table:

198

M. A. Geyh

Name	Туре	Vol L	р	n _o cpm	n _s cpm	Age _{max} yr	Time hr	Ref.
GZR	Oeschger	4.57	1	4.26	48.75	50,500	2 x 20	Geyh, 1965a
	0		3	7.75	146.00	62,000	7 x 24	Houtermans & Oeschger, 1958
BZR		1.50	1	1.52	17.30	46,000	2 x 20	
PZR		1.50	1	1.22	16.84	46,000	2 x 20	
MZR	Copper quartz	0.87	1	1.69	7.59	39,000	2 x 20	de Vries and others, 1959
LZR	tube	0.22	1	1.05	2.32	33,000	2 x 20	
SZR	Scint. plastic	0.04	1	0.15	0.30	19,000	2 x 20	Geyh, 1965a

(Abbreviations: $p = filling pressure in atm; n_o = background; n_s = .95 x net counting rate of NBS oxalic-acid standard; max age_{max} = measured infinite age; time = counting time; Vol is effective volume.)$

The measurements are done with a vacuum-tube apparatus tested for its stability, without α -discriminator. Each sample is measured twice in different counters. In those cases where the sample sizes are too small for the filling of one counter with 1 atm, background gas is admixed (Geyh, 1966). For checking the constancy of the C¹⁴ time-scale, a dendrochronologically dated wood sample was measured monthly. Routine operating conditions are fixed according to methods already described (Geyh, 1965a).

Sample descriptions have been prepared in collaboration with collectors and submitters.

Abbreviations in the following text are: N.L.f.B. for Niedersächsisches Landesamt für Bodenforschung, Hannover (Germany); B.f.B. for Bundesanstalt für Bodenforschung, Hannover (Germany); and G.L. for Geologisches Landesamt.

ACKNOWLEDGMENTS

The author thanks Erika Guhlich, Renate Eichhorn, Norgart Lutz, and Isa Krell for their excellent work in chemical preparation and measurement of samples. Adolf Schorn and Gerhard Morgenthal constructed the new counting tubes and were responsible for their service. The C¹³ measurements were carried out by Wolfgang Stahl (B.f.B.) with an Atlas CH4 mass spectrometer. The chemical water analyses were taken over by Heinrich Fauth (B.f.B.). Heinrich Schneekloth (N.L.f.B.) assisted in the selection of samples.

SAMPLE DESCRIPTIONS

I. ARCHAEOLOGIC SAMPLES

A. Germany

Tarmstedt series, Niedersachsen

Charcoal from excavation of prehistorical circular burial with vault near Tarmstedt (53° 14' 43" N Lat, 9° 4' 21" E Long). Covered with sandy soil. Coll. 1966 and subm. by Joachim Deichmüller, Niedersächsisches Landesverwaltungsamt für Bodendenkmalspflege, Hannover. Samples date a unique grave, presumably of Bronze age.

Hv-1391. Tarmstedt, 0.4 m depth	2800 ± 85
Sample of tree coffin.	850 в.с.
Hv-1392. Tarmstedt, 0.5 m depth	2950 ± 80
Sample of tree coffin.	1000 в.с.
Hv-1393. Tarmstedt, 0.3 m depth	2955 ± 80
Wall remains of a vault.	1005 в.с.
Hv-1395. Tarmstedt, 0.2 m depth	2870 ± 135
Remains of a wooden peg from the vault.	920 в.с.
Hv-1396. Tarmstedt, 0.3 m depth	2980 ± 155
Remains of the vault entrance.	1030 в.с.
Hv-1397. Tarmstedt, 0.8 m depth	2910 ± 130 960 в.с.

Remains of a tree coffin. *Comment:* according to the manner of grave arrangement, age of 3500 B.P. was assumed. C¹⁴ results show that in N Germany cremations with circular grave arrangements were performed even later.

II 00 7			3400 ± 105
Hv-827.	Ohlenstedt,	Niedersachsen	1450 в.с.

Chacoal from excavation of lower grave, 0.2 to 0.3 m depth, near Ohlenstedt (53° 17' 39" N Lat, 8° 45' 39" E Long), imbedded in sand. Coll. 1963 and subm. by J. Deichmüller. *Comment:* according to layout of grave and to ceramics, assignment was to older Bronze age.

Hv-821. Gräpel, Niedersachsen

2650 ± 75 700 в.с.

Charcoal from excavation of hill grave, 0.2 m depth, near Gräpel (53° 33' 10" N Lat, 9° 11' 6" E Long), imbedded in sand. Coll. 1961 and

subm. by J. Deichmüller. Comment: agrees with archaeologic dating of a cremation urn.

Hv-366. Billerbeck, Niedersachsen

6010 ± 100 4060 B.C.

~ ~

201

Charcoal from excavation of hill grave, 0.6 m depth, near Billerbeck (52° 52′ 42″ N Lat, 10° 52′ 15″ E Long). Coll. 1960 and subm. by J. Deichmüller. *Comment:* sample dates an ornamented pottery.

Hv-369. Bullenburg, Niedersachsen 4100 ± 140 2150 B.C.

Charcoal from hill grave with circular trench, 1.3 m depth, near Bullenberg (53° 4' 3" N Lat, 9° 40' 43" E Long), imbedded in natural soil. Coll. 1957 and subm. by J. Deichmüller. *Comment:* sample dates a hill grave type, with a form of burial that so far could not be classified chronologically.

Deinste series, Niedersachsen

Charcoal from excavation of large stone grave near Deinste (53° 30' 45" N Lat, 9° 27' 24" E Long), overlain by natural soil. Coll. 1959 and subm. by J. Deichmüller. Sample date large Neolithic stone grave and ceramics.

	4170 ± 80
Hv-345. Deinste, 1.6 m depth	2220 в.с.
Charcoal from fireplace near a vault.	
	4040 ± 110
Hv-348. Deinste, 1.4 m depth	2090 в.с.
Charcoal from a cult fireplace.	
	3470 ± 80
Hv-824. Deinste, 1.6 m depth	1520 в.с.
Charcoal from the stone chamber.	
	3410 ± 100
Hv-825. Deinste, 1.5 m depth	1460 в.с.

Charcoal from stone settlement beside the main burial place. Comment: in contrast to the archaeologic assumption, i.e. that the stone grave and the cult fireplace are of same age, results prove that stone grave was built during Bronze age.

Goldbeck series, Niedersachsen

Charcoal from excavation of circular burial with wooden vault near Goldbeck (53° 24' 12" N Lat, 9° 38' 10" E Long), overlain by debris. Coll. 1962 and subm. by J. Deichmüller. Sample date Stone age burial place, which was later used for a burial during Bronze age. M. A. Geyh

	1735 ± 100
Hv-752. Goldbeck, 0.45 m depth	А. D. 215
Charcoal from upper burial place.	
	4085 ± 80
Hv-753. Goldbeck, 0.80 m depth	2135 в.с.
Plank of vault.	
	4110 ± 85
Hv-759. Goldbeck, 1.30 m depth	2160 в.с.
Charcoal from circular trench.	
	$4020~\pm~75$
Hv-810. Goldbeck, 1.20 m depth	2070 в.с.
, ,	

Charcoal from the chief burial. *Comment:* pottery findings of the old burial place date them to 2000 B.C. Discovery of a flint spearhead suggests Bronze age date for younger burial place.

2355 ± 75 405 в.с.

1 - 0 - 100

Hv-804. Effeln, Nordrhein-Westfalen

Charcoal from excavation of urn cemetery of Hallstatt age near Effeln (51° 32′ 54″ N Lat, 8° 22′ 59″ E Long), overlain by "parabraunerde." Coll. 1964 and subm. by E. von Zezschwitz, G. L. Nordrhein-Westfalen, Krefeld. *Comment:* dating of an urn, ornamented with a delicate comb-like line, which according to H. Beck, Landesmuseum für Vor- und Frühgeschichte, Münster, was assigned to Hallstatt D or C (2600 B.P.) (Henneböle, 1959).

Hv-773. Luttum, Niedersachsen

Charcoal of hill grave excavation, 0.9 m depth, near Luttum (52° 53' 48" N Lat, 9° 18' 18" E Long), overlain by sand. Coll. 1964 and subm. by R. Schünemann, Heimatmuseum, Borstel. *Comment:* dating of a cup, from a single grave, with scratched angular band-decoration; age of 1800 B.C. was assumed (Schünemann, 1965).

3420 ± 60 1470 B.C.

 1440 ± 75

A.D. 510

3660 ± 70 1710 в.с.

Hv-587. Walkemühle, Niedersachsen

Charcoal from excavation of hill burial place of Bronze age, 0.5 to 0.7 m depth, at Walkemühle (51° 31' 25" N Lat, 9° 55' 49" E Long). Coll. 1963 and subm. by R. Maier, Seminar für Vor- und Frühgeschichte der Universität Göttingen. *Comment:* according to earlier dates (Meyer and others, 1963) of similar fragments from hill graves, should be Bronze age (approx. 1400 B.C.) or younger (Maier, 1964).

Hv-1394. Tarmstedt, Niedersachsen

Charcoal from exposure of an ancient iron smelting plant, 0.5 to 0.7 m depth, at Tarmstedt ($53^{\circ} 13' 48''$ N Lat, $9^{\circ} 4' 21''$ E Long), overlain by sand. Coll. 1966 and subm. by J. Deichmüller. *Comment:* owing to absence of artifacts, no clues for age estimation.

Isernhagen series, Niedersachsen

Charcoal from excavation of ancient slag hills, 0.2 to 0.3 m depth, near Mellendorf (52° 35' 31" N Lat, 9° 48' 40" E Long). Coll. 1963 and subm. by H. Lang, N.L.f.B.

Hv-523.	Isernhagen	А.Д. 1350
		660 ± 50
Hv-524.	Isernhagen	А.Д. 1290

Comment: samples originate from the time when bog-iron smelting was carried out in Niedersachsen. According to pottery, end of this period is near A.D. 1200 to 1300 (Lang, 1962).

Hv-722. Steinkart, Niederbayern

Charcoal from a hitherto unknown, collapsed mining shaft, 7.7 m depth, near Griesbach (45° 28' 30" N Lat, 13° 12' 22" E Long), overlain by forest soil. Coll. 1964 and subm. by H. Lang, Geograph. Inst. der Univ., München. *Comment:* sample dates an old mining site which, according to type of its construction and to quality of the ore, may have been established between 500 B.C. and A.D. 1000.

Dümmer series, NW-Germany

Samples of Neolithic settlement in vicinity of Dümmer lake at Hüde (52° 29' 10" N Lat, 8° 18' 42" E Long), imbedded in forest-bog peat, underlain by gyttja. Coll. 1962 to 1964 and subm. by Deichmüller. Samples date the unique Stone age settlement in NW Germany (Deichmüller, 1965a; Deichmüller, 1965b), the excavation of which produced many interesting and unique finds, i.a. a complex foreign ceramics.

	5430 ± 80
Hv-317. Dümmer, 1.2 m depth	3480 в.с.
Wood of house post.	
I I	5420 ± 50
Hv-374. Dümmer, 0.7 m depth	3470 в.с.
Charcoal; dates an ornamented pottery.	
	5565 ± 85
Hv-814. Dümmer, 0.9 m depth	3615 в.с.
Bearing pile of dwelling.	
01	5425 ± 350
Hv-816. Dümmer, 0.5 m depth	3475 в.с.
Charcoal from earthen vessel.	5150 1 00
	5170 ± 90
Hv-1220. Dümmer, 0.7 m depth	3220 в.с.
Wooden how presumably from a mill.	

Wooden bow, presumably from a mill.

 $\mathbf{1480} \pm \mathbf{70}$

А.р. 470

 600 ± 50

Hv-1230. Dümmer, 0.5 m depth	5175 ± 155
Charred food remains on braided pottery.	3225 в.с.
Hv-349. Dümmer, 0.5 m depth	4710 ± 90
Stump of tree that crushed the log canoe.	2760 в.с.
Hv-373. Dümmer, 0.6 m depth	4840 ± 130
Charcoal; dates fragment of braided pottery.	2890 в.с.
Hv-813. Dümmer, 0.4 m depth	4740 ± 70
Bark of a house post.	2790 в.с.
Hv-1221. Dümmer, 0.5 m depth	4800 ± 85
Log canoe overlain by tree.	2850 в.с.
Hv-318. Dümmer, 0.3 m depth	2970 ± 80
Charcoal from lower habitation layer.	1020 в.с.
Hv-455. Dümmer, 0.7 m depth	2580 ± 80
Charcoal from habitation layer, 7 m distant from H	630 в.с.
Hv-817. Dümmer, 0.4 m depth	2840 ± 95
Bearing pile of dwelling.	890 в.с.

	_	$2770\ \pm 85$
Hv-819.	Dümmer, 0.4 m depth	820 в.с.

Bearing pile of dwelling. *Comment:* age determinations by means of stratigraphic and pollen-analytic investigations were difficult owing to unevenness of the terrain. Comparisons of pottery (Knoll, 1959) confirm the C¹⁴ dates. Pollenanalytic investigations by J. Schüttrumpf, Köln, indicate a period around 4500 B.P. (Upper Neolithic). C¹⁴ dates provided proof of four phases of settlement and revealed many hitherto unknown relations in the field of Stone-age research of N Germany.

 $1125~\pm~60$

Hv-1061. Ottmarsbocholt, Nordrhein-Westfalen A.D. 825

Wooden plank from excavation of old bridge, 2 to 3 m depth, near Ottmarsbocholt (51° 53' 48" N Lat, 7° 39' 46" E Long), overlain by high-flood loam. Coll. 1965 and subm. by H. C. Poeschel, Geograph. Inst. of Univ., Münster. *Comment:* samples dates bridge over Emmer river which, according to archival studies (Krusch, 1933), existed in A.D. 851.

204

Madeburg series, Niedersachsen

Charcoal from excavation of castle of Madeburg $(51^{\circ} 24' 19'' \text{ N} \text{ Lat, } 9^{\circ} 56' 00'' \text{ E Long})$, overlain by humic soil. Coll. 1964 and subm. by H. G. Peters, Seminar für Früh- und Urgeschichte der Univ., Göttingen.

		1350 ± 115
Hv-707.	Madeburg, 1.35 m depth	а.д. 600
		$1010~\pm~80$
Hv-710.	Madeburg, 0.7 m depth	а.д. 940
		930 ± 100
Hv-711.	Madeburg, 0.4 m depth	А.Д. 1020
		800 ± 100
Hv-712.	Madeburg, 0.1 m depth	а.д. 1150

Comment: according to fragments of pottery, age of A.D. 900 to 1100 assumed (Peters, 1965).

			6350 ± 70
Hv-586.	Rosdorf, Niedersachsen		4400 в.с.
01	1 6 . 1	9 , 00	Janth man Dardanf

Charcoal of settlement midden, 0.3 to 0.9 m depth, near Rosdorf $(51^{\circ} 30' 21'' \text{ N Lat}, 9^{\circ} 54' 8'' \text{ E Long})$, overlain by loess. Coll. 1964 and subm. by H. G. Peters. *Comment:* according to older line-band ceramics found, age of 4500 to 4400 B.C. assumed (Maier and Peters, 1965; Meyer and others, 1963; Behrens, 1962).

835 ± 80 A.D. 1115

Hv-709. Wittenburg, Niedersachsen

Charcoal, 0.7 m depth, from excavation of castle Wittenburg $(51^{\circ} 36' 9'' \text{ N Lat}, 9^{\circ} 58' 3'' \text{ E Long})$, overlain by shell limestone. Coll. 1964 and subm. by H. G. Peters, *Comment:* archaeologic dating was not possible because of absence of specimens (Peters, 1965).

1205 ± 105 A.D. 745

Hv-1040. Möllenbeck, Niedersachsen

Charcoal from post, 0.1 to 0.6 m depth, in foundation of former "Stiftskirche" Möllenbeck (52° 10′ 23″ N Lat, 9° 1′ 45″ E Long), overlain by clay and gravel. Coll. 1965 and subm. by K. Maier, Landeskonservator, Hannover. *Comment:* older than A.D. 900, according to Carolingian pottery; C¹⁴ age proves that the apsides-foundations of the crypt are the oldest unit of the church. Therefore occupancy of this region must have taken place prior to the founding of the monastery (Hentger, 1962; Maier, 1966).

Lengderburg series, Niedersachsen

Charcoal from trench, 0.4 m deep, into bulwark of castle Lengderburg (51° 30′ 29″ N Lat, 10° 3′ 56″ E Long), overlain by thin humus laver and weathered shell limestone. Coll. 1965 and subm. by H. G. Peters. Samples serve to establish different building phases of prehistoric fortresses.

Hv-931.	Lengderburg	5190 ± 115 3240 в.с.
		5305 ± 85
Hv-932.	Lengderburg	3355 в.с.

Comment: until now, three phases of castle construction were known in Niedersachen: in the 7th to the 5th century B.C. and in the Middle ages. The new discovery is surprising.

Hedemünden series, Niedersachsen

206

Charcoal from rampart near Hedemünden ($51^{\circ} 23' 52''$ N Lat, $2^{\circ} 43' 42''$ E Long), overlain by humus and loess. Coll. 1965 and subm. by H. G. Peters. Samples date different building phases of a prehistoric fortress.

		2135 ± 75
Hv-928.	Hedemünden, 0.3 m depth	185 в.с.
		2190 ± 75
Hv-929.	Hedemünden, 0.5 m depth	240 в.с.
Comment	: pottery findings imply age of 100 p c	

Comment: pottery findings imply age of 100 B.C.

			8075 ± 65
Hv-567.	Seelenhof Ried,	Württemberg	6125 в.с.

Wood from prehistoric dam, 1.05 m depth in Seelenhof Ried (48° 5' 2" N Lat, 27° 15' 32" E Long), overlain by 0.4 m humic soil and 0.6 m sand. Coll. 1961 and subm. by K. H. Göttlich, Wasserwirtschaftsamt Sigmaringen, Württemberg. *Comment:* discovery of Mesolithic tools confirms the C¹⁴ dating (Göttlich, 1965). Thus, dam represents one of the oldest manmade trackways in Europe.

Hv-637. Büderich, Nordrhein-Westfalen

Wood from bearing pile of castle, 2 m depth, near Büderich $(51^{\circ} 16' 7'' \text{ N Lat}, 6^{\circ} 40' 36'' \text{ E Long})$, overlain by peat. Coll. 1963 and subm. by J. Braun, G. L. Nordrhein-Westfalen, Krefeld. *Comment:* according to construction as investigated by A. Herrnbroth, Rhein. Landescuseum, Bonn, foundation should originate from ca. A.D. 900.

B. Foreign Countries

Hv-1098. Lüderitz, SW Africa

Bone of rhinoceros from watering place, depth 80 cm, on Lüderitzbucht (26° 43' S Lat, 15° 14' W Long), imbedded in sand. Coll. 1965 and subm. by H. Kazmaier, Lüderitz Mus., Lüderitzbucht. *Comment:* postglacial watering place of wild animals in the Nambi desert (Heinz, 1933). Contamination of sample is unlikely.

https://doi.org/10.1017/S0033822200000515 Published online by Cambridge University-Press

9960 ± 390 8010 в.с.

 1525 ± 80

А.Д. 425

https://doi.org/10.1017/S0033822200000515 Published online by Cambridge University Press

Hv-556. Embouchure du Loa, Chile

Charcoal from excavation of Indian grave near embouchure (21° 27' S Lat, 70° 5' W Long). Coll. 1963 and subm. by J. C. Spahni, Genf. Comment: according to pottery fragments of Atacaman culture, 6th to 7th century A.D. was assumed. Date shows extension of Atacaman culture as far as the Pacific coast (Bennet, 1946; Bird, 1946).

Hv.557. Embouchure du Loa, Chile

Charred human bone from excavation of Indian grave near Embouchure du Loa (21° 27' S Lat, 70° 5' W Long). Coll. 1963 and subm. by J. C. Spahni. Comment: same period as Hv-556.

Hv-298. Tulán, Chile

Charcoal from grotto near Tulán (23° 48' S Lat, 68° 2' W Long). Coll. 1962 and subm. by J. C. Spahni. Comment: cave paintings of men and lamas, and also an abundance of geometric symbols, point to time of main Atacaman culture ca. 10th century A.D.

Hv-299. San Lorenzo, Chile

Charcoal from fireplace in grotto of San Lorenzo (23° 15' S Lat. 67° 25' W Long). Coll. 1962 and subm. by J. C. Spahni. Comment: cave paintings of hunting ceremony with dancing people point, as does the date, to preceramic phase.

Moquegua series, Peru

Samples from Indian graves near Chen-Chen (17° 11' 56" S Lat, 70° 45′ 42″ W Long), imbedded in volcanic ash. Coll. 1965 and subm. by H. D. Disselhoff, Deutsche Forschungsgemeinschaft, Berlin. Dates should prove migration of the Tiahuanaco culture from Bolivian uplands.

		1040 ± 65
Hv-1076. Cl	hen-Chen, 1.5 m depth	а.д. 910
Cotton tissue f	rom stone grave.	

		930 ± 65
Hv-1077.	Chen-Chen, 0.9 m depth	А.Д. 1020

Charcoal from grave, 70 m distant from Hv-1076. Comment: according to decorated pottery, approx. A.D. 900.

Toro Grande series, Peru

Samples from Indian graves near Toro Grande (16° 15' 16" S Lat, 72° 29' 29" W Long), imbedded in volcanic ash. Coll. 1965 and subm. by H. D. Disselhoff. Datings facilitate correlation of styles of ceramics.

10.280 ± 120 8330 в.с.

1425 ± 80 A.D. 525

 1735 ± 100

 1180 ± 60

а.д. 215

A.D. 770

		995 ± 90
Hv-1078.	Toro Grande, 1.0 m	а.д. 955
Wood from	n exposure.	
	-	960 ± 60
Hv-1079.	Toro Grande, 0.6 m to 1.0 m	а.д. 990

А.D. 990

Cotton textiles from exposure, 10 m distant from Hv-1078. Comment: according to pottery, A.D. 850 was assumed.

Cabezas Achatadas series, Peru

Samples from Indian graves near Cabezas Achatadas (16° 36' 00" S Lat, 72° 45′ 6″ W Long), imbedded in sand. Coll. 1965 and subm. by H. J. Disselhoff. Samples serve style classification of textiles.

Hv-1101. Cabezas Achatadas, 1.9 m	1805 ± 85
Wood sample.	a.d. 145
Hv-1155. Cabezas Achatadas, 1.5 m	1855 ± 95
Rush mat, picked up 7 m SE of Hv-1101.	a.d. 95
Hv-1102. Cabezas Achatadas, 1.8 m	1530 ± 70 а.д. 420

Textiles, picked up 7 m away from Hv-1101. Comment: according to style comparison, possibly 2000 B.P.

Loreto Viejo series, Peru

Samples from burial places at Loreto Viejo (17° 36' 50" S Lat, 71° 14' 18" W Long), imbedded in sand. Coll. 1965 by H. J. Disselhoff; subm. by G. S. Vescelius, Am. Mus. of Nat. Hist., New York. Samples date Loreto complex, a derived Tiahuanaco culture, and correlate textile styles.

		470 ± 235
Hv-1080.	Loreto Viejo, 1.0 m depth	а.д. 1480
Constant	a from looted cave	

Coca leaves from looted cave.

 750 ± 60

Hv-1081.	Loreto Viejo, surface	А.D. 1200
	and there from a manner	found beside Hy 1080

Human hair and tissue from a mummy, found beside Hv-1080.

 980 ± 70

Hv-1091.	Loreto Viejo, 0.7 m depth	а.д. 970
111-1021.	Loreto viejo, on macpu	

Cloth, found 10 m away from Hv-1080. Comment: according to associated ceramics, ca. A.D. 900.

Punta Islay series, Peru

Charcoal from dwelling site, immediately below surface at Punta Islay (17° 00' 41" S Lat, 72° 6' 30" W Long), overlain by waste layer with shells. Coll. 1965 and subm. by G. S. Vescelius. Samples date different phases of Islay culture.

Hv-1087. Punta Islay	1710 ± 95 а.д. 240
Sample from Stratum I (Level A).	
Hv-1082. Punta Islay	1685 ± 80 a.d. 265
Sample from Stratum II (Level B).	
Hv-1088. Punta Islay	1960 ± 100 10 в.с.

Sample from Strata XII to XIII (Level M-N). Comment: according to associated ceramics, samples originate from fairly late, intermediate and early phases of Islay culture or Episode B 5, A 6 and A 2/3 of Punta Islay sequence. Estimated ages 200 B.C., 300 B.C., 600 B.C. No absolute dating was performed before in this area.

					81	90 ± 130
Hv-1083.	Cueva de Caru,	Peru			62	40 в.с.
				-		

Charcoal from exposure, 1.5 m depth, at Cueva de Caru $(17^{\circ} 27' 20'' \text{ S Lat}, 70^{\circ} 00' 30'' \text{ W Long})$, overlain by sand. Coll. 1965 by R. Ravines; subm. by G. S. Vescelius. *Comment:* sample serves to date preceramic assemblage with projectile points of Pampa Colorada type.

Puyenca series, Peru

Charcoal from undisturbed middens, immediately below surface at Puyenca (16° 13' 2" S Lat, 73° 40' 5" W Long). Coll. 1965 and subm. by G. S. Vescelius. Dates late preceramic site at Punta Atico.

		8070 ± 145
Hv-1084.	Puyenca	6120 в.с.

Sample from one of outlying middens.

Hv-1086. Puyenca

7855 ± 150 5905 в.с.

.....

~~~~

Sample from one of central middens. *Comment:* because evidently preceramic, age of 1200 B.C. was assumed.

| 1        | 5                 | $8765 \pm 160$ |
|----------|-------------------|----------------|
| Hv-1090. | Playa Chira, Peru | 6815 в.с.      |

Carbonaceous soil from shell heap, alt. 55 m above sealevel, at Playa Chira ( $16^{\circ} 31' 10''$  S Lat,  $72^{\circ} 54' 25''$  W Long). Coll. 1965 and subm. by G. S. Vescelius. *Comment:* preceramic culture, estimated age 2250 B.C.

730 ± 90 A.D. 1220

#### Hv-1089. Puyenca II, Peru

Charcoal from Stratum IV (Level B) of large dwelling site at Puyenca (16° 12' 40" S Lat, 73° 39' 50" W Long). Coll. 1965 and subm.

~ -

by G. S. Vescelius. *Comment:* should date the pre-ultimate phase of occupation at Puyenca II, ca. A.D. 1525 according to ceramics.

#### Hv-1085. El Gentilar, Peru

#### 670 ± 70 A.D. 1280

Textile fragments from Stratum X (Level J) of midden below surface, at El Gentilar ( $17^{\circ} 41' 45''$  S Lat,  $71^{\circ} 22' 15''$  W Long). Coll. 1965 and subm. by G. S. Vescelius. *Comment:* should date earliest phase of culture sequence at El Gentilar, estimated age A.D. 1150.

#### Hv-1151. Totimelmacau, Mexico

### $\begin{array}{r} {\bf 2150} \pm {\bf 125} \\ {\bf 200} \ {\bf B.C.} \end{array}$

Charcoal from excavation, 1.8 m depth, near Totimelmacau on uplands of Puebla (18° 54' N Lat, 98° 11' W Long), imbedded in calcareous bituminous layers. Coll. 1965 and subm. by Bodo Spranz, Museum für Völkerkunde, Freiburg, Württemberg. *Comment:* from pre-classic pyramid, age between 600 B.C. and A.D. 300 was assumed (Piña Chan, 1958).

#### **II. WATER SAMPLES**

#### Arnold series, Nordrhein-Westfalen

Fixed and free carbonic acid, precipitated from water of several lysimeters at Arnold (52° 13' 8" N Lat, 7° 22' 47" E Long). Coll. June 1965 and subm. by Heinrich Fauth, B.f.B.

**Hv-1015.** Heath lysimeter 100.7  $\pm$  1.4 % modern Stale water sample from lysimeter filled with calcareous sand and gravel, which is overgrown by heath.  $\delta C^{13} = -21.7/\epsilon$ ;  $\delta C_M^{13} = -17.8/\epsilon$ .

Hv-1016. Deciduous-forest lysimeter 90.4  $\pm$  2.2 % modern Stale water sample from lysimeter filled with gravelly calcareous sand and overgrown by deciduous forest.  $\delta C^{13} = -18.0/\epsilon_{\ell}; \ \delta C_{M}^{13} = -14.4/\epsilon_{\ell}.$ 

Hv-1017. Deciduous-forest lysimeter 89.1  $\pm$  1.8 % modern Directly extracted water sample from same lysimeter as Hv-1016.  $\delta C^{13} = -18.2\%c; \ \delta C_M^{13} = -14.0\%c.$ 

**Hv-1018.** Coniferous-forest lysimeter 91.5  $\pm$  4.2 % modern Stale water sample taken from lysimeter filled with calcareous sand and overgrown by coniferous forest.  $\delta C^{13} = -18.3\%\epsilon$ ;  $\delta C_M^{13} = -14.4\%\epsilon$ . Comment: C<sup>14</sup> activity of recent waters exceeds that found earlier (Münnich, 1957), owing to atom bomb-tests. Higher activity of Hv-1015 may have been produced by larger pore volume in the extraction lysimeter (Wendt and others, 1967). It is remarkable that the computed  $\delta C_M^{13}$ values exceed the measured ones.

#### Valley of Elbe river series, Norddeutschland

Fixed and free carbonic acid, precipitated by  $Ba(OH)_2$  from water taken from some deep and some shallow groundwater near valley of Elbe river. Coll. 1964 and subm. by H. Fauth.

Hv-681. Schutschur, 5.5 to 10.5 m 56.2 ± 1.1 % modern Water from 1st aquifer below surface (53° 13′ 6″ N Lat, 10° 55′ 42″ E Long).  $\delta C^{13} = -10.7\%$ ;  $\delta C_M^{13} = -13.1\%$ ; apparent age 3325 yr.

Hv-684. Elstorf, 34 to 42 m 54.6 ± 0.9 % modern Water from 2nd aquifer below surface (53° 25′ 24″ N Lat, 9° 46′ 44″ E Long).  $\delta C^{13} = -13.2\%$ ;  $\delta C_M^{13} = -15.3\%$ ; apparent age 3555 yr.

Hv-685. Sinstorf, 42 to 54 m 55.2 ± 0.8 % modern Water from 2nd aquifer below surface (53° 25' 32" N Lat, 9° 57' 24" E Long).  $\delta C_{13} = -15.8\%\epsilon$ ;  $\delta C_{M}^{13} = -15.8\%\epsilon$ ; apparent age 3615 yr.

Hv-506. Niedermarschacht, 65 to 77 m 43.5  $\pm$  0.9 % modern Water from 4th aquifer below surface (53° 25' 8" N Lat, 10° 21' 46" E Long).  $\delta C^{13} = -10.9\%$ ;  $\delta C_M^{13} = -14.0\%$ ; apparent age 5380 yr.

**Hv-682.** Ashausen, 59 to 89 m Artesian water from 3rd aquifer below surface  $(53^{\circ} 21' 54'' \text{ N Lat}, 10^{\circ} 9' 6'' \text{ E Long})$ .  $\delta C^{13} = -15.3\%$ ,  $\delta C_{M}^{13} = -13.9\%$ ; apparent age 5570 yr. *Comment:* plotting of apparent ages of these samples against depth of extraction shows strong linear dependence. Slope of relationship is steeper than that of the sealevel curve, so filling of aquifers seems unconnected to sealevel rise nor does theory of age distribution of groundwater in open aquifers (Vogel, 1965) provide satisfactory explanation. The calculated  $\delta C^{13}$  values correspond to measured ones within limits of error, proving that no biogenic CO<sub>2</sub> has entered the system.

#### Niedersachsen series, Norddeutschland

Fixed and free carbonic acid from water samples, precipitated by  $Ba(OH)_2$  from some deep and some shallow ground-waters in N Germany. Coll. 1965 and subm. by Heinrich Fauth.

Hv-1180. Wittingen, 108 to 120 m 14.8  $\pm$  1.4 % modern Water from 3rd aquifer below surface (52° 42′ 52″ N Lat, 10° 43′ 36″ E Long).  $\delta C^{13} = -11.5\%$ ;  $\delta C_{M}^{13} = -13.0\%$ ; apparent age 14,050 yr.

**Hv-1171.** Schwarmstedt, 10 to 18 m 74.3  $\pm$  3.1 % modern Sample from 2nd aquifer below surface (52° 40′ 18″ N Lat, 9° 37′ 12″ E Long).  $\delta C^{13} = -17.7\%_{\ell}$ ;  $\delta C_{M}^{13} = -20.4\%_{\ell}$ ; apparent age 1080 yr. Hv-1122. Lüneburg, 98 to 126 m 54.9  $\pm$  1.2 % modern Water from 4th aquifer below surface (53° 16' 31" N Lat, 10° 24' 7" E Long).  $\delta C^{13} = -12.2\%$ ;  $\delta C_M^{13} = -13.3\%$ ; apparent age 3510 yr.

**Hv-1013.** Adendorf, 146 to 166 m 50.3  $\pm$  1.1 % modern Sample from 4th aquifer below surface (53° 16' 40" N Lat, 10° 28' 00" E Long).  $\delta C^{13} = -10.5\%$ ;  $\delta C_M^{13} = -13.0\%$ ; apparent age 4215 yr.

 Hv-1186.
 Eckerde, 8 to 18 m
  $61.0 \pm 1.3 \%$  modern

 Water from 2nd aquifer below surface (52° 19' 60" N Lat, 9° 31'

 36" E Long).  $\delta C^{13} = -11.0\%$ ;  $\delta C_M^{13} = -13.4\%$ ; apparent age 2660 yr.

Hv-1010.Elstorf, 34 to 42 m53.4  $\pm$  0.7 % modernSample from 2nd aquifer below surface(53° 25' 58" N Lat, 10° 3'24" E Long).  $\delta C^{13} = -13.2\%$ ;  $\delta C_M^{13} = -16.1\%$ ; apparent age 3735 yr.

Hv-996.Nordhorn, 19 to 44 m39.1  $\pm$  0.9 % modernWater from 2nd aquifer below surface $(52^{\circ} 25' 32'' \text{ N Lat, } 7^{\circ} 4' 25'')$ E Long).  $\delta C^{13} = -11.7\%$ ;  $\delta C_M^{13} = -14.6\%$ ; apparent age 6240 yr.

Hv-730.Soltau, 32 to 42 m69.6  $\pm$  1.5 % modernSample from 1st aquifer below surface(52° 59' 22" N Lat, 9° 51'12" E Long).  $\delta C^{13} = -18.7\%c; \ \delta C_M^{13} = -19.8\%c;$  apparent age 1600 yr.

Hv-729. Tütsberg, 42 to 49 m Sample from 4th aquifer below surface ( $53^{\circ}$  6' 55" N Lat,  $9^{\circ}$  54' 54" E Long).  $\delta C^{13} = -22.1\%$ ;  $\delta C_M^{13} = -22.1\%$ ; apparent age 890 yr. Comment: in most cases, the C<sup>14</sup> values were confirmed on remeasurment. Of interest is the age of sample Hv-1180 of more than 12,000 yr. Even if C<sup>14</sup> activity of recent water is very much lower than assumed (85% of NBS standard), calculated age is still older than postglacial. Contribution of biogenic CO<sub>2</sub> seems ruled out by high  $\delta C^{13}$  values.

#### West-Niedersachsen series, Norddeutschland

Fixed and free carbonic acid, precipitated by Ba(OH)<sub>2</sub> from some deep and some shallow groundwaters, lying in sandy and gravelly layers. Coll. 1965 and subm. by Heinrich Fauth.

Hv-1004.Aurich, 67 to 82 m76.8  $\pm$  1.3 % modernWater from 2nd aquifer below surface (53° 28' 53" N Lat, 7° 29' 24"E Long).  $\delta C^{13} = +3.2\%$ ;  $\delta C_M^{13} = -21.7\%$ ; apparent age 820 yr.

**Hv-1003.** Marienhafe, 37 to 64 m 54.9  $\pm$  0.9 % modern Mixed water from 2nd and 3rd aquifer from waterwork (53° 29' 55" N Lat, 7° 17' 17" E Long).  $\delta C^{13} = +4.6\%$ ;  $\delta C_M^{13} = -16.8\%$ ; apparent age 3510 yr.

https://doi.org/10.1017/S0033822200000515 Published online by Cambridge University Press

Hv-1007. Zwischenahn, 15 to 34 m 59.2 ± 1.8 % modern Water from 2nd aquifer below surface (53° 11' 12" N Lat, 8° 2' 6" E Long).  $\delta C^{13} = -8.3\%$ ;  $\delta C_M^{13} = -16.3\%$ ; apparent age 2910 yr.

#### Hv-1008. Westrhauderfeen, 44 to 45 m

70.3 ± 0.9 % modern

Water from 2nd aquifer below surface (53° 8' 39" N Lat, 7° 32' 27" E Long).  $\delta C^{13} = +5.9\%$ ;  $\delta C_M^{13} = -22.1\%$ ; apparent age 1525 yr. Sample from same place as Hv-385 (Hannover III).

Hv-1006. Westerstede, 43 to 60 m 62.3 ± 1.1 % modern Mixed water from 2nd and 3rd aquifer below surface (53° 16' 28" N Lat, 7° 58' 15" E Long).  $\delta C^{13} = -9.7\%$ ;  $\delta C_M^{13} = -15.1\%$ ; apparent age 2490 yr.

**Hv-997.** Wietmarschen, 29 to 37 m 52.5  $\pm$  0.7 % modern Water from 3rd aquifer below surface (52° 33' 39" N Lat, 7° 6' 56" E Long).  $\delta C^{13} = -5.6\%$ ;  $\delta C_{M}^{13} = -14.8\%$ ; apparent age 3870 yr.

Hv-995.Veldhausen, 69 to 79 m48.1 ± 0.7 % modernWater from 4th aquifer below surface (52° 35′ 54″ N Lat, 6° 51′ 44″E Long).  $\delta C^{13} = -8.3\%$ ;  $\delta C_M^{13} = -15.3\%$ ; apparent age 4575 yr.

 Hv-999.
 Neermoor, 20 to 66 m
  $57.1 \pm 0.8 \%$  modern

 Minud system for m = 0,  $h = h^{2} h^{2}$   $h^{2} h = h^{2} h^{2}$   $h^{2} h = h^{2} h^{2}$ 

Mixed water from 2nd and 3rd aquifer below surface (53° 20' 26" N Lat, 7° 22' 35" E Long).  $\&C^{13} = -4.2\%$ ;  $\&C_M^{13} = -16.9\%$ ; apparent age 3200 yr. *Comment:* the upper layers down to 1 m depth contain a large quantity of humous peat. This fact renders the application of the simple model for water age determination (Münnich, 1957; Münnich and Vogel, 1959) impossible, for the apparent ages will certainly be wrong. The deviations of the  $\&C_M^{13}$  from the measured  $\&C^{13}$  values confirm the participation of  $CO_2$ -produced by humic acid from limestonein the carbonic acid-water-chemistry (Vogel and Ehhalt, 1963; Geyh, 1965b).

#### **III. CALCAREOUS SINTER**

#### Spilkerhalle series, Niedersachsen

Recent calcite samples from Langenfeld cave, situated in Malm fm. of Jurassic age (52° 12' N Lat, 9° 18' E Long). Coll. 1965 and subm. by Bodo Schillat, Hamburg.

#### Hv-1036. Spilkerhalle 89.6 ± 1.6 % modern

Recent sinter tubes of young stalactites;  $\delta C^{13} = -7.6\%$ .

#### Hv-1038. Spilkerhalle

#### 93.7 ± 1.4 % modern

Recent sinter leaf from a sinter basin;  $\delta C^{13} = -7.1\%$ . Comment:  $C^{14}$  activity of recent sinter from an active sinter basin exceeds values

established earlier (Franke and others, 1959). It is probably wrong to consider natural exchange effects to be responsible for this, because water samples taken from lysimeters also show an increase of  $C^{14}$  activity (Hv-1015 to Hv-1018) due to atom bomb tests.

#### Langenfeld I series, Niedersachsen

Calcite samples from broken stalagmites of Langenfeld cave  $(52^{\circ} 12' \text{ N Lat}, 9^{\circ} 18' \text{ E Long})$ , situated in the Malm fm. of Jurassic age (Schillat, 1959). The samples are to delineate the period where intensive sinter growth was possible.

**Hv-1071.** Atlantishalle  $35.2 \pm 1.9 \%$  modern Regenerated sinter layer above first break-off of a stalagmite;  $\delta C^{13}$ = -2.4%; apparent age 7080 yr.

#### Hv-1073. Atlantishalle 51.8 ± 1.7 % modern

Regenerated sinter layer above second break-off of the regenerated stalagmite, from the same object as Hv-1071;  $\delta C^{13} = -5.6\%$ ; apparent age 4000 yr.

## Hv-1074.Spilkerhalle56.3 $\pm$ 1.1 % modernRegenerated sinter layer above break-off of a stalagmite; $\delta C^{13} =$ -5.0%c apparent age 3310 yr.

#### Hv-1063. Sinter basin 53.4 ± 1.1 % modern

Calcite cap of a stalagmite in an old sinter basin without water;  $\delta C^{13} = -8.0\%$ ; apparent age 3740 yr.

#### Hv-1066. Sinter basin 54.0 ± 1.1 % modern

Chalky base zone of a stalagmite, from same object as Hv-1063. Sample was corroded by water in earlier times.  $\delta C^{13} = -8.0\%$ ; apparent age 3660 yr. *Comment:* age of Hv-1071 fixes beginning of the period of intensive sinter growth. After an abnormally strong growth of 4 mm/100 yr, the regeneration of stalagmites ended ca. 4000 to 3300 B.P. (Hv-1073, Hv-1074, Hv-1063 and Hv-1066); (Geyh and Schillat, 1966).

#### Langenfeld II series, Niedersachsen

Calcite from stalagmite fragments of Langenfeld cave  $(52^{\circ} 12' \text{ N} \text{ Lat}, 9^{\circ} 18' \text{ E Long})$ , situated in the Malm fm. of Jurassic age. Coll. 1965 and subm. by B. Schillat. Samples date periods of growth of calo-sinter and serve to check the model of calc-sinter dating (Franke and others, 1959; Franke, 1951).

#### Hv-1029. Langenfeld $4.8 \pm 1.6 \%$ modern

Calcite from stalagmite, 0 to 1 cm below surface;  $\delta C^{13} = -6.0\%\epsilon$ ; apparent age 23,000 yr.

Hv-1030.Langenfeld $4.1 \pm 1.5 \%$  modernCalcite from same stalagmite as Hv-1029, 1 to 2 cm below surface; $\delta C^{13} = -5.4\%$ ; apparent age 24,350 yr.

#### Hv-1033. Langenfeld

Calcite from same stalagmite as Hv-1029, 4 to 5 cm below surface;  $\delta C^{13} = +1.0\%$ ; apparent age >33,000 yr.

#### Hv-1035. Langenfeld <1.5 % modern

Calcite from same stalagmite as Hv-1029, 6 to 7 cm below surface;  $\delta C^{13} = -10.1\%$ ; apparent age >32,600 yr.

#### Hv-1028. Biwakhalle 5.5 ± 1.5 % modern

Calcite from regenerated cap of broken-off stalagmite (No. 3);  $\delta C^{13} = -5.0\%$ ; apparent age 22,000 yr.

#### Hv-1068. Atlantishalle 1.9 ± 0.8 % modern

Calcite from regenerated cap of broken-off stalagmite (No. 20);  $\delta C^{13} = -0.1\%c$ ; apparent age 30,350 yr.

#### Hv-1069. Atlantishalle 20.4 ± 1.2 % modern

Calcite from regenerated cap of broken-off stalagmite (No. 16);  $\delta C^{13} = -1.7\%$ ; apparent age 11,500 yr.

#### Hv-1075. Spilkerhalle

#### 2.7 ± 0.8 % modern

Calcite from regenerated cap of broken-off stalagmite (No. 10);  $\delta C^{13} = -4.6\%$ ; apparent age 27,700 yr. *Comment:* assuming correctness of calculated apparent age sinter grew also during interstadials and interglacials. The  $\delta C^{13}$  values were commonly found to be lower in cold periods than in warm periods. To explain this result simply by temperature dependence of isotopic fractionation during lime precipitation is not possible. Other isotopic exchange processes must play a part as well (Geyh and Schillat, 1966).

#### IV. NATURAL CONTAMINATED SAMPLES

#### Hv-801. Hohes Holz, Niedersachsen $218.0 \pm 2.8 \%$ modern

Fixed and free carbonic acid precipitated by  $Ba(OH)_2$  from water of 2nd aquifer in 30 to 60 m depth below surface near Wunstorf (52° 26′ 33″ N Lat, 9° 23′ 12″ E Long). Coll. and subm. by Heinrich Fauth.  $\delta C^{13} = -12.1\%c$ . Comment: the extreme C<sup>14</sup> activity cannot be explained. Laboratory contamination can be excluded.

#### Hv-639. Schalchen, Bayern

#### 175.3 ± 1.4 % modern

Unpreserved mammoth bone, depth 4.0 to 6.0 m, near Schalchen (47° 53' 44" N Lat, 12° 25' 48" E Long), overlain by sand and limestone gravel above groundwater level. Coll. 1938 and subm. by Ortwin Ganss,

< 1.4 % modern

G. L. Bayern, München. *Comment:* date expected to correlate with "overthrust moraines" (Ganss, 1953) from the Würm glacial. The preparation of counting gas was made by combustion. Laboratory contamination can be excluded.

#### Hv-1104. Hannover, Niedersachsen 179.8 ± 3.7 % modern

 $CO_2$  from air, precipitated by bubbling through  $Ba(OH)_2$  during a time of one week in Hannover (52° 24′ 24″ N Lat, 9° 49′ 25″ E Long). Coll. June 1965 and subm. by Heinrich Fauth. *Comment:* increase of C<sup>14</sup> activity of carbon dioxide due to atom bomb tests corresponds to values measured elsewhere (Nydal, 1964).

#### References

Date lists:

216

| Hannover I   | Wendt, Schneekloth, and Budde, 1962 |
|--------------|-------------------------------------|
| Hannover II  | Geyh, Schneekloth, and Wendt, 1962  |
| Hannover III | Geyh and Schneekloth, 1964          |

Behrens, H., 1962, <sup>14</sup>C-Daten für mitteldeutsches Neolithikum: Jahresschr. mitteldtsche Vorgeschichte, v. 46, p. 41.

Bennett, W. C., 1946, The Atacameno: Handbook South Am. Indians, v. 2, p. 599.

Bird, J. B., 1946, The cultural sequence of the North Chilean coast: Handbook South Am. Indians, v. 2, p. 587.

Deichmüller, J., 1965a, Rössener Stilvariante am Dümmer: Fundchronik des Landes Niedersachsen und Land Bremen: Germania, v. 43, II, p. 334.

\_\_\_\_\_\_ 1965b, Die neolithische Moorsiedlung Hüde I am Dümmer, Krs. Grafschaft Diepholz: Neue Ausgrabungen und Funde in Niedersachsen, v. 2, p. 1.

Franke, H. W., 1951, Altersbestimmungen an Sinter mit radioaktivem Kohlenstoff: Höhle, v. 2, p. 62.

Franke, H. W., Münnich, K. O., and Vogel, J., 1959, Erste Ergebnisse von Kohlenstoff-Isotopenmessungen an Kalksintern: Höhle, v. 10, p. 17.

Ganss, O., 1953, Neue Beobachtungen aus würmzeitlichen Chiemsee-Gletschern: Geologica Baverica, v. 19, p. 94.

Geyh, M. A., 1965a, Proportional counter equipment for sample dating with ages exceeding 60,000 years B.P. without enrichment: Internat. Conf. Radiocarbon and Tritium Dating, 6th, Pullman, Washington, Proc., p. 29.

Ig65b, The Hannover present and future hydrology program: Working Group on Isotopes in Hydrology, Grenoble, October 1965, ST 1/REP/104, IAEA Wien, 1966, p. 56.

\_\_\_\_\_\_ 1966, Betrachtungen über <sup>14</sup>C-Gemischtprobendatierungen: Zeitschr. f. Geophysik, v. 32, p. 154.

- Geyh, M. A. and Wendt, I., 1965, Results of water sample dating by means of the model of Münnich and Vogel: Internat. Conf. Radiocarbon and Tritium Dating, 6th, Pullman, Washington, Proc., p. 597.
- Geyh, M. A. and Schillat, B., 1966, Messungen der Kohlenstoffisotopenhäufigkeit von Kalksinterproben aus der Langenfelder Höhle: Aufschluss, v. 17, p. 315.
- Göttlich, K. H., 1965, Der vorgeschichtliche Damm von Moosburg zum "Insele" im Seelenhofer Ried: Jh. Ver. Vaterl. Naturkunde, Württemberg, v. 120, p. 217.
- Heinz, R., 1933, Ein vorzeitlicher Tränkplatz in der Nambiwüste bei Lüderitzbucht (Deutsch-Südwestrafrika): Mitt. Geog. Gesell. in Hamburg, v. 43, p. 267.
- Henneböle, E., 1959, Brandbestattungen im Nettelstädter Forst: Heimatblätter, v. 45, Folge 15, p. 57.

Hentger, N., 1962, Das Stift Möllenbeck an der Weser: Hildesheim.

Houtermans, F. G. and Oeschger, H., 1958, Proportional-Zählrohr zur Messung schwacher Aktivität weicher β-Strahlung: Helv. Phys. Acta, v. 31, p. 117.

- Knöll, H., 1959, Die nordwestdeutsche Tiefstichkeramik und ihre Stellung im nordund mitteleuropäischen Neolithikum: Münster.
- Krusch, B., 1933, Die Übertragung des Hl. Alexander durch den Enkel Widekinds: Nachr. Ges. Wiss. zu Göttingen, Phil.-Hist. Kl., p. 405.
- Lang, H. D., 1962, Die Eisenerzvorkommen von Isernhagen bei Hannover: Naturhist. Gesell., v. 106, p. 19.
- Maier, K., 1966, Neue Fragen zur Frühgeschichte der Kirche Möllenbeck an der Weser: Zeitschr. für Heimat und Kultur, v. 66, p. 21.
  - 1964, Bericht über die Voruntersuchung einer bronzezeitlichen Siedlung an der Walkemühle zu Göttingen in den Jahren 1963 und 1964: Göttinger Jahrb., v. 12, p. 19.
- Maier, R. and Peters, H. G., 1965, Urgeschichtliche Siedlungsreste in Rosdorf, Kreis Göttingen: Neue Ausgrabungen und Forschungen in Niedersachsen, v. 2, p. 19.
- Meyer, B., Münnich, K. O., and Willerding, U., 1963, <sup>14</sup>C-Daten zur prähistorischen Besiedelung des Leinetalgrabens bei Göttingen: Göttinger Jahrb. v. 11, p. 5.
- Münnich, K. O., 1957, Messungen des <sup>14</sup>C-Gehaltes von harten Grundwässern: Naturwissenschaften, v. 44, p. 32.
- Münnich, K. O. and Vogel, J., 1959, <sup>11</sup>C-Altersbestimmung von Grundwasser: Naturwissenschaften, v. 46, p. 10.
- Nydal, R., 1964, Radioaktivt Carbon-14 fra kjernefysiske eksplosjoner: Fra fysikkens Verden, v. 23, p. 51.
- Pearson Jr., F. J., 1965, Use of C<sup>13</sup>/C<sup>12</sup> ratios to correct radiocarbon ages of material, initially diluted by limestone: Internat. Conf. Radiocarbon and Tritium Dating, 6th, Pullman, Washington, Proc., p. 357.
- Peters, H. G., 1965, Untersuchung an vor- und frühgeschichtlichen Wallanlagen am Rande des Göttinger Leinetal-Beckens: Germania, v. 43, II, p. 408.

Piña Chan, R., 1958, Excavaciones arqueologicas en Tlatilco: Tlatilco, v. 1, p. 119.

- Schillat, B., 1959, In den Höhlen des Weserberglandes: Aufschlusz, v. 10, p. 29.
- Schünemann, D., 1965, Zwei Grabhügel der Einzelgrabkultur in Luttum, Krs. Verden: Nachr. aus Niedersachsens Urgeschichte-Fundehronik, v. 34, p. 76.
- Vogel, J., 1965, Age distribution of ground water in an open aquifer: Working Group on Isotopes in Hydrology, Grenoble Oct. 1965, ST1/REP/104, IAEA Wien 1966, p. 52.
- Vogel, J. and Ehhalt, D., 1963, The use of the carbon isotopes in ground water studies: Radioisotopes in Hydrology, IAEA Vienna, p. 383.
- De Vrics, Hl., Stuiver, M., and Olsson, I., 1959, A proportional counter for lowlevel-counting with high efficiency: Nuclear Instruments and Methods, v. 5, p. 111.
- Wendt, I., Stahl, W., Geyh, M. A., and Fauth, H., 1967, Model experiments for "C-water age determinations: Symposium on the Use of Isotopes in Hydrology, Nov. 1966, Wien, SM-82/22, Proc.