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Abstract. Let K be a global field, V a proper subset of the set of all primes
of K , S a finite subset of V , and K̃ (resp. Ksep) a fixed algebraic (resp. separable
algebraic) closure of K with Ksep ⊆ K̃. Let Gal(K) = Gal(Ksep/K) be the absolute
Galois group of K . For each p ∈ V , we choose a Henselian (respectively, a real or
algebraic) closure Kp of K at p in K̃ if p is non-archimedean (respectively, archimedean).
Then, Ktot,S = ⋂

p∈S
⋂

τ∈Gal(K) Kτ
p is the maximal Galois extension of K in Ksep in which

each p ∈ S totally splits. For each p ∈ V , we choose a p-adic absolute value | |p of Kp

and extend it in the unique possible way to K̃. Finally, we denote the compositum of all
symmetric extensions of K by Ksymm. We consider an affine absolutely integral variety
V in �n

K . Suppose that for each p ∈ S there exists a simple Kp-rational point zp of V and
for each p ∈ V � S there exists zp ∈ V (K̃) such that in both cases |zp|p ≤ 1 if p is non-
archimedean and |zp|p < 1 if p is archimedean. Then, there exists z ∈ V (Ktot,S ∩ Ksymm)
such that for all p ∈ V and for all τ ∈ Gal(K), we have |zτ |p ≤ 1 if p is archimedean
and |zτ |p < 1 if p is non-archimedean. For S = ∅, we get as a corollary that the ring
of integers of Ksymm is Hilbertian and Bezout.
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Introduction. The strong approximation theorem for a global field K gives an
x ∈ K that lies in given p-adically open discs for finitely many given primes p of K such
that the absolute p-adic value of x is at most 1 for all other primes p except possibly one
[2, p. 67]. A possible generalization of that theorem to an arbitrary absolutely integral
affine variety V over K fails, because in general, V (K) is a small set. For example, if
V is a curve of genus at least 2, then V (K) is finite (by Faltings). This obstruction
disappears as soon as we switch to appropriate ‘large Galois extensions’ of K .

Extensions of K of this type occur in our work [6]. In that work, we fix an
algebraic closure K̃ of K , set Ksep to be the separable closure of K in K̃, and consider
a non-negative integer e. We equip Gal(K)e with the normalised Haar measure [3,
Section 18.5] and use the expression ‘for almost all σ ∈ Gal(K)e’ to mean ‘for all
σ in Gal(K)e outside a set of measure 0’. For each σ = (σ1, . . . , σe) ∈ Gal(K)e let
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Ksep(σ ) = {x ∈ Ksep | xσi = x for i = 1, . . . , e} and let Ksep[σ ] be the maximal Galois
extension of K in Ksep(σ ).

Further, let �K be the set of all primes of K , let �K,fin be the set of all non-
archimedean primes, and let �K,inf be the set of all archimedean primes. We fix a proper
subset V of �K , a finite subset T of V , and a subset S of T such that V � T ⊆ �K,fin.
For each p, we fix a completion K̂p of K at p and embed K̃ in an algebraic closure˜̂Kp of K̂p. Then, we extend a normalized absolute value | |p of K̂p to ˜̂Kp in the unique
possible way. In particular, this defines |x|p for each x ∈ K̃ .

Next, we set Kp = K̃ ∩ K̂p, and note that Kp is a Henselian closure of K at p if
p ∈ �K,fin and a real or the algebraic closure of K at p if p ∈ �K,inf . Thus,

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

is the maximal Galois extension of K in which each p ∈ S totally splits. For each
σ ∈ Gal(K)e, we set Ktot,S [σ ] = Ksep[σ ] ∩ Ktot,S .

For each extension M of K in K̃ and every p ∈ �fin ∩ V , we consider the valuation
ring OM,p = {x ∈ M | |x|p ≤ 1} of M at p. For each subset U of V , we let

OM,U = {x ∈ M | |xτ |p ≤ 1 for all p ∈ U and τ ∈ Gal(K)}.
Then, the main result of [6] is the following theorem.

THEOREM A. Let K,S, T ,V, e be as above. Then, for almost all σ ∈ Gal(K)e the field
M = Ktot,S [σ ] satisfies the strong approximation theorem:

Let V be an absolutely integral affine variety over K in �n
K for some positive

integer n. For each p ∈ S let �p be a non-empty p-open subset of Vsimp(Kp). For each
p ∈ T � S let �p be a non-empty p-open subset of V (K̃), invariant under the action of
Gal(Kp). Finally, for each p ∈ V � T we assume that V (OK̃,p) �= ∅. Then, V (OM,V�T ) ∩⋂

p∈T
⋂

τ∈Gal(K) �
τ
p �= ∅.

The main result of the present work establishes the strong approximation theorem
for much smaller fields. To this end, we call a Galois extension L of K symmetric if
Gal(L/K) is isomorphic to the symmetric group Sn for some positive integer n. We
denote the compositum of all symmetric extensions of K by Ksymm.

THEOREM B. Let K,S, T ,V, e be as above. Then, for almost all σ ∈ Gal(K)e the field
M = Ksymm ∩ Ktot,S [σ ] satisfies the strong approximation theorem: (as in Theorem A).
In particular, Ksymm ∩ Ktot,S satisfies the strong approximation theorem.

Additional interesting information about the fields mentioned in Theorem B and
their rings of integers is contained in the following result.

THEOREM C. Let K be a global field and e a non-negative integer. Then, for almost all
σ ∈ Gal(K)e the field M = Ksymm ∩ Ksep[σ ] is PAC (Definition 1.2) and Hilbertian,
hence Gal(M) ∼= F̂ω. Moreover, the ring of integers of M is Hilbertian and Bezout
(Definition 2.1).

Note that the statement about the Hilbertianity of M in Theorem C is due to
[1]. See also the proof of Proposition 2.6. The authors are indebted to the anonymous
referee for pointing out that proposition and its proof.
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1. Weakly symmetrically K-stably PSC fields over holomorphy domains. Let K
be a global field, that is K is either a number field or an algebraic function field of one
variable over a finite field. Throughout this work, we use the notation �K , K̃ , Ksep,
Gal(K), Kp and | |p for p ∈ �K , introduced in the introduction. For each p ∈ �K and
every subfield M of K̃, we consider the closed disc

OM,p = {x ∈ M | |x|p ≤ 1}

of M at p. If p is non-archimedean, then OM,p is a valuation ring of rank
1 of M.

Next, we consider a subset U of �K and a field K ⊆ M ⊆ K̃. A prime of M is
an equivalence class of absolute values of M, where two absolute values on M are
equivalent if they define the same topology on M. Let UM be the set of all primes of M
that lie over U . If q ∈ UM lies over p ∈ U , then we denote the unique absolute value of
M that extends | |p to M and represents q by | |q. In this case, there exists τ ∈ Gal(K)
such that |x|q = |xτ |p for each x ∈ M. Conversely, the latter condition defines q. We
set

OM,U =
⋂

q∈UM

{x ∈ M | |x|q ≤ 1}

for the U-holomorphy domain of M. If U consists of non-archimedean primes, then
OM,U is the integral closure of OK,U in M. If U is arbitrary but M is Galois over K ,
then

OM,U =
⋂
p∈U

⋂
τ∈Gal(K)

Oτ
M,p .

In the number field case (i.e., char(K) = 0), we denote the (cofinite) set of all non-
archimedean primes of K by �K,fin. In the function field case, where p = char(K) > 0,
we fix a separating transcedence element tK for K/�p and let �K,fin = {p ∈ �K | |tK |p ≤
1}. In both cases, we set

OK = OK,�K,fin = {x ∈ K | |x|p ≤ 1 for all p ∈ �K,fin}.

If K is a number field, then OK is the integral closure of � in K . In the function field
case, OK is the integral closure of �p[tK ] in K . In both cases, OK is a Dedekind domain.
Following the convention in algebraic number theory, we call OK the ring of integers
of K .

Next, we consider a finite (possibly empty) subset S of �K . We set

Ktot,S =
⋂
p∈S

⋂
τ∈Gal(K)

Kτ
p

as in the introduction. If S = ∅, then Ktot,S = Ksep.
We also choose a non-empty proper subset V of �K that contains S.

DEFINITION 1.1. [6, Definition 12.1] Let M be an extension of K in Ktot,S and
let O be a subset of M. We say that M is weakly symmetrically K-stably PSC over
O if for every polynomial g ∈ K [T ] with g(0) �= 0 and for every absolutely irreducible
polynomial h ∈ K [T, Y ] monic in Y with d = degY (h) satisfying
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(1a) h(0, Y ) has d distinct roots in Ktot,S , and
(1b) Gal(h(T, Y ), K(T)) ∼= Gal(h(T, Y ), K̃(T)) and is isomorphic to the symmetric

group Sd ,
there exists (a, b) ∈ O × M such that h(a, b) = 0 and g(a) �= 0.

Note that in that case, if M ⊆ M′ ⊆ Ktot,S , then M′ is also weakly symmetrically
K-stably PSC over O.

If S = ∅, we say that M is weakly symmetrically K-stably PAC over O.

DEFINITION 1.2. [6, Definition 13.1] Let M be an extension of K in Ktot,S and letO
be a subset of M. We say that M is weakly PSC overO if for every absolutely irreducible
polynomial h ∈ M[T, Y ] monic in Y such that h(0, Y ) decomposes into distinct monic
linear factors over Ktot,S and every polynomial g ∈ M[T ] with g(0) �= 0 there exists
(a, b) ∈ O × M such that h(a, b) = 0 and g(a) �= 0. In particular, O is infinite.

If S = ∅, then M is PAC over O [6, Definition 13.5], i.e. for every absolutely
irreducible polynomial f ∈ M[T, X ], which is separable in X there exist infinitely many
points (a, b) ∈ O × M such that f (a, b) = 0.

Indeed, let f ∈ M[T, X ] be an absolutely irreducible polynomial, which is
separable in X . Let � ∈ M[T ] be the discriminant of f , let g ∈ M[T ] be the leading
coefficient of f , and let d = degX (f ). Since O is infinite, we can choose c ∈ O
with �(c)g(c) �= 0. Let Y = g(T)X , let h′(T, Y ) = g(T)d−1f (T, g(T)−1Y ), and let
h(T, Y ) = h′(T + c, Y ). Then, h ∈ M[T, Y ] is an absolutely irreducible polynomial,
monic in Y , such that h(0, Y ) decomposes into distinct monic linear factors over Ksep.
By assumption, there exist infinitely many (a, b) ∈ O × M such that h(a, b) = 0 and
g(a) �= 0, hence f (a + c, g(a)−1b) = 0.

Note that in that case, M is a PAC field, i.e., every absolutely integral variety
over M has an M-rational point [7, Lemma 1.3].

LEMMA 1.3. Let M0 be an extension of K in Ksep, let M = M0 ∩ Ktot,S , and let O
be a subset of OM,S such that OK,V · O ⊆ O. Suppose that M0 is weakly symmetrically
K-stably PAC over O. Then, M is weakly symmetrically K-stably PSC over O.

Proof. Let g be a polynomial in K [T ] with g(0) �= 0 and let h be an absolutely
irreducible polynomial in K [T, Y ], monic in Y , with d = degY (h) satisfying (1). By
[5, Lemma 1.9], there exists c ∈ OK,V , which is sufficiently S-close to 0 such that for
each a ∈ OKtot,S ,S all the roots of h(ac, Y ) are simple and belong to Ktot,S . Consider
the polynomial h(cT, Y ) ∈ K [T, Y ]. Then, since M0 is weakly symmetrically K-stably
PAC over O, there exists a ∈ O and b ∈ M0 such that h(ac, b) = 0 and g(a) �= 0. Then,
ac ∈ O and b ∈ M0 ∩ Ktot,S = M, as desired. �

LEMMA 1.4. [6, Lemma 13.2] Let M be an extension of K in Ktot,S , which is weakly
symmetrically K-stably PSC over OK,V . Then, M is weakly PSC over OM,V .

2. Composita of symmetric extensions of a global field. A symmetric extension
of K is a finite Galois extension of K with Galois group isomorphic to Sm for some
positive integer m. Let Ksymm be the compositum of all symmetric extensions of K .

Using the notation of the introduction, we prove that for almost all σ ∈ Gal(K)e,
the field Ksymm[σ ] is PAC and Hilbertian, so Gal(Ksymm[σ ]) ∼= F̂ω. Moreover, if V
contains only non-archimedean primes, then the ring OKsymm[σ ],V is Hilbertian and
Bezout. Finally, the field M = Ktot,S ∩ Ksymm[σ ] is weakly PSC over OM,V . This leads
in Section 3 to a strong approximation theorem for M.
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DEFINITION 2.1. Let O be an integral domain with quotient field F . We consider
variables T1, . . . , Tr, X over F and abbreviate (T1, . . . , Tr) to T. Let f1, . . . , fm be
irreducible and separable polynomials in F(T)[X ] and let g be a non-zero polynomial
in F [T]. Following [3, Section 12.1], we write HF (f1, . . . , fn; g) for the set of all a ∈ Fr

such that f1(a, X), . . . , fm(a, X) are defined, irreducible, and separable in F [X ] with
g(a) �= 0. Then, we call HF (f1, . . . , fm; g) a separable Hilbert subset of Fr. We say that
the ring O is Hilbertian if for every positive integer r every separable Hilbert subset of
Fr has a point with coordinates in O. Finally, we say that O is Bezout if every finitely
generated ideal of O is principal.

EXAMPLE 2.2. Taking q0 ∈ �K � V in [3, Theorem 13.3.5(b), p. 241], we find that
H ∩ Or

K,V �= ∅ for each r ≥ 1 and every separable Hilbert subset H of Kr. In particular,
if V contains only non-archimedean primes, then OK,V is a Hilbertian domain.

Let d be a positive integer. Denote the set of all absolutely irreducible polynomials
h ∈ K [T, Y ], monic in Y with d = degY (h), that satisfy (1) of Section 1 with S = ∅,
i.e.,
(1a) h(0, Y ) has d distinct roots in Ksep, and
(1b) Gal(h(T, Y ), K(T)) ∼= Gal(h(T, Y ), K̃(T)) ∼= Sd

by Hd . Let H = ⋃∞
d=1 Hd .

LEMMA 2.3. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e every
separable algebraic extension M of Ksymm[σ ] is weakly symmetrically K-stably PAC over
OK,V .

In particular, the field Ksymm is weakly symmetrically K-stably PAC over OK,V .

Proof. By Definition 1.1, it suffices to consider the case e ≥ 1 and to prove that for
almost all σ ∈ Gal(K)e the field Ksymm[σ ] is weakly symmetrically K-stably PAC over
OK,V . Moreover, since the set H is countable, it suffices to consider a positive integer
d, a polynomial h ∈ Hd , and a non-zero polynomial g ∈ K [T ], and to prove that for
almost all σ ∈ Gal(K)e there exists (a, b) ∈ OK,V × Ksymm[σ ] such that h(a, b) = 0 and
g(a) �= 0.

By Borel–Cantelli [3, Lemma 18.5.3(b), p. 378], it suffices to construct a sequence of
pairs (a1, b1), (a2, b2), (a3, b3), . . . that satisfies for each n ≥ 1 the following conditions:
(2a) an ∈ OK,V and h(an, X) is separable,
(2b) the splitting field Kn of h(an, X) over K has Galois group Sd ,
(2c) h(an, bn) = 0, in particular bn ∈ Kn, and g(an) �= 0,
(2d) K1, K2, . . . , Kn are linearly disjoint over K .

Indeed, inductively suppose that n is a positive integer and (a1, b1), . . . , (an−1, bn−1)
satisfy Condition (2) (for n − 1 rather than for n). Let L = K1, K2, . . . , Kn−1. By
[3, Proposition 16.1.5, p. 294] and [3, Corollary, 12.2.3, p. 224], K has a separable
Hilbert subset H such that for each a ∈ H the polynomial h(a, X) is separable,
Gal(h(a, X), K) ∼= Gal(h(a, X), L) ∼= Sd , and g(a) �= 0. Using Example 2.2, we choose
an element an ∈ H ∩ OK,V and a root bn ∈ Ksep of h(an, X). Then, bn lies in the splitting
field Kn of h(an, X), so all of the statements (2a)–(2d) are satisfied. �

By Lemmas 1.3 and 1.4, we get the following corollary.

COROLLARY 2.4. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e

each extension M of Ktot,S ∩ Ksymm[σ ] in Ktot,S is weakly symmetrically K-stably PSC
over OK,V . Hence, M is weakly PSC over OM,V .
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In particular, the field M = Ktot,S ∩ Ksymm is weakly symmetrically K-stably PSC
over OK,V , so it is also weakly PSC over OM,V .

When S = ∅, we get from Definition 1.2 the following result.

COROLLARY 2.5. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e

each separable algebraic extension M of the field Ksymm[σ ] is PAC over OM,V .
In particular, the field M = Ksymm is PAC over OM,V .

PROPOSITION 2.6. Let L be a Hilbertian field and M an extension of L in Lsymm.
Then, M is Hilbertian.

Proof. Following [1, Section 2.1], we say that a profinite group G has abelian-simple
length n if there is a finite series 1 = G(n) � · · · � G(1) � G(0) = G of closed subgroups,
where for i = 0, . . . , n − 1, the group G(i+1) is the intersection of all open normal
subgroups N of G(i) such that G(i)/N is abelian or simple.

As mentioned in the proof of [1, Theorem 5.5], the abelian-simple length of each
symmetric group Sn is at most 3. Hence, by [1, Proposition 2.8], the abelian-simple
length of Gal(Lsymm/L) is at most 3. Therefore, by [1, Theorem 3.2], every field M
between L and Lsymm is Hilbertian. �

COROLLARY 2.7. Let e be a positive integer. Suppose that V contains only non-
archimedean primes. Then, for almost all σ ∈ Gal(K)e the rings OKsep[σ ],V and OKsymm[σ ],V
are Hilbertian. In addition, the ring OKsymm,V is Hilbertian.

Proof. By Proposition 2.6, for all σ ∈ Gal(K)e the field Ksymm[σ ] is Hilbertian. By
[3, Theorem 27.4.8, p. 669], for almost all σ ∈ Gal(K)e the field Ksep[σ ] is Hilbertian.
By [11, Proposition 2.5 and Corollary 2.6], if a field M is PAC over a subring O and
M is Hilbertian, then the ring O is Hilbertian. It follows from Corollary 2.5 that for
almost all σ ∈ Gal(K)e the rings OKsep[σ ],V and OKsymm[σ ],V are Hilbertian.

Finally, by Proposition 2.6, the field Ksymm is also Hilbertian. By Corollary 2.5,
Ksymm is PAC over OKsymm,V . Hence, by the preceding paragraph, the ring OKsymm,V is
Hilbertian. �

COROLLARY 2.8. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e

the field Ksymm[σ ] is PAC, Hilbertian, and Gal(Ksymm[σ ]) ∼= F̂ω.

Proof. By Corollary 2.5, Definition 1.2, and Corollary 2.7, for almost all σ ∈
Gal(K)e the field M = Ksymm[σ ] is PAC and Hilbertian. Hence, by [9, Theorem 5.10.3,
p. 90], Gal(M) ∼= F̂ω, as claimed. �

Remark 2.9. (a) It is not true that Ksymm[σ ] is PAC for every σ ∈ Gal(K)e. For
example, [3, Remark 18.6.2, p. 381] gives σ ∈ Gal(�) such that �̃(σ ) is not a PAC field.
Hence, by [3, Corollary 11.2.5, p. 196] also the subfield �symm[σ ] of �̃(σ ) is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of Theorem
1.1 of [1] and in some lemmas on which it depends in order to prove in the setup of
Proposition 2.6 that if L is the quotient field of a Hilbertian domain R and S is the
integral closure of R in M, then S is also a Hilbertian domain. In particular, in view
of the proof of Proposition 2.6, the latter result applies to every extension M of L in
Lsymm. It will follow, in the notation of Corollary 2.7, that each of the rings OKsymm[σ ],V
is Hilbertian.
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By [12, Lemma 4.6], if M is an algebraic extension of K , which is PAC over its
ring of integers OM = OM,�K,fin , then OM is a Bezout domain. Thus, Corollary 2.5,
applied to V = �K,fin yields the following result.

COROLLARY 2.10. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e

the ring of integers of each separable extension of Ksymm[σ ] is Bezout.
In particular, the ring OKsymm is Bezout.

3. Strong approximation theorem. In the notation of Section 1, we prove that for
almost all σ ∈ Gal(K)e the field Ktot,S ∩ Ksymm[σ ] satisfies the strong approximation
theorem for absolutely integral affine varieties.

Given a variety V , we write Vsimp for the Zariski-open subset of V that consists
of all simple (= non-singular) points of V . We cite two results from [6]. The first one is
Proposition 12.4 of [6].

PROPOSITION 3.1 (Strong approximation theorem). Let M be a subfield of Ktot,S
that contains K and is weakly symmetrically K-stably PSC overOK,V . Then, (M, K,S,V)
satisfies the following condition, abbreviated as (M, K,S,V) |= SAT :

Let T be a finite subset of V that contains S such that V � T ⊆ �K,fin. Let V be
an absolutely integral affine variety over K in �n

K for some positive integer n. For each
p ∈ T let Lp be a finite Galois extension of Kp such that Lp = Kp if p ∈ S and let �p

be a non-empty p-open subset of Vsimp(Lp), invariant under the action of Gal(Lp/Kp).
Assume that V (OK̃,p) �= ∅, for each p ∈ V � T . Then, there exists z ∈ V (OM,V�T ) such
that zτ ∈ �p for all p ∈ T and all τ ∈ Gal(K).

The second result is Proposition 13.4 of [6], applied (for simplicity) to the case
where S consists only of finite primes of K and V = �K,fin.

PROPOSITION 3.2 (Local-global principle). Let M be a subfield of Ktot,S that
contains K and is weakly symmetrically K-stably PSC over OK,V . Then, (M,S) satisfies
the following condition, abbreviated as (M,S) |= LGP:

Let V be an absolutely integral affine variety over M in �n
M for some positive

integer n such that Vsimp(OMq,q) �= ∅ for each q ∈ SM and V (OMq,q) �= ∅ for each q ∈
�M,fin � SM. Then, V (OM) �= ∅.

Recall that an extension M of K in Ktot,S is said to be PSC (=pseudo-S-closed)
if every absolutely integral variety V over M with a simple Kτ

p-rational point for each
p ∈ S and every τ ∈ Gal(K) has an M-rational point [4, Definition 1.3]. Also, a field
M is ample if the existence of an M-rational simple point on V implies that V (M) is
Zariski-dense in V [9, Lemma 5.3.1, p. 67]. In particular, every PSC field is ample.1

The next lemma is observed in [8, Corollary 2.7].

LEMMA 3.3. Let M be an extension of K in Ktot,S . Suppose that (M, K,S,S) |=
SAT. Then, M is a PSC field, hence ample.

Proof. Consider an absolutely integral variety V over M with a simple Kτ
p-rational

point for each p ∈ S and every τ ∈ Gal(K). Replacing K by a finite extension K ′ in

1The work [10] uses the adjective “large” rather than “ample”.
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Ktot,S and S by SK ′ , we may assume that V is defined over K and has a simple Kp-
rational point for each p ∈ S. Moreover, we may assume that V is affine. Thus, we
may apply Proposition 3.1 to the case V = T = S and �p = Vsimp(Kp) for each p ∈ S.
Observe that in this case OM,V�T = M. �

Corollary 2.4, Lemma 3.3, Proposition 3.1, and Proposition 3.2 yield the
following result.

THEOREM 3.4. Let e be a non-negative integer. Then, for almost all σ ∈ Gal(K)e,
every extension M of Ktot,S ∩ Ksymm[σ ] in Ktot,S has the following properties.

(a) (M, K,S,V) |= SAT.
(b) M is PSC, hence ample.
(c) If S consists only of finite primes of K , then (M,S) |= LGP.

In particular, M = Ktot,S ∩ Ksymm satisfies (a)–(c).

Proof. By Corollary 2.4, for almost all σ ∈ Gal(K)e every extension M of the field
Ktot,S ∩ Ksymm[σ ] in Ktot,S is weakly symmetrically K-stably PSC over OK,V . Hence, by
Proposition 3.1, (M, K,S,V) |= SAT, so (a) holds. It follows from Lemma 2.3 that M
is PSC, as (b) states. Finally, if in addition, S consists only of finite primes, then by
Proposition 3.2, (M,S) |= LGP, which establishes (c). �
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