STRONG APPROXIMATION THEOREM FOR ABSOLUTELY IRREDUCIBLE VARIETIES OVER THE COMPOSITUM OF ALL SYMMETRIC EXTENSIONS OF A GLOBAL FIELD

MOSHE JARDEN

Tel Aviv University, Ramat Aviv, Tel Aviv, Israel e-mail: jarden@post.tau.ac.il

and AHARON RAZON

Elta, Ashdod, Israel e-mail: razon@elta.co.il

(Received 31 December 2017; revised 25 April 2018; accepted 4 May 2018; first published online 13 July 2018)

Abstract. Let *K* be a global field, \mathcal{V} a proper subset of the set of all primes of *K*, *S* a finite subset of \mathcal{V} , and \tilde{K} (resp. K_{sep}) a fixed algebraic (resp. separable algebraic) closure of *K* with $K_{sep} \subseteq \tilde{K}$. Let $Gal(K) = Gal(K_{sep}/K)$ be the absolute Galois group of *K*. For each $\mathfrak{p} \in \mathcal{V}$, we choose a Henselian (respectively, a real or algebraic) closure $K_{\mathfrak{p}}$ of *K* at \mathfrak{p} in \tilde{K} if \mathfrak{p} is non-archimedean (respectively, archimedean). Then, $K_{tot,S} = \bigcap_{\mathfrak{p} \in S} \bigcap_{\tau \in Gal(K)} K_{\mathfrak{p}}^{\tau}$ is the maximal Galois extension of *K* in K_{sep} in which each $\mathfrak{p} \in S$ totally splits. For each $\mathfrak{p} \in \mathcal{V}$, we choose a \mathfrak{p} -adic absolute value $| |_{\mathfrak{p}}$ of $K_{\mathfrak{p}}$ and extend it in the unique possible way to \tilde{K} . Finally, we denote the compositum of all symmetric extensions of *K* by K_{symm} . We consider an affine absolutely integral variety $V \ln \mathbb{A}_{K}^n$. Suppose that for each $\mathfrak{p} \in S$ there exists a simple $K_{\mathfrak{p}}$ -rational point $\mathbf{z}_{\mathfrak{p}}$ of *V* and for each $\mathfrak{p} \in \mathcal{V} \setminus S$ there exists $\mathbf{z}_{\mathfrak{p}} \in V(\tilde{K})$ such that in both cases $|\mathbf{z}_{\mathfrak{p}}|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is nonarchimedean and $|\mathbf{z}_{\mathfrak{p}}|_{\mathfrak{p}} < 1$ if \mathfrak{p} is archimedean. Then, there exists $\mathbf{z} \in V(K_{tot,S} \cap K_{symm})$ such that for all $\mathfrak{p} \in \mathcal{V}$ and for all $\tau \in Gal(K)$, we have $|\mathbf{z}^{\tau}|_{\mathfrak{p}} \leq 1$ if \mathfrak{p} is archimedean and $|\mathbf{z}^{\tau}|_{\mathfrak{p}} < 1$ if \mathfrak{p} is non-archimedean. For $S = \emptyset$, we get as a corollary that the ring of integers of K_{symm} is Hilbertian and Bezout.

2010 Mathematics Subject Classification. 12E30

Introduction. The strong approximation theorem for a global field K gives an $x \in K$ that lies in given p-adically open discs for finitely many given primes p of K such that the absolute p-adic value of x is at most 1 for all other primes p except possibly one [2, p. 67]. A possible generalization of that theorem to an arbitrary absolutely integral affine variety V over K fails, because in general, V(K) is a small set. For example, if V is a curve of genus at least 2, then V(K) is finite (by Faltings). This obstruction disappears as soon as we switch to appropriate 'large Galois extensions' of K.

Extensions of K of this type occur in our work [6]. In that work, we fix an algebraic closure \tilde{K} of K, set K_{sep} to be the separable closure of K in \tilde{K} , and consider a non-negative integer e. We equip $\operatorname{Gal}(K)^e$ with the normalised Haar measure [3, Section 18.5] and use the expression 'for almost all $\sigma \in \operatorname{Gal}(K)^e$ ' to mean 'for all σ in $\operatorname{Gal}(K)^e$ outside a set of measure 0'. For each $\sigma = (\sigma_1, \ldots, \sigma_e) \in \operatorname{Gal}(K)^e$ let

 $K_{\text{sep}}(\sigma) = \{x \in K_{\text{sep}} \mid x^{\sigma_i} = x \text{ for } i = 1, \dots, e\}$ and let $K_{\text{sep}}[\sigma]$ be the maximal Galois extension of K in $K_{\text{sep}}(\sigma)$.

Further, let \mathbb{P}_K be the set of all primes of K, let $\mathbb{P}_{K,\text{fin}}$ be the set of all nonarchimedean primes, and let $\mathbb{P}_{K,\text{inf}}$ be the set of all archimedean primes. We fix a proper subset \mathcal{V} of \mathbb{P}_K , a finite subset \mathcal{T} of \mathcal{V} , and a subset \mathcal{S} of \mathcal{T} such that $\mathcal{V} \setminus \mathcal{T} \subseteq \mathbb{P}_{K,\text{fin}}$. For each \mathfrak{p} , we fix a completion $\hat{K}_{\mathfrak{p}}$ of K at \mathfrak{p} and embed \tilde{K} in an algebraic closure $\widetilde{K}_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$. Then, we extend a normalized absolute value $| |_{\mathfrak{p}}$ of $\hat{K}_{\mathfrak{p}}$ to $\widetilde{K}_{\mathfrak{p}}$ in the unique possible way. In particular, this defines $|x|_{\mathfrak{p}}$ for each $x \in \tilde{K}$.

Next, we set $K_{\mathfrak{p}} = \tilde{K} \cap \tilde{K}_{\mathfrak{p}}$, and note that $K_{\mathfrak{p}}$ is a Henselian closure of K at \mathfrak{p} if $\mathfrak{p} \in \mathbb{P}_{K, \text{inf}}$. Thus,

$$K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p}\in\mathcal{S}}\bigcap_{\tau\in\text{Gal}(K)}K_{\mathfrak{p}}^{\tau}$$

is the maximal Galois extension of *K* in which each $\mathfrak{p} \in S$ totally splits. For each $\sigma \in \text{Gal}(K)^e$, we set $K_{\text{tot},S}[\sigma] = K_{\text{sep}}[\sigma] \cap K_{\text{tot},S}$.

For each extension M of K in \tilde{K} and every $\mathfrak{p} \in \mathbb{P}_{\text{fin}} \cap \mathcal{V}$, we consider the valuation ring $\mathcal{O}_{M,\mathfrak{p}} = \{x \in M \mid |x|_{\mathfrak{p}} \leq 1\}$ of M at \mathfrak{p} . For each subset \mathcal{U} of \mathcal{V} , we let

 $\mathcal{O}_{M,\mathcal{U}} = \{x \in M \mid |x^{\tau}|_{\mathfrak{p}} \leq 1 \text{ for all } \mathfrak{p} \in \mathcal{U} \text{ and } \tau \in \operatorname{Gal}(K)\}.$

Then, the main result of [6] is the following theorem.

THEOREM A. Let K, S, T, V, e be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{tot},S}[\sigma]$ satisfies the strong approximation theorem:

Let V be an absolutely integral affine variety over K in \mathbb{A}_{K}^{n} for some positive integer n. For each $\mathfrak{p} \in S$ let $\Omega_{\mathfrak{p}}$ be a non-empty \mathfrak{p} -open subset of $V_{\text{simp}}(K_{\mathfrak{p}})$. For each $\mathfrak{p} \in \mathcal{T} \setminus S$ let $\Omega_{\mathfrak{p}}$ be a non-empty \mathfrak{p} -open subset of $V(\tilde{K})$, invariant under the action of $\text{Gal}(K_{\mathfrak{p}})$. Finally, for each $\mathfrak{p} \in \mathcal{V} \setminus \mathcal{T}$ we assume that $V(\mathcal{O}_{\tilde{K},\mathfrak{p}}) \neq \emptyset$. Then, $V(\mathcal{O}_{M,\mathcal{V}\setminus\mathcal{T}}) \cap$ $\bigcap_{\mathfrak{p}\in\mathcal{T}}\bigcap_{\tau\in\text{Gal}(K)}\Omega_{\mathfrak{p}}^{\mathfrak{p}} \neq \emptyset$.

The main result of the present work establishes the strong approximation theorem for much smaller fields. To this end, we call a Galois extension L of K symmetric if Gal(L/K) is isomorphic to the symmetric group S_n for some positive integer n. We denote the compositum of all symmetric extensions of K by K_{symm} .

THEOREM B. Let K, S, T, V, e be as above. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{tot},S}[\sigma]$ satisfies the strong approximation theorem: (as in Theorem A). In particular, $K_{\text{symm}} \cap K_{\text{tot},S}$ satisfies the strong approximation theorem.

Additional interesting information about the fields mentioned in Theorem B and their rings of integers is contained in the following result.

THEOREM C. Let K be a global field and e a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}} \cap K_{\text{sep}}[\sigma]$ is PAC (Definition 1.2) and Hilbertian, hence $\text{Gal}(M) \cong \hat{F}_{\omega}$. Moreover, the ring of integers of M is Hilbertian and Bezout (Definition 2.1).

Note that the statement about the Hilbertianity of M in Theorem C is due to [1]. See also the proof of Proposition 2.6. The authors are indebted to the anonymous referee for pointing out that proposition and its proof.

1. Weakly symmetrically *K*-stably PSC fields over holomorphy domains. Let *K* be a global field, that is *K* is either a number field or an algebraic function field of one variable over a finite field. Throughout this work, we use the notation \mathbb{P}_K , \tilde{K} , K_{sep} , Gal(K), K_p and $||_p$ for $p \in \mathbb{P}_K$, introduced in the introduction. For each $p \in \mathbb{P}_K$ and every subfield *M* of \tilde{K} , we consider the closed disc

$$\mathcal{O}_{M,\mathfrak{p}} = \{ x \in M \mid |x|_{\mathfrak{p}} \le 1 \}$$

of M at \mathfrak{p} . If \mathfrak{p} is non-archimedean, then $\mathcal{O}_{M,\mathfrak{p}}$ is a valuation ring of rank 1 of M.

Next, we consider a subset \mathcal{U} of \mathbb{P}_K and a field $K \subseteq M \subseteq \check{K}$. A prime of M is an equivalence class of absolute values of M, where two absolute values on M are equivalent if they define the same topology on M. Let \mathcal{U}_M be the set of all primes of Mthat lie over \mathcal{U} . If $\mathfrak{q} \in \mathcal{U}_M$ lies over $\mathfrak{p} \in \mathcal{U}$, then we denote the unique absolute value of M that extends $||_{\mathfrak{p}}$ to M and represents \mathfrak{q} by $||_{\mathfrak{q}}$. In this case, there exists $\tau \in \text{Gal}(K)$ such that $|x|_{\mathfrak{q}} = |x^{\tau}|_{\mathfrak{p}}$ for each $x \in M$. Conversely, the latter condition defines \mathfrak{q} . We set

$$\mathcal{O}_{M,\mathcal{U}} = \bigcap_{\mathfrak{q} \in \mathcal{U}_M} \{ x \in M \mid |x|_{\mathfrak{q}} \le 1 \}$$

for the *U*-holomorphy domain of *M*. If *U* consists of non-archimedean primes, then $\mathcal{O}_{M,\mathcal{U}}$ is the integral closure of $\mathcal{O}_{K,\mathcal{U}}$ in *M*. If *U* is arbitrary but *M* is Galois over *K*, then

$$\mathcal{O}_{M,\mathcal{U}} = \bigcap_{\mathfrak{p} \in \mathcal{U}} \bigcap_{\tau \in \operatorname{Gal}(K)} \mathcal{O}_{M,\mathfrak{p}}^{\tau} \,.$$

In the number field case (i.e., $\operatorname{char}(K) = 0$), we denote the (cofinite) set of all nonarchimedean primes of K by $\mathbb{P}_{K,\operatorname{fin}}$. In the function field case, where $p = \operatorname{char}(K) > 0$, we fix a separating transcedence element t_K for K/\mathbb{F}_p and let $\mathbb{P}_{K,\operatorname{fin}} = \{\mathfrak{p} \in \mathbb{P}_K \mid |t_K|_{\mathfrak{p}} \le 1\}$. In both cases, we set

$$\mathcal{O}_K = \mathcal{O}_{K,\mathbb{P}_{K \text{ fn}}} = \{ x \in K \mid |x|_{\mathfrak{p}} \leq 1 \text{ for all } \mathfrak{p} \in \mathbb{P}_{K,\text{fin}} \}.$$

If *K* is a number field, then \mathcal{O}_K is the integral closure of \mathbb{Z} in *K*. In the function field case, \mathcal{O}_K is the integral closure of $\mathbb{F}_p[t_K]$ in *K*. In both cases, \mathcal{O}_K is a Dedekind domain. Following the convention in algebraic number theory, we call \mathcal{O}_K the *ring of integers* of *K*.

Next, we consider a finite (possibly empty) subset S of \mathbb{P}_K . We set

$$K_{\text{tot},\mathcal{S}} = \bigcap_{\mathfrak{p}\in\mathcal{S}}\bigcap_{\tau\in\text{Gal}(K)}K_{\mathfrak{p}}^{\tau}$$

as in the introduction. If $S = \emptyset$, then $K_{\text{tot},S} = K_{\text{sep}}$.

We also choose a non-empty proper subset \mathcal{V} of \mathbb{P}_K that contains \mathcal{S} .

DEFINITION 1.1. [6, Definition 12.1] Let M be an extension of K in $K_{\text{tot},S}$ and let \mathcal{O} be a subset of M. We say that M is *weakly symmetrically K-stably* PSC *over* \mathcal{O} if for every polynomial $g \in K[T]$ with $g(0) \neq 0$ and for every absolutely irreducible polynomial $h \in K[T, Y]$ monic in Y with $d = \deg_Y(h)$ satisfying (1a) h(0, Y) has d distinct roots in $K_{tot,S}$, and

(1b) $\operatorname{Gal}(h(T, Y), K(T)) \cong \operatorname{Gal}(h(T, Y), K(T))$ and is isomorphic to the symmetric group S_d ,

there exists $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$.

Note that in that case, if $M \subseteq M' \subseteq K_{tot,S}$, then M' is also weakly symmetrically *K*-stably PSC over \mathcal{O} .

If $S = \emptyset$, we say that *M* is *weakly symmetrically K-stably* PAC over \mathcal{O} .

DEFINITION 1.2. [6, Definition 13.1] Let M be an extension of K in $K_{\text{tot},S}$ and let \mathcal{O} be a subset of M. We say that M is *weakly* PSC over \mathcal{O} if for every absolutely irreducible polynomial $h \in M[T, Y]$ monic in Y such that h(0, Y) decomposes into distinct monic linear factors over $K_{\text{tot},S}$ and every polynomial $g \in M[T]$ with $g(0) \neq 0$ there exists $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$. In particular, \mathcal{O} is infinite.

If $S = \emptyset$, then M is PAC over \mathcal{O} [6, Definition 13.5], i.e. for every absolutely irreducible polynomial $f \in M[T, X]$, which is separable in X there exist infinitely many points $(a, b) \in \mathcal{O} \times M$ such that f(a, b) = 0.

Indeed, let $f \in M[T, X]$ be an absolutely irreducible polynomial, which is separable in X. Let $\Delta \in M[T]$ be the discriminant of f, let $g \in M[T]$ be the leading coefficient of f, and let $d = \deg_X(f)$. Since \mathcal{O} is infinite, we can choose $c \in \mathcal{O}$ with $\Delta(c)g(c) \neq 0$. Let Y = g(T)X, let $h'(T, Y) = g(T)^{d-1}f(T, g(T)^{-1}Y)$, and let h(T, Y) = h'(T + c, Y). Then, $h \in M[T, Y]$ is an absolutely irreducible polynomial, monic in Y, such that h(0, Y) decomposes into distinct monic linear factors over K_{sep} . By assumption, there exist infinitely many $(a, b) \in \mathcal{O} \times M$ such that h(a, b) = 0 and $g(a) \neq 0$, hence $f(a + c, g(a)^{-1}b) = 0$.

Note that in that case, M is a *PAC* field, i.e., every absolutely integral variety over M has an M-rational point [7, Lemma 1.3].

LEMMA 1.3. Let M_0 be an extension of K in K_{sep} , let $M = M_0 \cap K_{tot,S}$, and let \mathcal{O} be a subset of $\mathcal{O}_{M,S}$ such that $\mathcal{O}_{K,V} \cdot \mathcal{O} \subseteq \mathcal{O}$. Suppose that M_0 is weakly symmetrically K-stably PAC over \mathcal{O} . Then, M is weakly symmetrically K-stably PSC over \mathcal{O} .

Proof. Let g be a polynomial in K[T] with $g(0) \neq 0$ and let h be an absolutely irreducible polynomial in K[T, Y], monic in Y, with $d = \deg_Y(h)$ satisfying (1). By [5, Lemma 1.9], there exists $c \in \mathcal{O}_{K,\mathcal{V}}$, which is sufficiently S-close to 0 such that for each $a \in \mathcal{O}_{K_{\text{tot},S},S}$ all the roots of h(ac, Y) are simple and belong to $K_{\text{tot},S}$. Consider the polynomial $h(cT, Y) \in K[T, Y]$. Then, since M_0 is weakly symmetrically K-stably PAC over \mathcal{O} , there exists $a \in \mathcal{O}$ and $b \in M_0$ such that h(ac, b) = 0 and $g(a) \neq 0$. Then, $ac \in \mathcal{O}$ and $b \in M_0 \cap K_{\text{tot},S} = M$, as desired.

LEMMA 1.4. [6, Lemma 13.2] Let M be an extension of K in $K_{tot,S}$, which is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Then, M is weakly PSC over $\mathcal{O}_{M,V}$.

2. Composite of symmetric extensions of a global field. A symmetric extension of K is a finite Galois extension of K with Galois group isomorphic to S_m for some positive integer m. Let K_{symm} be the compositum of all symmetric extensions of K.

Using the notation of the introduction, we prove that for almost all $\sigma \in \text{Gal}(K)^e$, the field $K_{\text{symm}}[\sigma]$ is PAC and Hilbertian, so $\text{Gal}(K_{\text{symm}}[\sigma]) \cong \hat{F}_{\omega}$. Moreover, if \mathcal{V} contains only non-archimedean primes, then the ring $\mathcal{O}_{K_{\text{symm}}[\sigma],\mathcal{V}}$ is Hilbertian and Bezout. Finally, the field $M = K_{\text{tot},\mathcal{S}} \cap K_{\text{symm}}[\sigma]$ is weakly PSC over $\mathcal{O}_{M,\mathcal{V}}$. This leads in Section 3 to a strong approximation theorem for M. DEFINITION 2.1. Let \mathcal{O} be an integral domain with quotient field F. We consider variables T_1, \ldots, T_r, X over F and abbreviate (T_1, \ldots, T_r) to \mathbf{T} . Let f_1, \ldots, f_m be irreducible and separable polynomials in $F(\mathbf{T})[X]$ and let g be a non-zero polynomial in $F[\mathbf{T}]$. Following [3, Section 12.1], we write $H_F(f_1, \ldots, f_n; g)$ for the set of all $\mathbf{a} \in F^r$ such that $f_1(\mathbf{a}, X), \ldots, f_m(\mathbf{a}, X)$ are defined, irreducible, and separable in F[X] with $g(\mathbf{a}) \neq 0$. Then, we call $H_F(f_1, \ldots, f_m; g)$ a *separable Hilbert subset* of F^r . We say that the ring \mathcal{O} is *Hilbertian* if for every positive integer r every separable Hilbert subset of F^r has a point with coordinates in \mathcal{O} . Finally, we say that \mathcal{O} is *Bezout* if every finitely generated ideal of \mathcal{O} is principal.

EXAMPLE 2.2. Taking $q_0 \in \mathbb{P}_K \setminus \mathcal{V}$ in [3, Theorem 13.3.5(b), p. 241], we find that $H \cap \mathcal{O}_{K,\mathcal{V}}^r \neq \emptyset$ for each $r \ge 1$ and every separable Hilbert subset H of K^r . In particular, if \mathcal{V} contains only non-archimedean primes, then $\mathcal{O}_{K,\mathcal{V}}$ is a Hilbertian domain.

Let *d* be a positive integer. Denote the set of all absolutely irreducible polynomials $h \in K[T, Y]$, monic in *Y* with $d = \deg_Y(h)$, that satisfy (1) of Section 1 with $S = \emptyset$, i.e.,

(1a) h(0, Y) has d distinct roots in K_{sep} , and (1b) $\operatorname{Gal}(h(T, Y), K(T)) \cong \operatorname{Gal}(h(T, Y), \tilde{K}(T)) \cong S_d$ by \mathcal{H}_d . Let $\mathcal{H} = \bigcup_{d=1}^{\infty} \mathcal{H}_d$.

LEMMA 2.3. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ every separable algebraic extension M of $K_{\text{symm}}[\sigma]$ is weakly symmetrically K-stably PAC over $\mathcal{O}_{K,\mathcal{V}}$.

In particular, the field K_{symm} is weakly symmetrically K-stably PAC over $\mathcal{O}_{K,\mathcal{V}}$.

Proof. By Definition 1.1, it suffices to consider the case $e \ge 1$ and to prove that for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\sigma]$ is weakly symmetrically K-stably PAC over $\mathcal{O}_{K,\mathcal{V}}$. Moreover, since the set \mathcal{H} is countable, it suffices to consider a positive integer d, a polynomial $h \in \mathcal{H}_d$, and a non-zero polynomial $g \in K[T]$, and to prove that for almost all $\sigma \in \text{Gal}(K)^e$ there exists $(a, b) \in \mathcal{O}_{K,\mathcal{V}} \times K_{\text{symm}}[\sigma]$ such that h(a, b) = 0 and $g(a) \neq 0$.

By Borel–Cantelli [3, Lemma 18.5.3(b), p. 378], it suffices to construct a sequence of pairs $(a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots$ that satisfies for each $n \ge 1$ the following conditions: (2a) $a_n \in \mathcal{O}_{K,V}$ and $h(a_n, X)$ is separable,

(2b) the splitting field K_n of $h(a_n, X)$ over K has Galois group S_d ,

- (2c) $h(a_n, b_n) = 0$, in particular $b_n \in K_n$, and $g(a_n) \neq 0$,
- (2d) K_1, K_2, \ldots, K_n are linearly disjoint over K.

Indeed, inductively suppose that *n* is a positive integer and $(a_1, b_1), \ldots, (a_{n-1}, b_{n-1})$ satisfy Condition (2) (for n-1 rather than for *n*). Let $L = K_1, K_2, \ldots, K_{n-1}$. By [3, Proposition 16.1.5, p. 294] and [3, Corollary, 12.2.3, p. 224], *K* has a separable Hilbert subset *H* such that for each $a \in H$ the polynomial h(a, X) is separable, Gal $(h(a, X), K) \cong$ Gal $(h(a, X), L) \cong S_d$, and $g(a) \neq 0$. Using Example 2.2, we choose an element $a_n \in H \cap \mathcal{O}_{K,V}$ and a root $b_n \in K_{sep}$ of $h(a_n, X)$. Then, b_n lies in the splitting field K_n of $h(a_n, X)$, so all of the statements (2a)–(2d) are satisfied.

By Lemmas 1.3 and 1.4, we get the following corollary.

COROLLARY 2.4. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each extension M of $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},S}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Hence, M is weakly PSC over $\mathcal{O}_{M,V}$. In particular, the field $M = K_{tot,S} \cap K_{symm}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$, so it is also weakly PSC over $\mathcal{O}_{M,V}$.

When $S = \emptyset$, we get from Definition 1.2 the following result.

COROLLARY 2.5. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ each separable algebraic extension M of the field $K_{\text{symm}}[\sigma]$ is PAC over $\mathcal{O}_{M,\mathcal{V}}$. In particular, the field $M = K_{\text{symm}}$ is PAC over $\mathcal{O}_{M,\mathcal{V}}$.

PROPOSITION 2.6. Let L be a Hilbertian field and M an extension of L in L_{symm} . Then, M is Hilbertian.

Proof. Following [1, Section 2.1], we say that a profinite group G has *abelian-simple* length n if there is a finite series $\mathbf{1} = G^{(n)} \triangleleft \cdots \triangleleft G^{(1)} \triangleleft G^{(0)} = G$ of closed subgroups, where for $i = 0, \ldots, n-1$, the group $G^{(i+1)}$ is the intersection of all open normal subgroups N of $G^{(i)}$ such that $G^{(i)}/N$ is abelian or simple.

As mentioned in the proof of [1, Theorem 5.5], the abelian-simple length of each symmetric group S_n is at most 3. Hence, by [1, Proposition 2.8], the abelian-simple length of $\text{Gal}(L_{\text{symm}}/L)$ is at most 3. Therefore, by [1, Theorem 3.2], every field M between L and L_{symm} is Hilbertian.

COROLLARY 2.7. Let e be a positive integer. Suppose that \mathcal{V} contains only nonarchimedean primes. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the rings $\mathcal{O}_{K_{\text{sep}}[\sigma],\mathcal{V}}$ and $\mathcal{O}_{K_{\text{symm}}[\sigma],\mathcal{V}}$ are Hilbertian. In addition, the ring $\mathcal{O}_{K_{\text{symm}},\mathcal{V}}$ is Hilbertian.

Proof. By Proposition 2.6, for all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\sigma]$ is Hilbertian. By [3, Theorem 27.4.8, p. 669], for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{sep}}[\sigma]$ is Hilbertian. By [11, Proposition 2.5 and Corollary 2.6], if a field M is PAC over a subring \mathcal{O} and M is Hilbertian, then the ring \mathcal{O} is Hilbertian. It follows from Corollary 2.5 that for almost all $\sigma \in \text{Gal}(K)^e$ the rings $\mathcal{O}_{K_{\text{sep}}[\sigma],\mathcal{V}}$ and $\mathcal{O}_{K_{\text{symm}}[\sigma],\mathcal{V}}$ are Hilbertian. Finally, by Proposition 2.6, the field K_{symm} is also Hilbertian. By Corollary 2.5,

Finally, by Proposition 2.6, the field K_{symm} is also Hilbertian. By Corollary 2.5, K_{symm} is PAC over $\mathcal{O}_{K_{\text{symm}},\mathcal{V}}$. Hence, by the preceding paragraph, the ring $\mathcal{O}_{K_{\text{symm}},\mathcal{V}}$ is Hilbertian.

COROLLARY 2.8. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{symm}}[\sigma]$ is PAC, Hilbertian, and $\text{Gal}(K_{\text{symm}}[\sigma]) \cong \hat{F}_{\omega}$.

Proof. By Corollary 2.5, Definition 1.2, and Corollary 2.7, for almost all $\sigma \in \text{Gal}(K)^e$ the field $M = K_{\text{symm}}[\sigma]$ is PAC and Hilbertian. Hence, by [9, Theorem 5.10.3, p. 90], $\text{Gal}(M) \cong \hat{F}_{\omega}$, as claimed.

Remark 2.9. (a) It is not true that $K_{\text{symm}}[\sigma]$ is PAC for every $\sigma \in \text{Gal}(K)^e$. For example, [3, Remark 18.6.2, p. 381] gives $\sigma \in \text{Gal}(\mathbb{Q})$ such that $\tilde{\mathbb{Q}}(\sigma)$ is not a PAC field. Hence, by [3, Corollary 11.2.5, p. 196] also the subfield $\mathbb{Q}_{\text{symm}}[\sigma]$ of $\tilde{\mathbb{Q}}(\sigma)$ is not PAC.

(b) In a forthcoming note, we make some mild changes in the proof of Theorem 1.1 of [1] and in some lemmas on which it depends in order to prove in the setup of Proposition 2.6 that if *L* is the quotient field of a Hilbertian domain *R* and *S* is the integral closure of *R* in *M*, then *S* is also a Hilbertian domain. In particular, in view of the proof of Proposition 2.6, the latter result applies to every extension *M* of *L* in L_{symm} . It will follow, in the notation of Corollary 2.7, that each of the rings $\mathcal{O}_{K_{\text{symm}}[\sigma], \mathcal{V}}$ is Hilbertian.

By [12, Lemma 4.6], if M is an algebraic extension of K, which is PAC over its ring of integers $\mathcal{O}_M = \mathcal{O}_{M,\mathbb{P}_{K,\text{fin}}}$, then \mathcal{O}_M is a Bezout domain. Thus, Corollary 2.5, applied to $\mathcal{V} = \mathbb{P}_{K,\text{fin}}$ yields the following result.

COROLLARY 2.10. Let e be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$ the ring of integers of each separable extension of $K_{\text{symm}}[\sigma]$ is Bezout. In particular, the ring $\mathcal{O}_{K_{\text{symm}}}$ is Bezout.

3. Strong approximation theorem. In the notation of Section 1, we prove that for almost all $\sigma \in \text{Gal}(K)^e$ the field $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ satisfies the strong approximation theorem for absolutely integral affine varieties.

Given a variety V, we write V_{simp} for the Zariski-open subset of V that consists of all *simple* (= non-singular) points of V. We cite two results from [6]. The first one is Proposition 12.4 of [6].

PROPOSITION 3.1 (Strong approximation theorem). Let M be a subfield of $K_{tot,S}$ that contains K and is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Then, (M, K, S, V)satisfies the following condition, abbreviated as $(M, K, S, V) \models SAT$:

Let \mathcal{T} be a finite subset of \mathcal{V} that contains \mathcal{S} such that $\mathcal{V} \setminus \mathcal{T} \subseteq \mathbb{P}_{K, \text{fin}}$. Let V be an absolutely integral affine variety over K in \mathbb{A}^n_K for some positive integer n. For each $\mathfrak{p} \in \mathcal{T}$ let $L_\mathfrak{p}$ be a finite Galois extension of $K_\mathfrak{p}$ such that $L_\mathfrak{p} = K_\mathfrak{p}$ if $\mathfrak{p} \in \mathcal{S}$ and let $\Omega_\mathfrak{p}$ be a non-empty \mathfrak{p} -open subset of $V_{\text{simp}}(L_\mathfrak{p})$, invariant under the action of $\text{Gal}(L_\mathfrak{p}/K_\mathfrak{p})$. Assume that $V(\mathcal{O}_{K,\mathfrak{p}}) \neq \emptyset$, for each $\mathfrak{p} \in \mathcal{V} \setminus \mathcal{T}$. Then, there exists $\mathbf{z} \in V(\mathcal{O}_{M,\mathcal{V} \setminus \mathcal{T}})$ such that $\mathbf{z}^\tau \in \Omega_\mathfrak{p}$ for all $\mathfrak{p} \in \mathcal{T}$ and all $\tau \in \text{Gal}(K)$.

The second result is Proposition 13.4 of [6], applied (for simplicity) to the case where S consists only of finite primes of K and $\mathcal{V} = \mathbb{P}_{K, \text{fin}}$.

PROPOSITION 3.2 (Local-global principle). Let M be a subfield of $K_{tot,S}$ that contains K and is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Then, (M, S) satisfies the following condition, abbreviated as $(M, S) \models LGP$:

Let V be an absolutely integral affine variety over M in \mathbb{A}^n_M for some positive integer n such that $V_{simp}(\mathcal{O}_{M_{\mathfrak{q}},\mathfrak{q}}) \neq \emptyset$ for each $\mathfrak{q} \in S_M$ and $V(\mathcal{O}_{M_{\mathfrak{q}},\mathfrak{q}}) \neq \emptyset$ for each $\mathfrak{q} \in \mathbb{P}_{M, fin} \setminus S_M$. Then, $V(\mathcal{O}_M) \neq \emptyset$.

Recall that an extension M of K in $K_{tot,S}$ is said to be PSC (=*pseudo-S-closed*) if every absolutely integral variety V over M with a simple K_p^{τ} -rational point for each $\mathfrak{p} \in S$ and every $\tau \in \text{Gal}(K)$ has an M-rational point [4, Definition 1.3]. Also, a field M is *ample* if the existence of an M-rational simple point on V implies that V(M) is Zariski-dense in V [9, Lemma 5.3.1, p. 67]. In particular, every PSC field is ample.¹

The next lemma is observed in [8, Corollary 2.7].

LEMMA 3.3. Let M be an extension of K in $K_{tot,S}$. Suppose that $(M, K, S, S) \models$ SAT. Then, M is a PSC field, hence ample.

Proof. Consider an absolutely integral variety V over M with a simple $K_{\mathfrak{p}}^{\tau}$ -rational point for each $\mathfrak{p} \in S$ and every $\tau \in \operatorname{Gal}(K)$. Replacing K by a finite extension K' in

¹The work [10] uses the adjective "large" rather than "ample".

 $K_{\text{tot},S}$ and S by $S_{K'}$, we may assume that V is defined over K and has a simple $K_{\mathfrak{p}}$ rational point for each $\mathfrak{p} \in S$. Moreover, we may assume that V is affine. Thus, we
may apply Proposition 3.1 to the case $\mathcal{V} = \mathcal{T} = S$ and $\Omega_{\mathfrak{p}} = V_{\text{simp}}(K_{\mathfrak{p}})$ for each $\mathfrak{p} \in S$.
Observe that in this case $\mathcal{O}_{M, \mathcal{V} \setminus \mathcal{T}} = M$.

Corollary 2.4, Lemma 3.3, Proposition 3.1, and Proposition 3.2 yield the following result.

THEOREM 3.4. Let *e* be a non-negative integer. Then, for almost all $\sigma \in \text{Gal}(K)^e$, every extension *M* of $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},S}$ has the following properties.

(a) $(M, K, S, \mathcal{V}) \models SAT.$

(b) M is PSC, hence ample.

(c) If S consists only of finite primes of K, then $(M, S) \models LGP$.

In particular, $M = K_{tot,S} \cap K_{symm}$ satisfies (a)–(c).

Proof. By Corollary 2.4, for almost all $\sigma \in \text{Gal}(K)^e$ every extension M of the field $K_{\text{tot},S} \cap K_{\text{symm}}[\sigma]$ in $K_{\text{tot},S}$ is weakly symmetrically K-stably PSC over $\mathcal{O}_{K,V}$. Hence, by Proposition 3.1, $(M, K, S, V) \models \text{SAT}$, so (a) holds. It follows from Lemma 2.3 that M is PSC, as (b) states. Finally, if in addition, S consists only of finite primes, then by Proposition 3.2, $(M, S) \models \text{LGP}$, which establishes (c).

REFERENCES

1. L. Bary-Soroker, A. Fehm and G. Wiese, Hilbertian fields and Galois representations, J. R. Angew. Math. 712 (2016), 123–139.

2. J. W. S. Cassels and A. Fröhlich, *Algebraic number theory* (Academic Press, London, 1967).

3. M. Fried and M. Jarden, *Field arithmetic* (3rd edition), Ergebnisse der mathematik. 3, volume 11 (Springer, Heidelberg, 2008).

4. W.-D. Geyer and M. Jarden, PSC Galois extensions of Hilbertian fields, *Math. Nachr.* 236 (2002), 119–160.

5. M. Jarden and A. Razon, appendix by W.-D. Geyer, Skolem density problems over large Galois extensions of global fields, *Contemp. Math.* **270** (2000), 213–235.

6. W.-D. Geyer, M. Jarden and A. Razon, Strong approximation theorem for absolutely integral varieties over PSC Galois extensions of global fields, *NYJ. Math.* **23** (2017), 1447–1529.

7. M. Jarden and A. Razon, Pseudo algebraically closed fields over rings, *Israel J. Math.* **86** (1994), 25–59.

8. M. Jarden and A. Razon, Rumely's local global principle for weakly PSC fields over holomorphy domains, *Funct. Approx. Comment. Math.* **39** (2008), 19–47.

9. M. Jarden, *Algebraic patching*, Springer monographs in mathematics (Springer, 2011, Heidelberg).

10. F. Pop, Embedding problems over large fields, Ann. Math. 144 (1996), 1-34.

11. A. Razon, Abundance of Hilbertian domains, Manuscr. Math. 94 (1997), 531-542.

12. A. Razon, The elementary theory of *e*-free PAC domains, *Ann. Pure Appl. Logic*, 103 (2000), 55–95.

380