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An Algebraic Approach to Weakly
Symmetric Finsler Spaces

Shaoqiang Deng

Abstract. In this paper, we introduce a new algebraic notion, weakly symmetric Lie algebras, to give an

algebraic description of an interesting class of homogeneous Riemann–Finsler spaces, weakly symmet-

ric Finsler spaces. Using this new definition, we are able to give a classification of weakly symmetric

Finsler spaces with dimensions 2 and 3. Finally, we show that all the non-Riemannian reversible weakly

symmetric Finsler spaces we find are non-Berwaldian and with vanishing S-curvature. This means that

reversible non-Berwaldian Finsler spaces with vanishing S-curvature may exist at large. Hence the gen-

eralized volume comparison theorems due to Z. Shen are valid for a rather large class of Finsler spaces.

Introduction

The notion of a weakly symmetric Finsler space is the Finslerian analogue of that

of a Riemannian weakly symmetric space. A Riemannian weakly symmetric space

is, according to Selberg [16], a (connected) Riemannian manifold (M, Q) with the

property that there exists a subgroup G of the full group I(M, Q) of isometries such

that G acts transitively on M and there exists an isometry f of (M, Q), with f 2 ∈
G and f G f −1

= G, such that for any two points p, q ∈ M, there exists g ∈ G

satisfying g(p) = f (q) and g(q) = f (p). This condition is equivalent to the simple

geometric characterization that for any pair of points (p, q) there exists an isometry

f such that f (p) = q and f (q) = p, in short, f interchanges p and q (see [4]).

Originally, the study of Riemannian weakly symmetric spaces was mainly focused on

harmonic analysis. Much recent work has been done on the geometry of such spaces

(see [3,4,15,24]). This research shows that weakly symmetric Riemannian manifolds

possess rather interesting geometrical properties. In particular, a classification of

Riemannian weakly symmetric spaces with semisimple (resp. reductive) isometric

group was obtained (see [22, 23]).

However, up to now we have not had an algebraic notion related to this interesting

class of homogeneous Riemannian manifolds. The classification of certain special

classes, including those with semisimple (resp. reductive) isometric groups, are all

obtained through a careful technical analysis of results about other kinds of homo-

geneous manifolds. For example, Yakimove established the classification of Rieman-

nian weakly symmetric spaces with reductive isometric group (see [23]). It is based

on the classification of spherical homogeneous spaces, which is obtained through the

efforts of several people (see [14]). Berndt and Vanhecke obtained a classification of
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Riemannian weakly symmetric spaces with dimension less than six (see [4]). This is

based on the observation that a Riemannian weakly symmetric space is necessarily

a Riemannian g.o. space, (i.e., Riemannian manifolds any of whose geodesics is the

orbit of a one-parameter subgroup of the full group of isometries), and the converse

is also true, provided that the dimension is less than six. Then the classification is re-

duced to that of the Riemannian g.o. spaces (see [13]). This kind of approach cannot

help us to understand the intrinsic features of weakly symmetric spaces, and most

importantly, it is very difficult to get a complete classification of such spaces using

similar methods. Therefore, an algebraic approach to this problem is very impor-

tant.

In this paper, we will study this interesting problem. Contrary to the current set-

tings, which consider only the Riemannian metrics, we study this problem for the

more general class of Finsler spaces. The corresponding algebraic object we obtain,

which is a pair of (real) Lie algebras together with some appropriate conditions, will

be called a weakly symmetric Lie algebra. It turns out that this notion is very useful

for studying weakly symmetric Finsler spaces. In particular, every weakly symmetric

Finsler space gives rise to a weakly symmetric Lie algebra and conversely, given any

weakly symmetric Lie algebra, one can construct a (not unique) weakly symmetric

Finsler space. With this intrinsic algebraic interpretation we are able to give a classi-

fication of weakly symmetric Finsler spaces of dimensions two and three. As an ap-

plication of these results, we find many new examples of reversible non-Berwaldian

spaces with vanishing S-curvature. The problem whether there exists such a space

was posed by Z. Shen (see [17]), and we have pointed out that such spaces do exist

by constructing a series of explicit examples (see [9]).

The arrangement of this paper is as follows. In Section 1 we recall some basic

definitions and results on Finsler metrics, connections, S-curvature and weakly sym-

metric Finsler spaces. In Section 2 we introduce the weakly symmetric Lie algebras

and prove two main theorems which reduce the study of weakly symmetric Finsler

spaces to that of weakly symmetric Lie algebras. In Section 3 we present some ex-

amples of weakly symmetric Lie algebras, which will be useful in the classification

of lower dimensional weakly symmetric spaces. In Section 4 we obtain a classifica-

tion of weakly symmetric Finsler spaces of dimensions two and three, which contains

a complicated computation using the structure theory of real lie algebras. Finally,

in Section 5 we prove that the non-Riemannian and non-symmetric Finsler metrics

constructed in Section 4 are all non-Berwaldian and with vanishing S-curvature.

1 Preliminaries

In this section, we recall some definitions and fundamental results needed in this

paper.

1.1 Finsler Spaces

Definition 1.1 Let V be an n-dimensional real vector space. A Minkowski norm

on V is a functional F on V which is smooth on V − {0} and satisfies the following

conditions:

https://doi.org/10.4153/CJM-2010-004-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-004-x


54 S. Deng

(i) F(u) ≥ 0, ∀u ∈ V ;

(ii) F(λu) = λF(u), ∀λ > 0;

(iii) For any basis ε1, ε2, . . . , εn of V , write F(y) = F(y1, y2, . . . , yn) for y = y jε j .

Then the Hessian matrix

(gi j) :=
([ 1

2
F2

]

yi y j

)

is positive-definite at any point of V − {0}.

It can be shown (see [2]) that for a Minkowski norm F, we have F(u) > 0, ∀u 6= 0.

Furthermore, F(u1 + u2) ≤ F(u1) + F(u2), where the equality holds if and only if

u2 = αu1 or u1 = αu2 for some α ≥ 0.

For any Minkowski norm F on real vector space V we define

Ci jk =
1

4
[F2]yi y j yk .

Then for any y 6= 0, we can define two tensors on V , namely,

gy(u, v) = gi j(y)uiv j and C y(u, v, w) = Ci jk(y)uiv jwk.

They are called the fundamental form and the Cartan torsion, respectively.

Definition 1.2 Let M be a (connected) smooth manifold. A Finsler metric on M is

a function F : TM → [0,∞) such that

(i) F is C∞ on the slit tangent bundle TM − {0};

(ii) the restriction of F to any TxM, x ∈ M is a Minkowski norm.

Let (M, F) be a Finsler space and (x1, x2, . . . , xn) a local coordinate system on an

open subset U of M. Then ∂
∂x1 , . . . ,

∂
∂xn form a basis for the tangent space at any point

in U . For y ∈ Tx(M), x ∈ U , write y = y j ∂
∂x j . Then (x1, x2, . . . , xn, y1, y2, . . . , yn) is

a (standard) coordinate system on TU . Using the coefficients gi j and Ci jk, we define

C i
jk = g isCs jk,

where (g i j) is the inverse matrix of (gi j). The formal Christofell symbols of the second

kind are

γ i
jk = g is 1

2

( ∂gs j

∂xk
− ∂g jk

∂xs
+

∂gks

∂x j

)

.

They are functions on TU − {0}. We can also define some other quantities on

TU − {0} by N i
j(x, y) := γ i

jk yk −C i
jkγ

k
rs y

r ys, where y = yi ∂
∂xi ∈ Tx(M) − {0}.

Now the slit tangent bundle TM − {0} is a fibre bundle over the manifold M

with the natural projection π. Since TM is a vector bundle over M, we have a pull-

back bundle π∗TM over TM − {0}. The pull-back bundle π∗TM admits a unique

linear connection, called the Chern connection, which is torsion free and almost
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g-compatible (see [1]). The coefficients of the connection in the standard coordi-

nate system are

Γ
l

jk = γ l
jk − g li

(

Ai js
N s

k

F
− A jks

N s
i

F
+ Akis

N s
j

F

)

.

Let V be an n-dimensional real vector space and F a Minkowski norm on V . For

a basis {bi} of V , let

σF =
Vol(Bn)

Vol{(yi) ∈ Rn | F(yibi) < 1} ,

where Vol means the volume of a subset in the standard Euclidean space R
n and Bn

is the open ball of radius 1. This quantity is generally dependent on the choice of the

basis {bi}. But it is easily seen that

τ(y) = ln

√

det(gi j(y))

σF
, y ∈ V − {0}

is independent of the choice of the basis. So τ = τ(y) is called the distortion of (V, F).

Now let (M, F) be a Finsler space. Let τ(x, y) be the distortion of the Minkowski

norm Fx on Tx(M). For y ∈ Tx(M) − {0}, let σ(t) be the geodesic with σ(0) = x

and σ̇(0) = y. Then the quantity

S(x, y) =
d

dt

[

τ(σ(t), σ̇(t))
] ∣

∣

t=0

is called the S-curvature of the Finsler space (M, F). It is a function on the slit tangent

bundle TM − {0}. The notion of S-curvature was introduced by Z. Shen (see [17],

see also [5]). It is a useful tool for studying the volume comparison theorems in

Finsler geometry. It is proved in [19] that for any Berwald space the S-curvature

vanishes. On the other hand, there exists Randers’ metric which is non-Berwaldian

and whose S-curvature vanishes. Z. Shen raised the open problem whether there

exists reversible non-Berwaldian Finsler spaces with vanishing S-curvature. In our

previous paper, we gave an affirmative answer to this problem by constructing some

examples of such spaces. In this paper, we will find many new examples of such

spaces. This fact implies that reversible non-Berwaldian S-isotropic Finsler spaces

may exist at large.

1.2 Weakly Symmetric Finsler Spaces

The notion of a weakly symmetric space is a natural generalization of Selberg’s def-

inition of a Riemannian weakly symmetric space. Let (M, F) be a Finsler space and

I(M, F) be the full group of isometries. Then (M, F) is called weakly symmetric if for

any two points p, q in M there exists an isometry σ ∈ I(M, F) such that σ(p) = q and

σ(q) = p. In this section, we will recall some geometric criteria for weakly symmetric

spaces which will be used in this paper (see [9]).
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Proposition 1.3 A Finsler space (M, F) is a weakly symmetric space if and only if

for every maximal geodesic γ in M and any point m ∈ γ there exists an isometry

σ ∈ I(M, F) satisfying σ(γ) ⊂ γ, σ(m) = m, σ|γ 6= id, σ2|γ = id, where id de-

notes the identity transformation. In other words, σ is a non-trivial involution along γ
fixing m.

Proposition 1.4 A Finsler space (M, F) is weakly symmetric if and only if for any

m ∈ M and X ∈ Tm(M) there exists an isometry σ of (M, F) such that σ(m) = m and

dσ(X) = −X.

The following result is very useful for studying invariant weakly symmetric Finsler

metrics on homogeneous manifolds.

Proposition 1.5 Let G be a Lie group and H a closed subgroup of G. Suppose that the

coset space G/H is reducible, i.e., there exists a subspace p of the Lie algebra g of the Lie

group G such that g = h+p (direct sum), and Ad(h)(p) ⊂ p, ∀h ∈ H. If for any X ∈ p,

there exists h ∈ H such that Ad(h)(X) = −X, then any G-invariant Finsler metric on

G/H is weakly symmetric.

Proof Since G/H is homogeneous, we only need to prove that the condition of

Proposition 1.4 is satisfied at the origin o = eH. Identifying Y ∈ p with the tan-

gent vector d
dt

exp(tY ) · o|t=0 , we get a linear isomorphism between p and the tangent

space To(G/H). Under this isomorphism the action of H on To(G/H) (h 7→ dh)

corresponds to the adjoint action of H on p. From this the proposition follows.

2 Weakly Symmetric Lie Algebras

In this section, we will introduce the definition of a weakly symmetric Lie algebra

and use this notion to give an algebraic description of simply connected weakly sym-

metric Finsler spaces. As usual, we only consider connected manifolds.

Definition 2.1 Let g be a real Lie algebra and h a subalgebra of g, and suppose that

there exists a subspace p of g such that g = h + p (direct sum) and [h, p] ⊂ p. Then

(g, h) is called a weakly symmetric Lie algebra if there exists a finite set of automor-

phisms of g, {σ0, σ1, σ2, . . . , σs} (σ0 = id), satisfying the following conditions:

(W1) any σi , 0 ≤ i ≤ s keeps the subspaces h and p, i.e., σi(h) = h, σi(p) = p;

(W2) for any pair i, j, 0 ≤ i, j ≤ s, there exists a k, 0 ≤ k ≤ s and a vector Xi j ∈ h

such that σiσ j = ead Xi j σk;

(W3) for any Y ∈ p there exists XY ∈ h and an index mY such that ead XY · σmY
(Y ) =

−Y .

We usually say that (g, h) is weakly symmetric with respect to {σ0, σ1, . . . , σs}. More-

over, a weakly symmetric Lie algebra (g, h) is called Riemannian if in addition h is a

compactly embedded subalgebra of g.

We now give some remarks concerning the above definition.

Remarks (1) The definition of a Riemannian weakly symmetric Lie algebra is

a natural generalization of an orthogonal symmetric Lie algebra (see [10, p. 213]).
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In fact, if (g, σ) is an orthogonal symmetric Lie algebra, then the fixed points of the

involution σ, denoted by h, is a compactly embedded subalgebra of g. Let p be the

eigenspace of σ with the eigenvalue −1. Then p satisfies the condition in the above

definition. In fact, we only need to define σ0 = id, σ1 = σ. Then it is easy to verify

that (W1), (W2), and (W3) are satisfied. In the next section, we will construct a series

of examples of Riemannian weakly symmetric Lie algebras that are not orthogonal

symmetric.

(2) A subalgebra h of a real Lie algebra g is called compactly embedded if the an-

alytic subgroup H∗ of the adjoint group Int g of g that corresponds to the subalgebra

adg(h) of adg(g) is a compact Lie group (see [10, p. 130]).

(3) In the definition, we do not require the set of automorphisms {σ0, σ1, . . . , σs}
to be unique. However, if (g, h) is a weakly symmetric Lie algebra, then we can choose

a reduced set of automorphisms (τ0(= id), τ1, τ2, . . . , τl) that satisfy (W1), (W2),

(W3) and the following additional condition:

(W4) For any j 6= k, τ j (τk)−1 cannot be written in the form eadX , X ∈ h.

It is easily seen that each set of automorphisms in the definition can be reduced to a

reduced set. In the following, we will usually select a reduced set of automorphisms

to study weakly symmetric Lie algebras.

Now we can give the algebraic description of weakly symmetric Finsler spaces.

Theorem 2.2 Let (M, F) be a weakly symmetric Finsler space. Then there exists a

Lie group G and a closed subgroup H of G such that M = G/H and F is G-invariant.

Further, the Lie algebra pair (g, h), where g = Lie G, h = Lie H, is a Riemannian

weakly symmetric Lie algebra.

Proof Fix x ∈ M. By Proposition 1.5, for any v ∈ Tx(M), there exists an isometry τ
of (M, F) such that τ(x) = x and dτ(v) = −v. Let G be the full group of isometries of

(M, F) and H the isotropy subgroup of G at x. Then by [6], G is a Lie transformation

group of M and H is a compact subgroup of G. Since a weakly symmetric Finsler

spaces is homogeneous, G acts transitively on M. Hence M is diffeomorphic to the

coset space G/H and F is G-invariant. Now we prove that the pair (g, h), where

g = Lie G, h = Lie H, is a weakly symmetric Lie algebra. Since H is compact, G/H

is a reductive homogeneous manifold. Hence there exists a subspace p of g such that

g = h + p (direct sum) and Ad(h)(p) ⊂ p ∀h ∈ H. In particular, [h, p] ⊂ p. Now we

identify the space p with the tangent space Tx(M) by the mapping Y 7→ d/dt(exp tY )·
x|t=0 , Y ∈ p. Then isotropic action of H on Tx(M) corresponds to the adjoint action

of H on p. Let e be the unit element and He be the identity component of H. Then

He is a normal subgroup of H and the quotient group H/He is finite, because H,

as a compact Lie group, has at most finitely many number of components. Now

let {e, h1, . . . , hs} be a set of H such that {eH, h1H, . . . , hsH} are all the (distinct)

elements of the quotient group. Let σ0 be the identity transformation of g and σ j =

Ad(h j), j = 1, 2, . . . , s. Then the set {σ0, σ1, . . . , σs} satisfies the conditions (W1),

(W2), (W3). In fact, (W1) is obviously satisfied. For any pair i, j, suppose that in the

quotient group H/He we have hiHe ·h jHe = hkHe, then there exists m1, m2, m3 ∈ He,

such that him1h jm2 = hkm3, i.e., hih j = hk(m3m−1
2 (h jm

−1
1 h−1

j )). Since h jm
−1
1 h−1

j ∈
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He, we have m = m3m−1
2 (h jm

−1
1 h−1

j ) ∈ He. Since He is a connected compact Lie

group, the exponential mapping is surjective. Hence there exists Xi j ∈ h such that

exp(Xi j) = m. Then Ad(m) = ead Xi j . Therefore,

σiσ j = σkead Xi j = σkead Xi j σ−1
k · σk = ead(σk(Xi j ))σk,

i.e., (W2) is satisfied. Now we prove (W3). By Proposition 1.4, for any Y ∈ p we can

select h ∈ H such that Ad(h)(Y ) = −Y . Suppose h lies in the component hiHe. Then

there exists h0 ∈ He such that h = hih0 = hih0h−1
i hi . Since hih0h−1

i ∈ He, we can

write h = exp(Xy)hi for some Xy ∈ h. From this we easily see that (W3) is satisfied.

This completes the proof of the theorem.

Next we will show that any Riemannian weakly symmetric Lie algebra can give

rise to a weakly symmetric Finsler space, although in general the spaces constructed

from a weakly symmetric Lie algebra are not unique.

Theorem 2.3 Let (g, h) be a Riemannian weakly symmetric Lie algebra. Suppose that

G is a connected simply connected Lie group with Lie algebra g and H is the (unique)

connected Lie subgroup of G with Lie algebra h. If H is closed in G (this is the case if

C(g) = 0), then there exists a G-invariant Riemannian metric Q on the coset space

G/H such that (G/H, Q) is a Riemannian weakly symmetric space. Furthermore, if

there exists a non-trivial subspace of g/h which is invariant under the actions of h and

a set of reduced automorphisms of the weakly symmetric Lie algebra (g, h) (see Remark

(3) after Definition 2.1), then there exists a non-Riemannian G-invariant Finsler metric

F on G/H such that (G/H, F) is a weakly symmetric Finsler space.

Proof Since h is a compactly embedded subalgebra of g, the Lie algebra adg(h) is

compact. If we identify the tangent space To(G/H) with p, where p is as in Defini-

tion 2.1 and o = eH is the origin of the coset space G/H, then Ad(H) is a compact

group of linear transformations of p. Hence there exists an Ad(H)-invariant inner

product 〈 , 〉1 on p. Fix a reduced set of automorphisms {τ0, τ1, . . . , τl} (τ0 = id) as

in Remark (3), and define an inner product 〈 , 〉 on p as follows:

〈X,Y 〉 =

l
∑

j=0

〈τ j X, τ jY 〉1, X,Y ∈ p.

By condition (W2) we see that 〈 , 〉 is invariant under the action of each τi , i =

1, 2, . . . , l. We assert that 〈 , 〉 is also Ad(H)-invariant. In fact, for any h ∈ H and any

index j, we have Ad h · τ j = τ j · (τ−1
j ·Ad h · τ j). Since H is connected, it is generated

by the elements exp(X), X ∈ h. Hence h can be written as exp X1 exp X2 · · · exp Xk,

where Xi ∈ h, i = 1, 2, . . . , k. Then we have

τ−1
j · Ad h · τ j = ead τ j X1 ead τ j X2 · · · ead τ j Xk .

From this our assertion follows. Now using 〈 , 〉 we can construct a G-invariant Rie-

mannian metric Q on the coset space G/H (here the condition that H is closed is
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required, otherwise it may happen that there is no differentiable structure on G/H)

whose restriction to To(G/H) = p is equal to 〈 , 〉 (see [12]). We assert that the

homogeneous Riemannian manifold constructed above is weakly symmetric. Note

that G is connected and simply connected, each automorphism τ j of g can be lifted

to an automorphism of G (see [10]), denoted by τ̃ j , j = 0, 1, 2, . . . . Since τ j(h) = h,

we easily see that τ̃ j(H) ⊂ H. Hence τ̃ j induces a diffeomorphism of G/H, which

we denote by τ̂ j , by sending gH to τ̃ j(g)H. The diffeomorphism τ̂ j keeps the ori-

gin o = eH invariant, and its differential at o is just the restriction of τ j to p. From

this we see that τ̂ j keeps the Riemannian metric Q invariant, or in other words, τ̂ j

lies in the isotropic subgroup (at o) of the full group of isometries of (G/H, Q). By

(W3) for any Y ∈ p = To(G/H), we can choose XY ∈ h and index iY such that

ead XY τiY
(Y ) = −Y . This means that the isometry τexp(XY ) · τ̂iY

of the Riemannian

manifold (G/H, Q), where τh(gH) = hgH, h ∈ H, reverse the tangent vector Y .

Since (G/H, Q) is homogeneous for any m ∈ G/H and Y ∈ Tm(G/H), there exists

an isometry f such that f (m) = m and d f |m(Y ) = −Y . Thus by Proposition 1.4

(G/H, Q) is weakly symmetric.

Now we prove the second assertion. The conditions imply that there exists a non-

trivial subspace p ′ of p which is invariant under adg(h) and τ j , j = 0, 1, 2, . . . . By

the above argument, we see that there exists an inner product ( , )0 on p such that

Ad(h) and τ j are all orthogonal with respect to it. Then the orthogonal complement

of p ′ with respect to ( , )0, (p ′)⊥, is also invariant under the action of Ad(h) and τ j .

Hence p has a decomposition

(2.1) p = p0 + p1 + · · · + pm (direct sum),

where p0 is the set of fixed points of Ad(H) and p j , j = 1, 2, . . . , m are irreducible

invariant subspaces of Ad(H) and τ j , j = 0, 1, 2, . . . , n. Without loss of generality,

we can assume that m ≥ 1. Now we define a functional F1 on p by

F1(X) =

√

√

√

√

√

m
∑

j=0

(X j , X j)0 +

√

√

√

√

m
∑

j=0

(X j , X j)
2
0,

where X = X0 + X1 + · · · + Xm is the decomposition of X corresponding to (2.1). It

is easy to check that F1 is a Minkowski norm on p which is obviously non-Euclidean.

Using F1 we can define a G-invariant Finsler metric on G/H (see [7]) and as above

we can prove that it is a weakly symmetric Finsler space.

Finally, if C(g) = 0, then H is closed in G; see [10, pp. 213–214].

3 Examples of Weakly Symmetric Lie Algebras

In this section, we present some examples of weakly symmetric Lie algebras. Some of

these will be used in the classification of three-dimensional weakly symmetric Finsler

spaces in the next section.
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Example 1 Let h be the one-dimensional real Lie algebra,

g = h + su(2) (direct sum).

Define the Lie brackets as follows. The Lie brackets between the elements of su(2) are

defined as usual. Let X be a non-zero element in h and

ε1 =

(

0 1

−1 0

)

, ε2 =

(

0
√
−1√

−1 0

)

, ε3 =

(√
−1 0

0 −
√
−1

)

.

Then we define

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

These brackets can be extended linearly to a skew symmetric binary operation on g.

It is easy to check that the Jacobi identities hold for this operation. Hence g is a Lie

algebra. Obviously [h, su(2)] ⊂ su(2). Now we define an endomorphism τ on g by

τ(X) = −X, τ(ε1) = −ε1, τ(ε2) = −ε2, τ(ε3) = ε3.

Then it is easy to check that τ keeps the Lie brackets invariant, hence is a Lie algebra

automorphism, and τ 2
= id. Now we prove that (g, h) is a weakly symmetric Lie

algebra with respect to S = {id, τ}. Since (W1) and (W2) are obviously satisfied,

we only need to check (W3). Note that the action of ead(tX) on p = su(2) keeps the

subspaces V1 = span(ε1) and V2 = span(ε2, ε3) invariant and on V1 it is equal to the

identity transformation. On V2 it has the matrix

(

cos t sin t

− sin t cos t

)

with respect to the basis ε2, ε3. Thus ead(tX) is a rotation of t angle if we define an inner

product on V2 such that ε2, ε3 form an orthonormal basis. Now given an element

ε = aε1 + bε2 + cε3 in p, we have τ(ǫ) = −aǫ1 − bǫ2 + cǫ3. Since −bε2 + cε3 is an

element in V2 with the same length as −bε2 − cε3, there exists appropriate t0 ∈ R

such that

ead(t0X)(−bε2 + cε3) = −bε2 − cε3.

Then

e(t0X)τ(ε) = −aε1 − bε2 − cε3 = −ε.

Therefore (g, h) is a weakly symmetric Lie algebra. Note that the action of ad X on

p has skew symmetric matrix with respect to the basis ε1, ε2, ε3. Thus h is a com-

pactly embedded subalgebra of h. Hence (g, h) is a Riemannian weakly symmetric

Lie algebra.
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Example 2 This example is similar to Example 1. Here we let

g = h + sl(2, R) (direct sum).

The Lie brackets are defined similarly. In sl(2, R) we use the usual Lie operations. Let

ε1 =

(

0 1

−1 0

)

, ε2 =

(

1 0

0 −1

)

, ε3 =

(

0 1

1 0

)

.

Then define

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

Define an endomorphism τ on g by

τ(X) = −X, τ(ε1) = −ε1, τ(ε2) = −ε2, τ(ε3) = ε3.

Then it can be checked directly that τ is an automorphism of g. Similarly as in Ex-

ample 1, we can prove that (g, h) is a Riemannian weakly symmetric Lie algebra with

respect to {id, τ}.

Example 3 In this example we consider Heisenberg Lie algebras. Let n be a

(2n + 1)-dimensional real Lie algebra with a basis x1, x2, . . . , xn, y1, y2, . . . , yn, z and

the brackets

[xi , y j] = δi jz, [xi , x j] = [yi, y j] = 0, [xi, z] = [yi , z] = 0, i, j = 1, 2, . . . , n.

Then n is a 2-step nilpotent Lie algebra. Let g = u(n) + n (direct sum of subspaces)

and define the brackets as follows. The brackets among the elements in u(n) are the

usual operations. For A ∈ u(n) we define [A, z] = 0 and for the element

w =

n
∑

i=1

(aixi + bi yi), ai , bi ∈ R

we denote

(3.1) zi = ai +
√
−1bi , i = 1, 2, . . . , n.

Let (z ′1, z ′2, . . . , z ′n) = (z1, z2, . . . , zn)A and write z ′i = a′
i +

√
−1b ′

i , a′
i , b ′

i ∈ R. Then

we define

[A, w] = w ′
=

n
∑

i=1

(a′
i xi + b ′

i yi).

It is easy to check that the Jacobi identities hold among these brackets. Therefore

these brackets together with brackets of n define a Lie algebra structure on g and we

have [u(n), n] ⊂ n. Now we define an endomorphism τ of g by

τ(A) = Ā, τ(xi) = −xi , τ(yi) = yi , τ(z) = −z,
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where A ∈ u(n) and Ā is the complex conjugate matrix of A. It is easy to check that τ
is an (real) automorphism of the real Lie algebra g and τ 2

= id. Now we prove that

(g, u(n)) is a weakly symmetric Lie algebra with respect to {id, τ}. Since (W1) and

(W2) are obviously satisfied, we only need to check (W3). Note that the action of

u(n) in the subspace V2 = span(x1, y1, . . . , xn, yn) is just the usual operation of u(n)

on the complex linear space C
n if we write the corresponding coordinates as complex

numbers as in (3.1). Hence the action of ead(tA), A ∈ u(n) on V2 is the operation

w 7→ w × exp(tA) (matrices multiplication), i.e., it is just the usual action of the

unitary Lie group U (n) on C
n. Now for any w + cz, w ∈ V2, c ∈ R, we have

τ(w + cz) = τ(w) − cz,

where τ(w) is in V2 with the same length as w when we identify V2 with C
n (with the

usual Hermitian metric). Since the group U (n) acts as the identity transformation

on span (z) and acts transitively on the unit sphere in C
n, there exists A0 in u(n) such

that

ead(A0)(τ(w)) = −w, ead(A0)(z) = z.

Thus ead(A0) · τ(w + cz) = −(w + cz). This proves our assertion.

For n = 1, dim n = 3. The Lie algebra u(1) is one-dimensional. Let x, y, z be the

basis of n such that [x, y] = z, [x, z] = [y, z] = 0. Then we can choose an element X

of u(1) such that [X, z] = 0, [X, x] = −y, [X, y] = x. The automorphism τ satisfies

τ(X) = −X, τ(x) = −x, τ(y) = y. This weakly symmetric Lie algebra will appear in

our classification of three-dimensional weakly symmetric Finsler spaces in the next

section.

4 Classification of Weakly Symmetric Finsler Spaces of Low
Dimensions

As an application of the notion of a weakly symmetric Lie algebra, we get a classifica-

tion of weakly symmetric Finsler spaces of dimension ≤ 3.

We begin with some general observations. Suppose that (M, F) is a weakly sym-

metric Finsler space. Let G̃ = I(M, F) be the full group of isometries and H̃ be the

isotropic subgroup at certain point x ∈ M. Then we can write M as G̃/H̃ and F can

be viewed as a G̃-invariant metric on G̃/H̃.

Lemma 4.1 The isotropic representation ρ of H̃ on Tx(M) is faithful, i.e., the mapping

ρ : h 7→ dh|x, h ∈ H̃ is one-to-one.

The proof is similar to the Riemannian case. Just note that an isometry sends a

geodesic to a geodesic and that M is homogeneous, hence complete. See [10].

Since M is connected, the identity component G of G̃ acts transitively on M. The

identity component H of H̃ is obviously equal to the isotropic subgroup of G at x.

Hence M = G/H and F can also be viewed as a G-invariant Finsler metric on G/H.

The two-dimensional case is settled by the following.

Theorem 4.2 Let (M, F) be a two-dimensional connected simply connected weakly

symmetric Finsler space. Then one of the following holds:
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(i) (M, F) is a reversible Minkowski space;

(ii) F is Riemannian and (M, F) is isometric to a globally symmetric Riemannian space

of rank 1.

In each case, (M, F) must be a globally symmetric Finsler space.

Proof Let G, H, ρ be as above. Then by Lemma 4.1 we have dim H = dim ρ(H).

Since ρ(H) is a compact group of linear transformations of Tx(M), dim ρ(H) ≤ 1.

Thus we have only two cases.

Case 1: ρ(H) is 0-dimensional. Then H = {e}. Hence M is itself equal to the Lie

group G. Then by Theorem 2.2 the Lie algebra g admits finitely many of automor-

phisms τ0(= id), τ1, τ2, . . . , τs such that for any Y ∈ g there exists an index jY such

that τ jY (Y ) = −Y . Let V j = {Y ∈ g | τ j(Y ) = −Y}. Then V j are subspaces of g

and we have g =
⋃

V j . Therefore there must be a j0 such that V j0
= g. Thus for any

X,Y ∈ g, we have

−[X,Y ] = τ j0
([X,Y ]) = [τ j0

(X), τ j0
(Y )] = [−X,−Y ] = [X,Y ].

This means that g is abelian. Hence G is a two-dimensional connected simply con-

nected commutative Lie group, i.e., G = R
2 (here R

2 is viewed as an additive group.)

Since F is invariant under G, we see that F is indeed defined by a Minkowski norm in

the canonical way. Hence in this case (M, F) is a reversible Minkowski space.

Case 2: ρ(H) is one-dimensional. Since ρ(H) is connected and compact, ρ(H) is

isomorphic to S1. Hence ρ(H) acts transitively on the indicatrix

Ix = {X ∈ Tx(M)| F(X) = 1}

of F at Tx(M). On the other hand, by the compactness of ρ(H) there exists a ρ(H)-

invariant inner product on Tx(M). So ρ(H) also acts transitively on the unit circle of

Tx(M) with respect to this inner product. Thus F|Tx(M) is a Euclidean norm. Since

(M, F) is homogeneous, F is Riemannian. Further, if p1, p2 are two points in M such

that d(x, p1) = d(x, p2), then we can select two unit vectors X1, X2 in Tx(M) such

that

p1 = Exp(tX1), p2 = Exp(tX2),

where t = d(x, p1). Since ρ(H) acts transitively on the unit circle of Tx(M), we

can choose h ∈ H such that ρ(h)(X1) = X2. Hence h(p1) = p2. This argument

and the fact that (M, F) is homogeneous imply that (M, F) is actually a two-point

homogeneous Riemannian manifold, i.e., for any two pairs of points (q1, q2) and

(q ′
1, q ′

2) in M satisfying d(q1, q2) = d(q ′
1, q ′

2) there exists an isometry f such that

f (q1) = q ′
1, f (q2) = q ′

2. By the classification results of H. C. Wang [21] and J.

Tits [20] on two-point homogeneous Riemannian manifolds, if (M, F) is not the

Euclidean space, then it must be a globally symmetric Riemannian manifold of rank

1. This proves the theorem.
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Next we consider the three-dimensional case. The situation here is much more

complicated. Let (M, F) be a three-dimensional connected simply connected weakly

symmetric Finsler space and let G̃, H̃, G, H, ρ be as above. Then ρ(H) is a connected

compact Lie subgroup of GL(Tx(M)). Hence it is a connected compact Lie sub-

group of SL(Tx(M)). By the conjugacy of maximal compact subgroup of semisim-

ple Lie groups [10], there exists an element g ∈ SL(Tx(M)) such that gρ(H)g−1 ⊂
SO(Tx(M))), where we have fixed an inner product in Tx(M) and SO(Tx(M)) is de-

fined as usual. Without loss of generality, we can assume that ρ(H) ⊂ SO(Tx(M)).

Hence there are only two cases,

Case 1: ρ(H) = SO(Tx(M)). In this case, H acts transitively on the indicatrix of F at

Tx(M). Similarly as in the two-dimensional case, we can prove that F is Riemannian

and (M, F) is isometric to a two-point homogeneous Riemannian manifold.

Case 2: ρ(H) 6= SO(Tx(M)). According to a result of Montgomery and Samelson

(see [21]), ON has no proper subgroup of dimension greater than 1
2
(N − 1)(N − 2),

where N > 2. In particular, SO(Tx(M)) has no proper subgroup of dimension

greater than 1
2
×2×1 = 1. Therefore we have either dim ρ(H) = 0 or dim ρ(H) = 1.

Next we tackle these two cases.

The case for dim ρ(H) = 0 is easy. In fact, we can proceed in exactly the same

way as in Theorem 4.2 to prove that in this case (M, F) is just a reversible Minkowski

space.

So we are left with the case for dim ρ(H) = 1. In this case, we need some com-

plicated reasoning and computation. Since ρ is a faithful representation, dim H = 1.

So in the weakly symmetric Lie algebra (g, h) we have dim h = 1. Let g = h + p

be the corresponding decomposition. As pointed out in the proof of Theorem 2.3,

there exists an inner product in p which is invariant under the actions of ρ(H) and τ j ,

j = 0, 1, 2, . . . , s, where T = {τ0, τ1, τ2, . . . , τs} is a reduced set of automorphisms

in Definition 2.1. Then for any Z ∈ h, ad Z is skew-symmetric with respect to this

inner product. Fix X 6= 0, X ∈ h. Then ad X|p must have 0 as an eigenvalue and

the corresponding eigenspace V0 is either one-dimensional or three-dimensional. If

dim V0 = 3, then g is the direct sum of the ideals h and p. Since ead tX acts as iden-

tity transformation on p for any t ∈ R, there must be a τi , 1 ≤ i ≤ s such that

τi(Y ) = −Y for any Y ∈ p. This means that for any Y1,Y2 ∈ p, we have

−[Y1,Y2] = τi ([Y1,Y2]) = [τi(Y1), τi(Y2)] = [−Y1,−Y2] = [Y1,Y2].

Hence p is an abelian ideal of g. If dim V0 = 1, then it is easily seen that there exists

a basis ε1, ε2, ε3 of p such that ad X has the matrix




0 0 0

0 0 1

0 −1 0





with respect to this basis.

Lemma 4.3 The reduced set T can be selected to consist of only two automorphisms τ0

(= id), τ1. Moreover, τ1(ε1) = −ε1.
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Proof First, there exists an index j0 and t ∈ R such that

(∗) et ad Xτ j0
(ε1) = −ε1.

Then we assert that τ j0
(ε1) = −ε1. In fact, if τ j0

(ε1) = aε1 + bε2 + cε3, where

ε = bε2 + cε3 is a non-zero vector in V = span(ε2, ε3), then ε ′
= et ad X(ε) is also

a non-zero vector in V . But −ε1 = et ad Xτ j0
(ε1) = aε1 + ε ′. This contradicts the

assumption that ε1, ε2, ε3 is a base of p. Hence τ j0
(ε1) = aε1. Substituting this into

(∗) yields a = −1. This proves the lemma.

Now we will proceed to give a classification of the weakly symmetric Lie algebras

corresponding to three-dimensional weakly symmetric Finsler spaces in the case of

dim H = 1 and dim V0 = 1.

The Lie algebra g has a basis X, ε1, ε2, ε3 where X spans h and ε1, ε2, ε3 span p.

Moreover, we know the following brackets:

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

Also, the automorphism τ1 keeps the subspaces h and p. So τ1(X) = dX, d ∈ R.

Since τ1 keeps the inner product invariant and τ1(ε1) = −ε1, τ1 must keep the space

V = span(ε2, ε3) invariant and τ1|V is an orthogonal linear transformation with

respect to the inner product. Hence τ1|V has the matrix

(

cos θ sin θ
− sin θ cos θ

)

or

(

− cos θ − sin θ
− sin θ cos θ

)

, θ ∈ R

with respect to the base ε2, ε3.

To determine the structure of the Lie algebra g, we only need to determine the Lie

brackets [εi, ε j], where i = 1, 2, 3. Taking into account the skew-symmetry of the Lie

bracket, we are to determine [ε1, ε2], [ε1, ε3], [ε1, ε3].

By the Jacobi identity, we have

[X, [ε1, ε2]] = [[X, ε1], ε2] + [ε1, [X, ε2]].

Thus

(4.1) [X, [ε1, ε2]] = −[ε1, ε3].

Similarly, we have

(4.2) [X, [ε1, ε3]] = [ε1, ε2].

Since [h, g] ⊂ p, we have [ε1, ε2] ∈ p and [ε1, ε3] ∈ p. Suppose

[ε1, ε2] = aε1 + bε2 + cε3.

Then by (4.1) we have [ε1, ε3] = −cε2 + bε3. Substituting this into (4.2) yields

[ε1, ε2] = bε2 + cε3.
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Therefore a = 0. Now from

[X, [ε2, ε3]] = [[X, ε2], ε3] + [ε2, [X, ε3]] = [−ε3, ε3] + [ε2, ε2] = 0,

we easily see that [ε2, ε3] ∈ span(X, ε1). Therefore we can write

[ε2, ε3] = a1X + a2ε, a1, a2 ∈ R.

First we consider the case that τ1|V has the matrix

(

− cos θ − sin θ
− sin θ cos θ

)

, θ ∈ R

with respect to the basis ε2, ε3. Since τ1 is an automorphism, we have

−τ1(ε3) = τ1([X, ε2]) = [τ1(X), τ1(ε2)] = d[X, τ1(ε2)].

Thus (sin θ)ε2 − (cos θ)ε3 = −d(sin θ)ε2 + d(cos θ)ε3. This implies that

d cos θ = − cos θ, d sin θ = − sin θ.

Thus d = −1.

Next applying τ1 to both sides of [ε1, ε2] = bε2 + cε3, we get

(b cos θ−c sin θ)ε2 +(c cos θ+b sin θ)ε3 = (−b cos θ−c sin θ)ε2 +(c cos θ−b sin θ)ε3.

Therefore we have b cos θ = 0, and b sin θ = 0. Thus b = 0.

What we have obtained about the Lie brackets of the Lie algebra g can be summa-

rized as

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2,

[ε1, ε2] = cε3, [ε1, ε3] = −cε2, [ε2, ε3] = a1X + a2ε1,

where c, a1, a2 are real numbers. If a1 6= 0, we set

ε ′
1 = X +

a2

a1
ε1 and p ′

= span(ε ′
1, ε2, ε3).

Then we have g = h + p ′, [h, p ′] ⊂ p ′. Also the above brackets are still valid and the

action of τ1 on p ′ is the same as on p with respect to the basis ε ′
1, ε2, ε3 and ε1, ε2, ε3.

Thus we can assume that a1 = 0. Now we have the following five cases.

Case 1: a2 = 0. In this case, we set ε ′ ′
1 = cX + ε1, p ′ ′

= span(ε ′′
1 , ε2, ε3). Then

g = h + p ′ ′ and it is easy to check that p ′′ is an abelian ideal of g and the action of X

on p ′ ′ is

[X, ε ′′
1 ] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.
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Case 2: a2 6= 0 and c = 0. Without loss of generality, we can assume that a2 = 1

(otherwise, we use a2ε1 to substitute ε1). Then p is a three-dimensional Heisenberg

Lie algebra ([ε1, ε2] = [ε1, ε3] = 0, [ε2, ε3] = ε1), and the action of X is

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

Case 3: a2c > 0. Set ε ′
1 =

2
c
ε1,ε ′

2 =
2√
a2c

ε2, 2√
a2c

ε3. We get

[ε ′
1, ε

′
2] = 2ε ′

3, [ε ′
1, ε

′
3] = −2ε ′

2, [ε ′
2, ε

′
3] = 2ε ′

1.

Thus p is an ideal of g which is isomorphic to the (real) compact simple Lie alge-

bra su(2) of all skew-Hermitian traceless complex matrices. For simplicity, we just

suppose p = su(2). Let

H1 =

(

0 1

−1 0

)

, X1 =

(

0
√
−1√

−1 0

)

, Y1 =

(√
−1 0

0 −
√
−1

)

be the standard basis of su(2). Then

[H1, X1] = 2Y1, [H1,Y1] = −2X1, [X1,Y1] = 2H1.

And the action of X on p is

[X, H1] = 0, [X, X1] = −Y1, [X,Y1] = X1.

Case 4: a2c < 0. Similarly as in Case 3, we can prove that p is an ideal of g which is

isomorphic with the real simple Lie algebra sl(2, R) of traceless 2 × 2 real matrices.

Let

H2 =

(

0 1

−1 0

)

, X2 =

(

1 0

0 −1

)

, Y2 =

(

0 1

1 0

)

.

Then H2, X2,Y2 form a basis of p and

[H2, X2] = −2Y2, [H2,Y2] = 2X2, [X2,Y2] = 2H2.

The action of X on p is

[X, H2] = 0, [X, X2] = −Y2, [X,Y2] = X2.

It remains to consider the case in which the restriction to V = span(ε2, ε3) of the

automorphism τ1 has the matrix

(

cos θ sin θ
− sin θ cos θ

)

, θ ∈ R
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with respect to the basis ε2, ε3. In this case, applying τ1 to both sides of

[ε1, ε2] = bε2 + ε3

we get

b cos θ + c sin θ = 0, −b sin θ + c cos θ = 0.

Therefore we have b = c = 0. Thus [ε1, ε2] = [ε1, ε3] = 0. If [ε2, ε3] = 0, then

g is abelian. Otherwise, we can assume that [ε2, ε3] = ε1 (see Case 2 above), so p is

a Heisenberg Lie algebra. From this we see that no new structure will appear in this

case.

Combining the above analysis with the examples in Section 3, we have the follow-

ing.

Theorem 4.4 Let (g, h) be a Riemannian weakly symmetric Lie algebra with dim h =

1 and dim g = 4. Then (g, h) must be one of the following:

(i) g is an abelian Lie algebra. In this case the reduced set of automorphisms can be

chosen to be {id,− id}.

(ii) g has a decomposition g = h + p (direct sum), where p is an abelian ideal of g and

we can select a base X of h and ε1, ε2, ε3 of p such that

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

In this case, the reduced set of automorphisms can be chosen to be {id, τ1}, where

τ1 is defined by

τ1(X) = −X, τ1(ε1) = −ε1, τ1(ε2) = −ε2, τ1(ε3) = ε3.

(iii) g has a decomposition g = h + su(2) (direct sum), where su(2) is an ideal of g. In

this case, let

ε1 =

(

0 1

−1 0

)

, ε2 =

(

0
√
−1√

−1 0

)

, ε3 =

(√
−1 0

0 −
√
−1

)

be the standard basis of su(2). Then the action of a nonzero vector X of h on su(2)

is

[X, ε1] = 0, [X, ε2] = −ε3, [X, ε3] = ε2.

The reduced set of automorphisms can be chosen the same as case (ii).

(iv) g has a decomposition g = h + sl(2, R) (direct sum), where sl(2, R) is an ideal of

g. In this case, let

ε1 =

(

0 1

−1 0

)

, ε2 =

(

1 0

0 −1

)

, ε3 =

(

0 1

1 0

)

.

be the standard basis of sl(2, R). Then the action of a nonzero vector X of h on

sl(2, R) is the same as in the case (iii). The reduced set of automorphisms can be

chosen the same as case (ii).
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(v) g has a decomposition g = h + n (direct sum), where n is an ideal of g and can be

identified with the three-dimensional Heisenberg Lie algebra consisting of the real

matrices




0 a c

0 0 b

0 0 0



 , a, b, c ∈ R.

Let

ε1 =





0 0 1

0 0 0

0 0 0



 , ε2 =





0 1 0

0 0 0

0 0 0



 , ε3 =





0 0 0

0 0 1

0 0 0





be the standard basis of n. Then the action of a nonzero vector X of h on n is the

same as in the case (iii). The reduced set of automorphisms can be chosen the same

as case (ii).

Using Theorem 4.4, we can give the classification of three-dimensional weakly

symmetric Finsler spaces.

Theorem 4.5 Let (M, F) be a three-dimensional connected simply connected weakly

symmetric Finsler space. Then one of the following holds:

(i) (M, F) is a (reversible) globally symmetric Finsler space.

(ii) M is the compact simple Lie group SU(2) and F is a left invariant Finsler metric

on M. The restriction of F at the unit element of M is a reversible Minkowski norm

on the Lie algebra su(2) satisfying

(∗∗)

{

F(aε1 + bε2 + cε3) = F
(

aε1 + (b cos θ + c sin θ)ε2 + (c cos θ − b sin θ)ε3

)

F(y, y) 6= d
√

−B(y, y), ∀d > 0

where ε1, ε2, ε3 are the basis as in Theorem 4.4(iii) and a, b, c, θ are arbitrary

real numbers. In this case, there are infinitely many Riemannian metrics as well

as infinitely many non-Riemannian Finsler metrics. All these metrics are non-

symmetric.

(iii) M is the universal covering group of SL(2, R) and F is a left invariant Finsler metric

on the Lie group M. The restriction of F at the unit element e of M is a reversible

Minkowski norm on the Lie algebra sl(2, R) satisfying

F(aε1 + bε2 + cε3) = F(aε1 + (b cos θ + c sin θ)ε2 + (c cos θ − b sin θ)ε3),

where ε1, ε2, ε3 are the basis as in Theorem 4.4(iv) and a, b, c, θ are arbitrary real

numbers. In this case, there are infinitely many Riemannian metrics as well as

infinitely many non-Riemannian Finsler metrics. Further, all these metrics are

non-symmetric.

(iv) M is the three-dimensional Heisenberg Lie group





1 x z

0 1 y

0 0 1



 , x, y, z ∈ R.
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F is a left invariant Finsler metric on M. The restriction of F at the unit element

e of M is a reversible Minkowski norm on the three-dimensional Heisenberg Lie

algebra satisfying

F(aε1 + bε2 + cε3) = F(aε1 + (b cos θ + c sin θ)ε2 + (c cos θ − b sin θ)ε3),

where ε1, ε2, ε3 are the basis as in Theorem 4.4(v) and a, b, c, θ are arbitrary real

numbers. In this case, in the sense of isometric diffeomorphism, there exists a

unique (up to a positive scalar) Riemannian metric but there are infinitely many

non-Riemannian Finsler metrics. All these metrics are non-symmetric.

Proof Let (M, F) be a three-dimensional connected and simply connected weakly

symmetric Finsler space. As before let G̃ be the full group of isometries and H̃ the

isotropic subgroup at a fixed point in M. Let H, G be the identity component of H̃,

G̃, respectively. Then, as we have pointed out, dim H = 0, 1, or 3. If dim H = 3,

then (M, F) is a two-point homogeneous Riemannian manifold. If dim H = 0, then

M itself is a commutative Lie group. Hence (M, F) is just a reversible Minkowski

space. If dim H = 1, then by Theorem 2.2, we see that (g, h), where g = Lie G,

h = Lie H, is a Riemannian weakly symmetric Lie algebra. By Theorem 4.4, there are

only five kinds of structures for (g, h). In the case (i), (M, F) is obviously a reversible

Minkowski space. Therefore we only need to consider the cases (ii)–(v).

We first consider the case (ii). Let P be the connected Lie subgroup of G with Lie

algebra p. Then P is a commutative normal subgroup of G and G is the semiproduct

of H and P. Hence the coset space M = G/H is diffeomorphic with the Lie group

P. This means that P is a connected simply connected commutative Lie group, i.e.,

P = R
3 (as an additive group). Thus (M, F) must be the Euclidean space R

3 endowed

with a reversible Minkowski norm which is invariant under the actions of H̃ and τ1.

Hence it is a globally symmetric Finsler space.

Next we consider the case (iii). Similarly as in the case (ii), we see that (M, F)

must be a left invariant Finsler metric on the Lie group SU(2) whose restriction

on the tangent space at the unit element (= su(2)) is invariant under the actions

of H̃ and τ1. In particular, it is invariant under the action of H. Hence F satis-

fies (∗∗). On the other hand, by Proposition 1.5, any Minkowski norm on su(2)

satisfying (∗∗) defines a weakly symmetric left invariant Finsler metric on SU(2).

However, if F(y) = d
√

−B(y, y) for some positive number d, then this metric is

globally symmetric and the isotropic subgroup at e contains Ad(SU(2)), which is

three-dimensional. Therefore the corresponding weakly symmetric Lie algebra can-

not be the type (iii). Hence F(y) 6= d
√

−B(y, y) for any positive number d. It is

easily seen that among these metrics there are infinitely many Riemannian ones as

well as non-Riemannian ones. Finally, if one of such metrics is (globally) symmetric,

then the Lie group pair (G̃, H̃) is a Riemannian symmetric pair. (For the Riemannian

case, this can be found in [10]. For the general case, see [8]). Thus the Lie algebra pair

(g, h) is an orthogonal symmetric Lie algebra [10]. But this is impossible, because in

an orthogonal Lie algebra we have [p, p] ⊂ h and in our case we have [p, p] ⊂ p.

Thus all the metrics in this case are non-symmetric.

The above arguments are all valid in the case (iv) except the proof that such metrics

are non-symmetric. Now we proceed as follows. If one of such metrics on the univer-
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sal covering of SL(2, R) is symmetric. Then as in the case (iii), the isotropic subgroup

at the unit element must be three-dimensional, otherwise it will contradicts the fact

that (g, h) cannot be an orthogonal symmetric Lie algebra. If the isotropic group is

three-dimensional, then the space (M, F) is a two-point homogeneous Riemannian

manifold. Hence it is a simply connected non-compact symmetric space of rank 1,

i.e., it is the three-dimensional hyperbolic space. In particular, it is a homogeneous

Riemannian space of negative constant curvature −1. Now we can deduce a contrac-

tion as follows. Note that the Lie group SL(2, R), endowed with the left invariant Rie-

mannian metric Q whose restriction at e satisfying F(Y ) =
√

Q(Y,Y ), Y = sl(2, R),

is locally isometric to (M, F). Hence (SL(2, R), Q) is of constant curvature −1. This

is impossible, because a classical result of S. Kobayashi asserts that a homogeneous

Riemannian manifold of strictly negative curvature is necessarily simply connected

[11]. This completes the proof for the case (iv).

Finally, for the case (v), the assertion that the weakly symmetric Riemannian met-

ric is unique up to positive factor follows from the fact that on the three-dimensional

Heisenberg Lie group any two left-invariant Riemannian metric are isometric (up to

a positive factor). See [4], where it was also proved that this metric is not symmet-

ric. But then any of the non-Riemannian ones cannot be symmetric. Otherwise a

contraction will arise in both the cases for the dimension of isotropic subgroup is 2

(the Lie algebra pair (g, h) cannot be an an orthogonal symmetric Lie algebra) or is 3

(Riemannian metric).

5 An Open Problem of Z. Shen

Z. Shen posed the following open problem. Is there any reversible non-Berwaldian

Finsler space with vanishing S-curvature? We explain here the merits of this problem.

The notion of S-curvature of a Finsler space was introduced by Z. Shen [17]. It is a

quantity to measure the rate of change of the volume form of a Finsler space along

the geodesics. Shen showed that the Bishop–Gromov volume comparison theorem is

true for a Finsler space with vanishing S-curvature. It is therefore important to find

examples of Finsler spaces with vanishing S-curvature. He proved that every Berwald

space has vanishing S-curvature. More recently Shen pointed out that there exists

Randers spaces (which are automatically non-reversible) that are non-Berwaldian but

with vanishing S-curvature. Hence it is a natural problem to ask whether there exists

any reversible non-Berwaldian Finsler space with vanishing S-curvature.

In our previous paper, we showed that the non-Riemannian reversible Finsler

metrics constructed in Theorem 4.5(ii) satisfy the conditions. In this section, we will

show that this is also the case for the non-Riemannian Finsler metrics constructed in

Theorem 4.5(iii) or (iv). Thus reversible non-Berwaldian Finsler spaces with vanish-

ing S-curvature may exist at large.

First of all, any maximal (constant speed) geodesic in a weakly symmetric Finsler

space must be the orbit of a one-parameter subgroup of the full group of isometries.

This fact can be proved in exactly the same way as in the Riemannian case (see [3,9]).

This implies that the S-curvature of any Finsler metrics constructed in Theorem 4.5

vanishes [9]. Thus we only need to prove that the non-Riemannian metrics in (ii),

(iii) or (iv) must be non-Berwaldian.
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In [9], we presented a proof for the case (ii). Here we can give a simpler and more

direct proof which is also valid for other cases. Suppose that F is a non-Riemannian

metric constructed in Theorem 4.5(ii), (iii), or (iv). If F is Berwaldian, then the linear

connection ∇ of F is also the Levi–Civita connection of a Riemannian metric g on

M (see [19]). Then by the main theorem of [19], the connection ∇ must be either

holonomy reducible or the connection of a globally Riemannian symmetric metric

of rank ≥ 2. In Theorem 4.5, we have pointed out that such metrics are not symmet-

ric. Hence ∇ must be holonomy reducible. According to the generalized de Rham

decomposition theorem for Berwald spaces [19], (M, F) can be written as the prod-

uct of irreducible Berwald spaces. In particular, (M, F) can be written as the prod-

uct of a (reversible) one-dimensional Berwald space (M1, F1) and a reversible two-

dimensional Berwald space (M2, F2). It is then obvious that (M1, F1) and (M2, F2)

are totally geodesic submanifolds of (M, F), hence they are both weakly symmetric.

The one-dimensional reversible Berwald space (M1, F1) is obviously globally sym-

metric. Further, by the classification Theorem 4.2, we conclude that (M2, F2) is also

a globally symmetric (reversible) Berwald space. Therefore, (M, F) is a globally sym-

metric Berwald space. This is a contradiction with the conclusions in Theorem 4.5.
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