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Abstract
Bipartite networks represent pairwise relationships between nodes belonging to two distinct classes. While
established methods exist for analyzing unipartite networks, those for bipartite network analysis are
somewhat obscure and relatively less developed. Community detection in such instances is frequently
approached by first projecting the network onto a unipartite network, a method where edges between node
classes are encoded as edges within one class. Here we test seven different projection schemes by assessing
the performance of community detection on both: (i) a real-world dataset from social media and (ii) an
ensemble of artificial networks with prescribed community structure. A number of performance and accu-
racy issues become apparent from the experimental findings, especially in the case of long-tailed degree
distributions. Of the methods tested, the “hyperbolic” projection scheme alleviates most of these difficul-
ties and is thus the most robust scheme of those tested. We conclude that any interpretation of community
detection algorithm performance on projected networks must be done with care as certain network con-
figurations require strong community preference for the bipartite structure to be reflected in the unipartite
communities. Our results have implications for the analysis of detected community structure in projected
unipartite networks.

Keywords: bipartite networks; unpartite projection; community detection; edge weighting

1. Introduction
Bipartite networks are a useful representation ofmany real-world systems where well-defined rela-
tionships exist between two distinct classes of nodes, such as scientific papers and their authors,
or digital media and the people who share it. The complexity and relative obscurity of methods
to analyze bipartite networks lead to frequent use of a unipartite projection of the system, so that
more established unipartite methods can be applied (e.g. Alzahrani & Horadam, 2014; Del Vicario
et al., 2017; Newman, 2001). Another motivation for such analysis arises in situations where one
class of nodes is used only to infer relationships between the other through projection (such as
applying a network of users and reviews to identify groups of review spammers, Wang et al.,
2016). Unipartite projection encodes the edges between the two modes as a new network with
only the nodes from a single mode, where nodes with a shared neighbor in the bipartite network
are now directly connected. A cornerstone assumption is that the projected network retains key
relationships such that community detection algorithms are able to capture structures which are
meaningful in the bipartite context.

There are three main reasons for the use of unipartite projection in the study of bipartite net-
works. First, methods for directly analyzing bipartite networks are limited in their scalability and
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their availability. Such methods, specifically designed to account for the additional complexities
inherent in bipartite networks, are not widely included in popular network analysis packages and
where such tools do exist they are not as capable of handling the large-scale datasets of modern
network science. Taking the unipartite projection allows scientists to leverage the existing toolk-
its for unipartite networks. It is worth mentioning that it is possible to apply unipartite methods
to bipartite networks by effectively discarding their bipartite structure. In the case of commu-
nity detection, this approach is less accurate than using projection-based or bipartite methods
(Arthur, 2019), but does present an alternative means of handling large bipartite networks. In
addition, direct application to bipartite networks violates the assumption of edge independence
in the definition of modularity (Newman, 2006). The remaining two points motivating the use
of unipartite projection are best framed within use cases. In many experimental settings, one of
the two bipartite modes is the primary focus. For example, given a network of authors and pub-
lications, we may study coauthorship using publications solely to infer edges between authors.
Hence, projecting the network focuses on the specific area of interest. This ties closely into the
final reason to consider how unipartite projection affects community structure—some unipartite
networks are implicitly projections of some hidden bipartite network. Consider again the coau-
thorship network. At first glance this is a unipartite network, but it is in fact an implicit projection
of a bipartite network between scholars and the institutions and events they have visited—it is
very unlikely for coauthorship to arise without such a meeting.

In our previous work, we studied the efficacy of bipartite community detection using unipar-
tite projections (Cann et al., 2019), constructing an ensemble of synthetic bipartite networks with
imposed community structure and attempting to recover the structure from unipartite projec-
tions made with four candidate projection schemes. Here we extend our previous assessment by
including three additional unipartite projection schemes. We also present a comparison of com-
munities found using the seven projection methods applied to a real-world dataset, in this case
a bipartite network linking web pages (URLs) to the Twitter users who shared them during one
week of conversations about climate change.

Several community detection methods have been shown to be effective at partitioning small
bipartite networks; Barber (2007) adapts the null model used to compute modularity (Newman,
2006) on unipartite networks to the bipartite case to account for the additional requirement
that the vertices incident to each edge must be in different modes. Beckett (2016) reports other
approaches, including weighted bipartite modularity maximization. However, optimization of
bipartite modularity (e.g. through implementations such as the MODULAR package (Marquitti
et al., 2014) or those reported by Beckett (2016)) is computationally demanding and may be of
limited use on large networks, such as those from online social media. Beyond algorithms using
a modularity maximization approach, efforts have been made to extend stochastic block model
(SBM) methods to bipartite networks. Larremore et al. (2014) and more recently Wyse et al.
(2017) have demonstrated that enforcing the two node types required of a bipartite network allows
the discovery of meaningful community structure. Many of these bipartite community detection
methods find clusters which contain only a single node type and as such there are no edges within
each community. This behavior is advantageous since it allows different numbers of communities
to be found in each mode with many-to-one correspondences between them, but counterintuitive
from the perspective of unipartite communities. Despite the quality improvements achieved using
bipartite community detection methods, they are less widely implemented in network analysis
packages, furthering the appeal of unipartite projections.

Bipartite networks are an intuitive representation of social media activity, such as where
Del Vicario et al. (2017) examine how Facebook users interact with information related to the
2016 EU Referendum in the UK as two network modes. By computing the unipartite projection
onto page nodes, they identify communities of pages within which groups of usersmore frequently
interact. Schmidt et al. (2017) use a similar methodology to identify and explore the user groups
formed around frequent likes or comments on the same Facebook content. Twitter is another
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platform readily studied using the unipartite projection approach. Williams et al. (2016) explore
behavior patterns amongst Twitter users and the news articles they share through a projection
onto the article network. Analysis of this projected network found communities of news domains
that were frequently shared by the same users.

Such analysis is also suited to physically embedded networks such as where Chen et al. (2007)
study one representation of the Chinese bus transport network as the projection onto both modes
of a stop-route network. Srivastava et al. (2013) apply projection to bipartite networks of doc-
uments and terms to find clusters of similar documents. They use a threshold approach for
the unipartite edges, discarding those that have a weight lower than a fixed value. Alzahrani &
Horadam (2014) apply unweighted projections to two crime-related networks, finding a topo-
graphical division between urban and rural municipalities when looking at crime in New South
Wales, Australia, and communities encompassing training links in a terrorist-activity network.
Isah et al. (2015) study the network of people and crimes to find different types of organisational
structures among perpetrators. Yan & Ding (2012) study various networks arising from author-
ship and citation behaviors and assess the similarity between topic, coauthorship, and citation
networks.

These are all examples where a bipartite network is explicitly projected, but numerous other
studies encode this process in the network construction such as Starbird (2017) who studies
alternative news domains shared by Twitter users around mass shooting events. Newman (2006)
considers book co-purchases when testing a spectral method for community detection, which is an
implicit projection of the user-item network. The design choices implicit in construction of these
unipartite networks are subject to the same biases and pitfalls inherent in projection schemes.

Although unipartite projection and community detection see frequent use in empirical work,
limited theoretical study has been devoted to how the community structure in a projected net-
work relates to the community structure in the original bipartite network. Everett & Borgatti
(2013) show that while unipartite projection onto a given mode results in a loss of information
(since encoding one class of nodes as edges between the other is generally not reversible), it is
possible to derive meaningful results by considering projections onto each mode simultaneously.
Melamed (2014) takes the concept of dual-projection to refine the community detection process
on the bipartite networks by incorporating information from both unipartite projections. Arthur
(2019) extends this through a comparison of modularity metrics by including a novel modularity
formulation that accounts for structure in the bipartite network. As noted by Newman (2001),
high-degree nodes in a bipartite network contribute a disproportionate number of edges to the
corresponding unipartite projection; a node of degree k contributes of the order k2 edges to the
projection. Certainly, we must be careful when weighting these edges. Guimerà et al. (2007) define
a model to generate bipartite networks with a fixed community structure, where the parameter p
denotes the fraction of network edges which join nodes within prescribed communities. They
also adapt the standard definition of modularity to better reflect bipartite network structure, and
test this against weighted and unweighted projections. The key finding is that in some cases both
unipartite and bipartite modularity have similar performance. Bongiorno et al. (2017) incorpo-
rate statistically validated networks into the community detection process by finding stable cores
within bipartite communities. Li & You (2013) examine whether any network metrics are affected
by the unipartite projection process and find that certain metrics such as clustering coefficient
vary with projection scheme, while degree correlation does not.

A common first step in constructing a unipartite projection is to filter out low-weight edges
such as by establishing a threshold and removing those that do not meet a specified criteria, a
step which can be very helpful computationally by dramatically reducing the edge density in the
projection. Sasahara (2016) constructs word association networks by calculating cosine similarity
between word contexts and retaining only those edges that exceed a given weighting threshold.
Other methods compute edge significance relative to a null model to determine which edges to
keep. Grinberg et al. (2019) find networks of news sources which are visible to the same people
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on social media through a multiscale backbone approach. Saracco et al. (2017) make use of expo-
nential random graph models to determine statistical significance of the edges in the unipartite
projection, and retain only those edges that satisfy a given significance threshold. Thresholding
methods can have merit in certain use cases, but as with bipartite community detection methods,
they are often not included in the most widely used libraries. Another potential issue with how
these methods have been used in the past is the binarizing of the remaining edge weights. While
the use of thresholding is likely to increase accuracy over the case of a fully binarized projection,
the loss of information in the significant edge weights is not to be overlooked. The final concern
with removing edges given some thresholding criteria is fragmentation in the network. Many
applications of bipartite network projection consider only the giant component, and if sufficient
fragmentation occurs, it is likely that the size of the giant component will no longer be comparable
to the size of the whole network.

Themethods described so far have found particularly strong purchase in the study of social sys-
tems such as online social media and scientific collaboration. Along with many natural systems,
the networks in such studies often have degree distributions with a long tail, where a small number
of profoundly well-connected nodes exist in a sea of low-degree nodes. The popularity and success
of this approach on these systems suggests that these properties are beneficial to established meth-
ods, although careful consideration needs to be given to how the properties of the bipartite degree
distribution influence the structure of the projected unipartite network and the performance of
community detection methods.

In this study, we consider a range of network and projection types under community detection,
and evaluate the quality of the output against prescribed communities. Networks are differentiated
by their degree distributions, selected to include those characterized by geometric-, binomial-, and
zeta-like tails and the spread of edges within and between prescribed communities. Unipartite
projections are taken using seven different edge weighting schemes, before testing the ability of
unipartite community detection algorithms to recover bipartite community structure. We first
illustrate the different outcomes associated with each projection scheme applied to a real-world
bipartite network.We next perform amore rigorous test that seeks to recover bipartite community
structure after unipartite projection of a series of synthetic networks with imposed community
preference. In Section 2, we detail the real-world dataset studied, the network model used to sam-
ple synthetic networks, the seven projection weighting schemes used, and the metrics by which
we measure community detection performance. Section 3 presents the results of our experiments,
and Section 4 discusses their consequences.

2. Methods
This section begins by explaining the methodology to construct and study a network from a
Twitter dataset. Also in this section, we outline a model for generating random bipartite networks
with a prescribed community structure and distinct degree distributions. Seven different weight-
ing schemes are described for use in unipartite projections, and finally we outline the process for
computing and evaluating the accuracy of community detection on these network projections.
We use left and right as generic labels for our bipartite modes throughout this paper. The results
from these methods are presented in Section 3.

2.1 Real-world dataset
For our study of how the different projection weighting schemes affect real-world networks, we
make use of a Twitter dataset to construct a bipartite network between users and the URLs they
share. The dataset was gathered from the Twitter Streaming API1 using the search terms climate
change and global warming for a one week period between May 31 and June 06, 2017. We keep
only those tweets containing URLs which can be resolved and remove any user that shared URLs
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more than 50 times during the week as a likely automated account such as news aggregators.
Finally, we apply a disambiguation step to URLs by following any permanent redirects to reveal
the destination of masked URLs, such as those from link shortening services. This leaves a dataset
of 187, 378 tweets by 54, 347 users sharing 20, 880 distinct URLs.

From this dataset, we construct a bipartite network linking user nodes to URL nodes, adding
an edge whenever the user includes the URL in one of their tweets. Edge weights are assigned
as the number of times a user shared the same URL. This gives a bipartite network with 80, 009
edges (numbers of user and URL nodes as above). We restrict to the giant component for all
further analyses, which contains 7, 496 URL nodes, 42, 113 user nodes, and 63, 755 edges. Taking
the projection onto the URL nodes of the giant component gives a unipartite network with 53, 652
edges.

2.2 Synthetic bipartite networks
2.2.1 Generative bipartite network model
Many different methods can be developed for producing synthetic bipartite networks; free vari-
ation of network statistics such as edge density, degree distribution, and vertex correlation may
result in a wide range of structures and behaviors. Our model was designed to minimize the num-
ber of assumptions made by prescribing only the degree distribution and the vertex correlations
required to impose community structure on the network. Even in this case of limited assumptions,
there are many candidate degree distributions to choose from. Here we construct a generative
model motivated by a simple physical interpretation, described in detail by Weaver (2015).

If we consider a growth process, we add new vertices at a constant rate, with a number of inci-
dent edges governed by preferential attachment. A parameterm determines the level of preference
for high-degree nodes in the assignment of new edges. We study two cases:m→ ∞ (no preferen-
tial attachment) and finite m (a strong preference for high-degree vertices). Without preferential
attachment, the growth process still produces an interesting degree distribution. The main differ-
ence between the two cases is that preferential attachment yields a zeta distribution (or colloquially
a “power law”) as vertex degree k increases in the tail of the distribution. Preferential attachment
therefore leads to the formation of extremely well-connected vertices, a feature typical of self-
organizing structures in nature and human society (Newman, 2005). Real-world phenomena, such
as the distribution of page interactions on Facebook (Del Vicario et al., 2017), are well represented
by this model. With no preferential attachment, a geometric degree distribution emerges. These
two cases for m enable a comparison of how heavy-tailed distributions of different types interact
with the projection process.

Previous work by Weaver (2015) derived the steady-state degree distribution of randomly
grown networks under different preferential attachment conditions as:

pmf(k)= m+ δ

m(δ + 1)+ 1
(m)(m

δ
+2)

(m+ k)(m
δ
+2)

(1)

making use of the Pochhammer notation (a)b = a(a+ 1)...(a+ b− 1). The parameter δ defines
the number of edges incident to each newly added vertex. In the case δ =m= 4, this simplifies
(for sufficiently large k) to pmfzeta(k)∼ k−3, that is, a zeta distribution representing preferential
attachment. Setting m→ ∞ and δ = 4 gives pmfgeo(k)= 1

5
( 4
5
)k, that is, a geometric distribution

from growth without preferential attachment. In contrast to these physically motivated models,
we provide an Erdös–Renyi bipartite graph for comparison, with degree distribution given by
pmfbin(k)= ( δN

k )N−k (
1− 1

N
)δN−k. Figure 1 plots each of these degree distributions.

After choosing a degree distribution, construction of a random network begins by assigning the
number of vertices in the left and right modes, Nl =Nr =N, respectively, and sampling degrees
from the distribution for each vertex. In all cases, both bipartite modes sample from the same
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Figure 1. The three degree distributions used
in the generative model. Each distribution has
identical mean 〈k〉 = 4, but vary in the weight of
the tail as k increases.

Bipartite p= 0.2 Bipartite p= 0.8

Unipartite p= 0.2 Unipartite p= 0.8

(a) (b)

(c) (d)

Figure 2. The giant components of bipar-
tite networks produced by a single network
instance of 104 nodes with average degree
2 divided into M= 5 communities along with
their unipartite projections: (a), (c) have low
community preference p= 0.2, while (b), (d)
use high community preference, p= 0.8. Node
colors indicate community assignment. The
dramatic increase in edge density across the
projection process can be seen by the relative
intensity of black edges in (c), (d). Networks
are visualized using Gephi with layout deter-
mined by the ForceAtlas2 algorithm (Jacomy
et al., 2014).

degree distribution. Edge creation is performed by randomly selecting pairs of nodes, choosing
one from each mode weighted by their unassigned degree. We impose community structure fol-
lowing the method of Guimerà et al. (2007) by defining a partition of the vertices into M equally
sized communities before assigning edges, with a one-to-one correspondence between the com-
munities in each mode. We define a parameter p to fix the probability of an edge connecting
two vertices in the same community, with complementary probability 1− p of connecting ver-
tices regardless of their assigned communities. Notably, the proportion of edges joining vertices
in the same community is not simply p, but p+ (1−p)

M , which varies from 1
M → 1 as p varies over

0→ 1. Many vertices have degree k= 0, a characteristic frequently mirrored in real-world cita-
tion networks (Larivière et al., 2009). We discard isolated nodes before continuing our analysis.
Sample network giant components produced by this model, and their projections, can be seen in
Figure 2.
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2.2.2 Producing an ensemble of synthetic networks
In order to study the expected behaviour of different projection weighting schemes under commu-
nity detection, we construct an ensemble of synthetic networks with known community structure
as outlined in Section 2.2.1. Each network consisted of N = 106 nodes (in each mode) divided
into M = 5 communities. For each degree distribution, we fix the expected node degree to be 4,
giving approximately 4× 106 edges in each synthetic network. For each value of the community
preference parameter p ∈ {0, 0.1, 0.2, . . . , 1}, networks are generated for each degree distribution
outlined by Figure 1. We present our results as averages over 100 network realizations for each
combination of projection weighting, degree distribution, and community preference p.

2.3 Unipartite projection and edge-weighting schemes
Taking the unipartite projection produces an edge between each node pair of the chosen class
with at least one shared neighbor in the other class. A key part of this process is how edge weights
are calculated in the projection; approaches can be as simple as recording presence of a mutual
neighbor or as complex as nonlinear weighting from the overlap of the neighborhood sets. Each
of the weightings outlined below has been designed to work with both weighted and unweighted
bipartite networks. In practice, however, the bipartite networks tested (both empirical and syn-
thetic) have primarily binary edges, that is, the proportion of edges with weights larger than one
is small. Here we detail seven weighting schemes for edges in the unipartite network which will be
tested against the quality of unipartite community detection relative to different levels of bipartite
network structure. As outlined here, the methods describe projection onto the right nodes, but
apply equally to the left nodes under suitable transposition. Given this flexibility in application,
the choice of which projection to use is circumstantial and depends on the research question. In
our case, the choice is arbitrary; the generative model produces networks with statistically sym-
metric modes and hence statistically symmetric projections. In an experimental setting, it is often
clear which of the two modes is of interest, making it obvious which nodes should be projected
onto.

The simple weighting scheme calculates the weight wij for edge eij in the projected network
as the number of neighbors nodes i and j share in an unweighted bipartite network. In the case
of a weighted network, wij represents the sum of the product of edge weights on all i, j-paths of
length two. Under simple weighting, the bipartite adjacency matrix B (with rows corresponding to
the left-mode, columns corresponding to the right-mode, and entries corresponding to the edge
weights) is used to define the unipartite adjacency matrix:

Usimple = B	B. (2)
Note that U is symmetric, and has nonzero diagonal elements and as such encodes a network with
self-connections. In this paper, we do not allow self-connections, and set the diagonal elements to
zero.

The binary weighting scheme is calculated from the simple edge weights by truncating at 1;
that is, we do not consider the number of shared neighbors between a pair of nodes. As such, we
record the presence or absence of a shared neighbor as a 1 or 0, respectively, giving:

Ubinary[i, j]=
⎧⎨
⎩
1 if Usimple[i, j] 
= 0,

0 if Usimple[i, j]= 0.
(3)

The hyperbolic weighting scheme, introduced by Newman (2001), is a means to limit the influ-
ence of high-degree nodes in the bipartite network in the projected network. A node of degree k
in the bipartite network will contribute a total edge weight proportional to the square, 1

2k(k− 1)
under the simple weighting scheme. As a result, high-k nodes can have a disproportionate influ-
ence on total edge weight and consequently community quality in the projected network. This is
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of particular concern in networks with long-tailed degree distributions. The hyperbolic scheme
applies a scaling factor of (ki − 1)−1 to each edge created in the projection of node i with degree
ki. In this scheme, high-degree nodes still have an increasing contribution to the total edge weight,
but now contribute linearly by degree, 1

2k. Under hyperbolic weighting, the unipartite adjacency
matrix is defined as:

Uhyper. = B	WB where wij =
⎧⎨
⎩
(ki − 1)−1 if i= j,

0 otherwise.
(4)

The unaryweighting scheme extends Newman’s hyperbolic weighting to normalize each node’s
contribution to the total edge weight in the projected network. The edge weights formed by pro-
jection of node i are rescaled by 2ki(ki − 1)−1. As a result, the total edge weight contribution of
a node to the projected network is exactly 1. Under unary weighting, the unipartite adjacency
matrix is defined as:

Uunary = B	VB where vij =
⎧⎨
⎩
2(ki(ki − 1))−1 if i= j,

0 otherwise.
(5)

The random walk weighting scheme evaluates the probability distribution of two-step random
walks on the bipartite networks to determine the projected edge weights. Such an approach is
often used when calculating node ranking or similarity for recommender systems (e.g. Lee et al.
(2011)). This is calculated by row-normalizing the bipartite adjacency matrix and performing a
matrix multiplication as with previous methods, that is,

Urandw = |B	|L1|B|L1, (6)
where |B|L1 denotes the matrix B after L1 normalization of the rows.

The cosine weighting scheme is a nonlinear measure of similarity between node neighbor-
hoods. We define the weight of an edge between two nodes in the unipartite network as the cosine
similarity of the two corresponding neighborhoods, that is,

Ucosine[i, j]= B[:, i] · B[:, j]
|B[:, i]||B[:, j]| . (7)

The Jaccard weighting scheme measures the overlap between nodes’ neighborhoods. Bipartite
edge weights can be incorporated by weighting neighborhood elements. The edge weight is
defined as the ratio between the sizes of the intersection and the union of the node neighborhoods,
that is,

UJaccard[i, j]= |N(i)∩N(j)|
|N(i)∪N(j)| , (8)

where N(i) is the immediate neighborhood of node i.
We illustrate the effects of each of these weighting schemes on community detection in the

unipartite projections in Figure 3 by constructing a small, unweighted bipartite network such that
the community structure found on each projection is unique.

2.4 Community detection
Weproduce bipartite networks by varying the parameter p, which controls the preference of nodes
to connect with other nodes within their prescribed communities. Given a unipartite projection,
we apply community detection with the expectation that we can recover some amount of the
community structure used in construction. When analyzing the networks produced by the gen-
erative model, we measure the accuracy in the returned community partition with respect to the
prescribed communities.
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Figure 3. A small, unweighted bipartite network and its unipartite projections. The node color in the bipartite denotes the
left and right modes, the node colors in the unipartite projections denote the communities found by the Louvain algorithm
(Blondel et al., 2008), and line thickness is proportional to edge weight. The bipartite network was constructed to ensure
that the detected community structure is different under each projection to highlight the impact of projection weighting on
community detection.
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In all cases, we use the Louvain algorithm proposed by Blondel et al. (2008) for community
detection. This algorithm estimates the best community partition through modularity maximiza-
tion on the large and locally dense networks produced by our model. The algorithm begins by
assigning each node to its own community, iteratively merging neighboring communities which
produce the largest increase in network modularity, with ties broken by random selection. When
no more steps can increase modularity, a new network is induced by merging all nodes in a com-
munity into a single node, and the first step is repeated on the new induced graph. This method
proves highly scalable, allowing calculation of communities in large, weighted networks. In our
case, we consider unipartite modularity, but by changing the modularity function, the algorithm
can be applied to other network types. The Louvain algorithm requires no information about the
number of communities to find. This behaviour is ideal for many experimental use cases as it
means the final partition is decided entirely by network topology.

2.5 Assessing the accuracy of community detection
Our detected network communities are evaluated against the prescribed community labels by
using the adjusted Rand index, that is, the proportion of all node pairs for which community
labels are either the same or different in both the computed and prescribed labeling, adjusted by
the expected level of agreement by chance:

ARI= RI−E(RI)
max(RI)−E(RI)

. (9)

The adjusted Rand index takes values in [0, 1], where values close to 0 indicate that agreement
between the true and detected communities is no better than chance, and 1 indicates that the true
and detected communities are identical. This measure has the desirable property that the pre-
cise community labels found are not important for evaluation of the adjusted Rand index, only
whether two given nodes have the same community assignment in the detected and reference
structures. As a result, permutation of the community labels does not affect this measure. We
choose the adjusted Rand index over other information theoretic measures for two reasons. We
argue that it is important for any comparison of our community structures to account for chance
agreement. The adjusted Rand index explicitly accounts for this using a null model, whereas com-
peting measures such as normalized mutual information do not. We also follow the advice of
Romano et al. (2016) who find that the adjusted Rand index performs better when considering
relatively few different labels in the reference partition.

We also compare the sizes of the detected communities to the sizes known in our synthetic
networks. We do this by computing the expected community size of a random node, that is,

∑
C |C|2(∑
C |C|)2

. (10)

where |C| denotes the number of nodes in community C. Note that this measure is distinct
from the mean community size which would be heavily skewed by a large number of small
communities, a typical result of community detection on any large network.

3. Results
3.1 Example: Real-world network from Twitter
We first report on the communities found in unipartite projections of the Twitter network made
using the different weighting schemes. Figure 4 visualizes the communities found in the seven
projections of the giant component, with a layout determined by the ForceAtlas2 algorithm
(Jacomy et al., 2014). Node colors depict community membership sorted by community size.
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Figure 4. Community structure found when applying the seven different weighting schemes to the projection of the Twitter
network. Only nodes of degree at least 5 are visible, and node color corresponds to communities in decreasing size order
(pink, green, light blue, black, orange, red, blue, grays, respectively). Note the variability of the division and size ranking of
different communities under each of the seven different weighting schemes. For references to color, the reader is directed
to the online version of this article.

Three types of community assignments appear across the seven projection weighting schemes.
In the first type, the largest community dominates the left-hand cluster of the network (as seen in
Figures 4(a) and (g)). In the second type, the largest community dominates the right-hand cluster
(as seen in Figures 4(c), (d), and (f)). In the final type, each cluster is made up of multiple smaller
communities.

As we do not know the “true” community structure for the empirical Twitter network, we
cannot compute the accuracy of community detection. Instead, we can compare the community
partitions found by different projection schemes with each other. Table 1 shows the expected
community size, the sizes (number of nodes) of the 5 largest communities detected, and the cor-
responding modularity. The random walk, Cosine, and Jaccard methods stand out as producing
extremely high modularity scores along with a large number of small communities. This seems
counter intuitive and as we will see in Section 3.2, a high modularity in a projected network is not
always a sign of underlying community structure. The binary weighting finds the single largest
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Table 1. Statistics for the communities found by the Louvain algorithm (Blondel et al., 2008) on the unipartite projection of
the Twitter dataset under different weighting schemes.

Weighting Expected community size Size of 5 largest communities Modularity

Binary 0.122 2,124 1,081 525 421 375 0.565
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simple 0.105 1,377 1,069 1,046 834 720 0.614


Hyperbolic 0.110 1,808 1,156 781 530 527 0.580


Unary 0.087 1,664 899 632 494 420 0.609


Randomwalk 0.032 829 451 333 248 238 0.791


Cosine 0.042 879 833 488 402 231 0.870
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jaccard 0.068 1,631 890 164 157 153 0.932

Table 2. Pairwise adjusted Rand index comparisons of the different community structures detected on projections of the
Twitter network under the seven weighting schemes.

Weighting Binary Simple Hyperbolic Unary Randomwalk Cosine Jaccard

Binary 1 0.401 0.285 0.23 0.191 0.279 0.416


Simple 0.401 1 0.368 0.292 0.21 0.26 0.23


Hyperbolic 0.285 0.368 1 0.621 0.205 0.227 0.197


Unary 0.23 0.292 0.621 1 0.207 0.214 0.173


Randomwalk 0.191 0.21 0.205 0.207 1 0.327 0.196


Cosine 0.279 0.26 0.227 0.214 0.327 1 0.408


Jaccard 0.416 0.23 0.197 0.173 0.196 0.408 1

community, but leads to a large number of smaller communities compared to the simple, hyper-
bolic, and unary weightings which perform similarly, with a broader distribution of community
sizes. Calculation of the Gini coefficient on the distributions of community sizes over the dif-
ferent projection weightings finds that most of the detected partitions have high size inequality
(0.75<G< 0.9). The exception to this is the random walk weighting scheme which had a Gini
coefficient of 0.409, indicating a very broad distribution of small communities.

Table 2 shows the pairwise adjusted Rand index between the community structures detected
under each projection scheme. The general trend between the community assignments for nodes
shows limited similarity under the different weighting schemes. A notable exception is the hyper-
bolic and unary schemes which are the most similar pair. Some similarity is also observed between
the binary and simple weightings and the cosine and Jaccard weightings. Also of note is the
random walk weighting, which gives the lowest average similarity to other methods.

Taken together, the results from applying different unipartite projection schemes to a real-
world bipartite network give a good indication that the method of projection has a large impact
on the community partition that is found. We do not know the true partition of this empirical
network, so we cannot determine the accuracy of community detection by eachmethod. However,
the variations between outcomes for different methods raise the question of which projection
method permits the most accurate identification of community structure.

3.2 Testing with synthetic network ensembles
In this section, we report results from a systematic exploration of community detection accuracy
using unipartite projections of bipartite networks with known community structure. Since the two
modes in our synthetic networks are generated and connected using the same processes, the left
and right projections are statistically indistinguishable. As such, we report only results on the right
projection. The Louvain community detection algorithm is applied to each projected network, and
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Figure 5. Fraction of all R-nodes included in the
sampled network and its giant component for a
given sample of L-nodes. These results are derived
from network instances with 106 vertices in each
of the L- and R-modes, 4× 106 edges, and commu-
nity preference p= 0.5.

we evaluate the accuracy of the resulting partition using the adjusted Rand index, modularity, and
expected community size.

A key consideration when constructing networks from real-world datasets is sampling; how
complete must a sample from one set of nodes be in order to recover a dataset representative of the
system as a whole? To give a more concrete example, suppose that we wish to sample the author-
ship network by taking all works by a number of scholars. How many authors are we required
to sample to produce a network that has a giant component of the necessary size? By construct-
ing models of bipartite networks with different degree distributions, we can provide insights for
a breadth of relevant networks. We iteratively sample nodes from one mode, in this case right,
computing what proportion of nodes in the left mode we discover and furthermore what pro-
portion are connected to the largest network component. The results displayed in Figure 5 show
that for a geometric-tailed degree distribution, and more so for the binomial distribution, we see
a similar effect to Callaway et al. (2001), where a finite sample is required to produce a sample
network with a giant component. In contrast, networks with long-tailed degree distributions have
a giant component which can be recovered from very small vertex samples as a consequence of the
high-degree “hub” nodes; a phenomena which may be credited in part for the success and growth
of this field.

As previously mentioned in establishing the network size, an additional computational chal-
lenge exists around projecting networks with heavy-tailed degree distributions. Recall that a
bipartite vertex with degree k produces 1

2k(k− 1) unipartite edges after projection. This typically
leads to a dramatic increase in the edge density of the projected network. With 106 nodes in each
mode and 4× 106 edges, the projected network from binomial, geometric, and zeta distributions
result in roughly 8× 106, 16× 106, and 120× 106 edges, respectively; that is to say the long-tailed
degree distribution experiences a 15-fold increase in network density over the binomial degree
distribution. The number of edges in a unipartite projection is tied to the second moment of the
bipartite degree distribution; long-tailed distributions frequently have divergent second moments
(as in this case), which cause the number of edges to grow rapidly with the size of the network,
and produce dense unipartite projections.

Figure 6 reports three different metrics for the performance of community detection on the
unipartite projections: adjusted Rand index, unipartite modularity, and expected community size
for a uniformly chosen node. The extent to which prescribed communities can be recovered com-
putationally is strongly dependant on all of our model parameters; the node degree distribution,
the strength of imposed community structure, and projection weighting. In particular, agreement
with prescribed community labels is only found with strong imposed community structure at
high p.

The adjusted Rand index results in Figure 6(a) show the extent of agreement between the pre-
scribed and detected community labels. A near-zero value indicates that community labels are
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Figure 6. Comparison of community detection after binary, simple, hyperbolic, and unary weighted projections. Lines
show the mean over 100 iterations, and the shaded region indicates ± one standard deviation. Left to right: (a) Adjusted
Rand index, (b) modularity, and (c) expected community size, across bipartite networks with varying levels of community
structure. Top to bottom: (i) pmfzeta, (ii) pmfgeo., and (iii) pmfbin. bipartite degree distributions.

a no-better predictor of true values than a random assignment, while increasing values indicate
better performance. Figure 6(a) shows that for a long-tailed degree distribution, community detec-
tion reveals meaningful community labels at a much lower threshold of community preference,
approximately p≥ 0.4 compared to values of roughly 0.6 and 0.7 for geometric and binomial
degree distributions, respectively. In all cases, the weighting scheme has a significant impact
on performance, with hyperbolic weighting outperforming other schemes, and unary weighting
performing much worse.

The modularity (Figure 6(b)) and expected community size (Figure 6(c)) results provide addi-
tional insight into the recovery of the underlying community preference by community detection
on the unipartite projection. The cause appears to be that modularity in the unipartite projec-
tion is not completely determined by the level of imposed community structure, as the expected
increasing behavior only occurs with large p. Furthermore, modularity is shown to be nonzero
for partitions on networks with weak or no imposed community structure (as high as 0.5). This
suggests high-quality partitions have been identified in the projected network, although in the
generative method, we have imposed weak or no bias at all. The hyperbolic weighting scheme
demonstrates a desirable effect in this regard, returning the lowest modularity for low p, whereas
the unary weighting scheme performs worst, giving high modularity for low p. In the hyperbolic
and unary cases, we find that the expected size of community is small when the adjusted Rand
index indicates poor recovery of the imposed community structure, before converging to 0.2, the
value of the true partition. Exceptions are the binary and simple weightings which decrease to the
convergent value. Combined with the modularity results, this suggests that at low p the modu-
larity maximizing algorithms find high modularity by partitioning the network into one or more
large communities. More meaningful communities emerge with increasing p. This behavior is
likely caused by the dominance of large cliques formed in the projection of high-degree nodes.
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Figure 7. Comparison of community detection after hyperbolic, random walk, cosine, and Jaccard weighted projections.
Lines show themeanover 100 iterations, and the shaded region indicates±one standard deviation. Left to right: (a) Adjusted
Rand index, (b) modularity, and (c) expected community size, across bipartite networks with varying levels of community
structure. Top to bottom: (i) pmfzeta, (ii) pmfgeo., and (iii) pmfbin. bipartite degree distributions. The hyperbolic weighting is
included here for comparison with Figure 6.

The binary and simple weighting schemes have no means of countering the impact of hub nodes
when detecting communities, therefore they are often formed by the composition of multiple
cliques. We also observe in Figure 6 that the binary and simple weighting schemes demonstrate
the most variance across the 100 iterations suggesting a susceptibility to recording different results
from different observations of the same process. Across each projectionmethod we find uniformly
high Gini coefficient among the distribution of detected community sizes (>0.75 for all p, weights
and degree distributions). This shows that the range of community sizes is large, an unsurprising
result given the agglomerative nature of the Louvain algorithm.

Figure 7 compares the hyperbolic, random walk, cosine, and Jaccard projections. We find that
the four weighting schemes perform similarly in the case of geometric and binomial degree distri-
butions for both the adjusted Rand index and mean community size. Modularity is similar among
the random walk, cosine and Jaccard projections, but is still higher than that of the hyperbolic
projection at low p. Considering the zeta degree distribution differentiates the projection schemes
more clearly. Figure 7(b) shows that the cosine and Jaccard weightings perform poorly by report-
ing very high modularity when there is weak underlying structure in the network and showing
little change as p increases. The random walk weighting reports some change in modularity as p
increases. We also see that the hyperbolic weighting recovers the most information about the true
network structure in Figure 7(a). In Figure 7(c), the Jaccard projection is unique in returning a
structure with consistent expected community size across p and remains close to the value of the
true partition. Figure 7 also shows that the cosine and Jaccard weighting schemes experience large
variance over model observations, much like the binary and simple schemes. As with the first four
projection methods, we find that the Gini coefficient for the random walk, cosine, and Jaccard
weightings is uniformly high (>0.8 for all p, weights and degree distributions).
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4. Discussion
Our exploration of the different community structures detected under the seven weighting
schemes on the real-world dataset illustrates the huge impact that edge weighting has on com-
munity detection. As in most experimental cases, the true community structure is not known
for the sharing of URLs on Twitter, so we cannot assess which is closest to some ground truth.
Numerous previous studies strongly suggest that there is utility in this approach, so we are left in
a position to decide which properties are desirable for further analysis, and assess the community
quality by measuring coherence of some node properties.

The community structures reported on the Twitter dataset in Section 3.1 demonstrate the
influence weighting schemes have on the resulting community partition. The Jaccard and binary
weighting schemes stand out as performing poorly, resulting in one dominant community and a
large number of small communities, certainly more than can be justified by a topical or demo-
graphic argument. If such a granularity is required for analysis, it is recommended that one of
the other methods is applied alongside recursive community detection, that is subsequent use of
community detection on the community subgraphs.

The cosine and random walk schemes perform differently from the other weightings, finding
qualitatively different community structures. Neither finds any large communities, and the cosine
weighting finds many more communities than other methods. This lack of similarity with the
other methods suggests that the cosine and randomwalk weighting schemes encode different, less
intuitive network properties than other projection schemes.

When applied to the Twitter dataset, the simple, hyperbolic, and unary weighting schemes
perform similarly, finding similar communities both in size distribution and labeling. Under the
unary weighting sizes initially decrease quickly, as a result it is likely that the simple or hyper-
bolic weighting schemes reflect an intuitive underlying community structure. Analysis of URL
metadata (such as TF-IDF weighted importance of web domains within communities) supports
this assertion by identifying qualitatively consistent communities formed around geographical or
ideological factors.

Our exploration of synthetic networks covers a particular test case. We sample networks with
approximately equal mode and community sizes and the same degree distribution for the left
and right modes. Future work can expand on our analyses by permitting varying sizes and degree
distributions in themodes.We exclude this work here given the combinatorially large search space
for the various parameter combinations.

The adjusted Rand index scores in Figure 6 demonstrate that there is merit in using the unipar-
tite projection process to identify community structure present in the bipartite network. Success
with this method requires a sufficiently high community preference p to overcome the influ-
ence of the cliques formed by high-degree bipartite nodes on unipartite community detection.
If the underlying level of community preference is too low, modularity maximizing community
detection produces a poor representation of the bipartite network communities. This problem is
exacerbated in degree distributions without a long tail; the existence of high-degree vertices within
communities benefits the performance of community detection algorithms, and such vertices
imply a long-tailed degree distribution.

It is important to note that compared to a baseline of zero, the modularity results found by
community detection on the unipartite projections are deceptive as relatively high modularity is
found even in the absence of any imposed bipartite community structure. In such circumstances,
the projection process is creating local structures which are identified as spurious communities
by modularity maximizing algorithms. Despite these concerns, there is evidence that unipartite
community detection does recover information about the bipartite network; in the regime of high
p, where community preference is strong, dense connections between cliques promote the iden-
tification of meaningful partitions through modularity optimization. Considering the standard
null model with which network modularity is normally computed, the core assumption of edge
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independence is violated by the unipartite projection process; projection creates cliques rather
than independent edges. It is possible that an adjusted null model which accounts for cliques may
facilitate better community detection in projected networks.

Figure 7 shows that the random walk, cosine, and Jaccard projections perform similarly to
the hyperbolic weighting in many cases but demonstrate some undesirable characteristics. The
Jaccard and cosine weightings allow for partitions with very high modularity to be found even
when there is no underlying community preference, particularly in the case of the zeta degree
distribution. The random walk weighting does not suffer as much from modularity inflation, but
requires a greater underlying preference to reproduce the true community structure with the same
accuracy as the hyperbolic weighting.

Our experiments allow us to provide a recommendation for which of the seven projection
methods studied is best overall. We frame such a recommendation in the experimental setting
where the underlying community preference and structure are unknown and account for accuracy
to the underlying structure, modularity of the optimal partition, and distribution of community
sizes; these factors are all considered with their variance across the ensemble of model realiza-
tions. Our results demonstrate that the hyperbolic weighting scheme is the overall best method
of the seven studied here, particularly for networks with long-tailed zeta degree distributions
(as commonly found in socio-technical systems). As shown in Figure 6(a), the adjusted Rand
index reveals that the hyperbolic weighting scheme most accurately recovers the bipartite com-
munity structure in nearly all cases, after a threshold of sufficiently strong community preference
is passed. Hyperbolic weighting has the additional benefit of suppressing the inflated modularity
scores common to many of the other methods and finding meaningful community sizes when
a bipartite community structure exists to be found. The hyperbolic scheme also maintains small
variance across the ensemble runs, suggesting more robustness to noise in the network. Beyond
this optimal method, we also find that the binary and simple weighting schemes give qualitatively
and quantitatively similar results in all experimental settings, suggesting that the simple weighting
performs no better than an unweighted network.

Overall, this study of how community detection is affected by the edge weighting applied to
the unipartite projection of bipartite networks with variable imposed community structure shows
that careful thought needs to be given to the application of this approach and the interpretation
of results. In terms of accuracy to the bipartite community structure, a useful direction would
be to improve algorithms for community detection on bipartite networks directly; we note some
recent efforts in this area (Zhou et al., 2018). However, the projection approach is suitable in
many circumstances. If a network arises through a growth process without preferential attach-
ment, modularity maximizing community detection should be used carefully, as in these cases the
detectedmodularity can be very high regardless of the underlying community structure.When the
network growth process is driven by preferential attachment (as is the case inmany real-world sys-
tems, and social networks in particular), the use of the hyperbolic weighting proposed by Newman
(2001) generally finds the most accurate results to the true community structure. Modularity
found on the unipartite projection cannot be thought of as directly representative of the commu-
nity structure of the bipartite network as there are several weaknesses in the unipartite null model
in this context. Future research into an alternative null model that better reflects the properties
of projected networks (e.g. Arthur (2019)) would be of benefit to the wider scientific community
given the widespread application of this approach when studying bipartite networks. An alter-
native direction for future work could apply the methods outlined here to explore how other
measures of network structure are affected by edge weighting during the unipartite projection
process.
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