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Abstract

Large-scale multiplex tissue analysis aims to understand processes such as development and tumor formation by
studying the occurrence and interaction of cells in local environments in, for example, tissue samples from patient
cohorts. A typical procedure in the analysis is to delineate individual cells, classify them into cell types, and analyze
their spatial relationships. All steps come with a number of challenges, and to address them and identify the
bottlenecks of the analysis, it is necessary to include quality control tools in the analysis workflow. This makes it
possible to optimize the steps and adjust settings in order to get better and more precise results. Additionally, the
development of automated approaches for tissue analysis requires visual verification to reduce skepticismwith regard
to the accuracy of the results. Quality control tools could be used to build users’ trust in automated approaches. In this
paper, we present three plugins for visualization and quality control in large-scale multiplex tissue analysis of
microscopy images. The first plugin focuses on the quality of cell staining, the second one was made for interactive
evaluation and comparison of different cell classification results, and the third one serves for reviewing interactions of
different cell types.

Impact Statement
The tradition of visually observing thin tissue slices via microscopy for determining patient diagnosis is more
than 100 years old. With increasing possibilities of staining for many markers, access to larger sample cohorts,
and automation of data collection, there is a growing need for automated analysis. The development of automated
approaches requires quality control and bench-marking against visual assessment, and complex datasets require
advanced methods for interactive visualization. This paper presents a set of such tools that are broadly accessible
and shareable for efficient collaboration across disciplines.

1. Introduction

Understanding cell distributions and interactions in tissue plays a crucial role in order to fully comprehend
organism development, healing, and homeostasis(1). Particularly important for this is the spatial distri-
bution of different cell types, which can be identified by various spatial omics techniques, such as
multiplexed spatially resolved analysis of gene expression(2–5) or multiplex immunohistochemical (IHC)
staining microscopy(6–10). Analysis of gene expression and IHC should be considered complementary
techniques, where gene expression is related to the function of the cells and IHC approaches provide a
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direct understanding of marker protein expression, post-translational modifications, and subcellular
localization(11). It has also been shown that multiplex IHC has significantly higher performance than
gene expression profiling for predicting objective response to a certain therapy(12). Multiplex IHCmakes
it possible to identifymultiple cell types in parallel and enables the study of cell–cell interactions and local
cell environments. The first choice of analysis is often semi-automated visual/manual cell classification
by intensity thresholding. There is a trend to move toward fully automated tools, not only to speed up
analysis but also to reduce bias. However, the development of automated processing steps requires visual
inspection and quality control tools to optimize settings and confirm the correctness. These tools help to
increase the user’s trust in automated systems, especially if compared to some kind of validated ground
truth.

More steps in an analysis approach bringmore challenges, and there are several essential steps required
in order to be able to quantify cell–cell interaction. The first step is IHC staining, coming with challenges
including weak staining, high background intensity, over-staining or nonspecific staining(13,14). The
second step, microscopy imaging, bears obstacles such as nonuniform illumination or low/high con-
trast(15). Cell classification is the next step and brings challenges such as misclassification, and false
negative classification, especially if cells are crowded and partially overlapping. The last step is the
quantification of interaction, which can be done by various methods(16), and selecting which one to use
might not be trivial. To conclude, there are many challenges in the analysis workflow and all these steps
have a large impact on the final result. Careful quality control combined with visual assessment is
necessary to compare and validate different options.

We present here three plugins for quality control and visual assessment of the analysis intermediate and
final results. The first one is for quality control and comparison of cell staining. The second one is for
quality control and comparison of cell classification. And the third one is for quality control and
visualization of cell–cell interactions. We also provide a new approach to quantify cell–cell interactions
that takes local tissue structures into account. Other tools for evaluating cell–cell interaction exist, such as
ImaCytE(17), which can highlight the interaction of protein expression profiles in microenvironments.
However, ImaCytE was developed for Imaging Mass Cytometry data, unlike TissUUmaps 3(18) which is
suitable for any type of marker data.

In this paper, we present each of the plugins together with example data and share the plugins via
https://tissuumaps.github.io/.

2. Software and Methods

In this section, we present newly developed plugins for the free and open-source software TissUUmaps
3(18). TissUUmaps 3 is a browser-based tool for fast visualization and exploration of millions of data
points overlaying gigapixel-sized multi-layered images. TissUUmaps 3 can be used as a web service or
locally on your computer and allows users to share regions of interest and local statistics. The three plugins
are Visualization comparison and quality control of cell staining (StainV&QC), Visualization comparison
and quality control of cell classification (ClassV&QC), and Visualization and quality control of cell–cell
interactions (InteractionV&QC).

2.1. Overview

The typical steps from multiplex microscopy image data collection to quantitative analysis of cell–cell
interactions are shown in Figure 1, together with the necessary quality controls and corresponding
plugins. Initial steps, such as cell segmentation, feature extraction, and cell classification, require external
tools such as CellProfiler(19,20), CellProfiler Analyst(21), and QuPath(22). Accumulation scores quantify-
ing cell–cell interactions can be calculated by tools such as Squidpy(23) and histoCAT(24). The results are
visually inspected and checked for quality by the three plugins. Plugin StainV&QC compares raw data
from different cores and the effect of image pre-processingmethods. PluginClassV&QC visually verifies/
discards classification results or compares classification results achieved by different manual and/or
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automated classification approaches. Plugin InteractionV&QC visually verifies/discards and investigates
non-random tissue patterns and spatial cell–cell interactions.

2.2. Plugins

2.2.1. Visualization comparison and quality control of cell staining (StainV&QC)
Our plugin for visualization comparison and quality control of cell staining, StainV&QC, can visualize a
feature space or compare several feature spaces of different samples. With feature space, we refer to the
space spanned by all the different measurements extracted from individual cells, such as mean intensity
per cell and image channel, but also more advanced features such as measurements of texture and shape.
Figure 2 shows the workflow of required steps in order to use the StainV&QC plugin. The first step is to
segment individual cells from the multiplexed microscopy data. The second step is to use a feature
extractor on segmented cells to extract features. Then either visualize two features at the same time in the
plugin or use a dimensionality reduction technique, such as UMAP(25), to visualize all the features but in a
lower dimension. It is also possible to visualize several samples at the same time to investigate if their
feature spaces match or if some pre-processing steps are necessary to add before further steps. Hypo-
thetically, feature spaces of the same tissue type should approximately match, assuming that at least some
portion of the cells in the tissue should be of the same type, and therefore have similar feature spaces.
Shifts in feature spaces are typically due to variations in staining and can be corrected by normaliza-
tion(26). Such correction is vital for downstream cell classification.

The main screen of the StainV&QC plugin can be seen in Figure 2c. The left side shows a microscopy
image of two tissue samples overlaid by cell markers with different colors per sample, this element is

Figure 1. Diagram of the workflow. The left column describes the steps of the analysis, while the center
column describes some of the associated quality control questions, and the right column lists the

associated visualization and quality control plugins: (a) Plugin for visualization comparison and quality
control of cell staining. (b) Plugin for visualization comparison and quality control of cell classification.

(c) Plugin for visualization and quality control of cell–cell interactions.

Figure 2. Workflow before using plugin StainV&QC. (a) Multiplexed microscopy data with segmented
cells, (b) Table of extracted features from all the segmented cells, (c) Plugin StainV&QC.
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called the Spatial viewport. The right side displays the feature space, where the user can interactively
select markers and instantaneously see the correspondingmarkers in the Spatial viewport. The color of the
markers in the feature space is the same as the color of the markers in the Spatial viewport. A detailed
description of the plugin settings can be found in the Supplementary Figure S1.1. This plugin can be found
at https://tissuumaps.github.io/TissUUmaps/plugins/.

StainV&QC can be very useful to identify upstream analysis challenges such as weak staining, high
background intensity, over-staining, nonspecific staining, nonuniform illumination in imaging, or low/-
high contrast.

2.2.2. Visualization comparison and quality control of cell classification (ClassV&QC)
The plugin for visualization, comparison and quality control of cell classification, ClassV&QC, can
visualize and set side-by-side results of various techniques for cell classification. Figure 3 shows that the
workflow requires that cell classification has first been applied to the cells represented by the feature
space. Cell identification (segmentation) followed by cell classification can be done by several
approaches, such as traditional manual annotations by an expert, or by semi-automated or automated
categorization of the cells by specific tools (e.g., CellProfiler(19,20) or QuPath(22)). Subsequently, the
results are visualized in the ClassV&QC plugin, and different approaches for detection and classification
(e.g., manual vs automated or two different automated methods) can be compared and evaluated also in
relation to original input data, shown as a mosaic of cut-outs cropped from a region around a selected cell
across the channels of the raw data.

Themain screen of the plugin can be seen in Figure 3c. The left side shows the Spatial viewport. When
comparing two approaches, the result of each approach is presented as a different shape and size of
markers. The first approach has bigger circular markers and the second approach has smaller star markers
on top of the bigger circular markers. Hence, differences of classification between approaches can be
detected easily. The right side of the Spatial viewport shows image patches cropped around a selected cell
(red square in Spatial viewport) in all the stain channels of the dataset. This tool can help to investigate
potential staining issues associated with cells that are assigned the wrong class. The right side of Figure 3c
shows an interactive confusion matrix when comparing two cell classification approaches. A confusion
matrix is a way to compare the result of two classification results, typically manually or semi-manually
annotated cells (expected class), and the results of a fully automated classification method (predicted
class). It is also possible to compare the performance of two different automated classification methods.
Each row of the matrix represents the elements in an expected class while each column represents the
elements in a predicted class. The user can click on the elements of the confusion matrix and only cells

Figure 3.Workflow for using plugin ClassV&QC. (a) Features extracted from the microscopy images are
input to manual or automated classification step, (b) Manual, semiautomated, or automated cell

classification, (c) Plugin ClassV&QC containing interactive confusion matrix where the user can click on
the elements of the matrix and only cells counted in that matrix element are displayed on the Spatial

viewport.
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counted in that matrix element are displayed on the Spatial viewport. This function requires that the two
approaches that are compared have the same cell segmentation/identification as input so that the order of
the cells matches. Non-matching cell IDs only enable visualization of cell type distributions and patches
ofmicroscopy data. A detailed description of the plugin settings can be found in the Supplementary Figure
S2.1. This plugin can be found at https://tissuumaps.github.io/TissUUmaps/plugins/.

When using the patches to visually evaluate the quality of the classification, we expect that the objects
in the original image data always correspond to the true biological structures which were meant to be
imaged. For example, if the stain is supposed to bind to nuclei, we expect to see exclusively nuclei in the
final image. The visualization of the patches of the microscopy data then points out false-negative
classification or wrong classification.

2.2.3. Visualization and quality control of cell–cell interactions (InteractionV&QC)
Cell–cell interaction can be defined as two (or more) cell types with a certain distance to each other that
appear with a higher frequency than what would be expected by random distribution. A spatial
distribution pattern between two cell types that is statistically significant can indicate involvement in
some kind of interaction. For example, immune cells appearing non-randomly close to tumor cells may
indicate some kind of interaction. The amount of interaction, and its significance as compared to
interaction by chance, can be quantified by several approaches as summarized in the review(16).

Apart from the visualization and quality control plugins, we also present an approach to quantify
interactions, using a neighborhood enrichment test (NET) that compares observed cell neighborhoods to
randomized patterns. A previous approach to analyzing neighborhood enrichment was presented by Palla
et al. in SquidPy(23). The NET presented here automatically compensates for tissue structure variation and
can identify cell types that are distributed non-randomly in relation to one another, independent of the
intrinsic tissue patterns. A cell neighborhood is defined as all cells within a distance k defined by the user.
The same distance k is used across the whole tissue, independent of cell density. The NETscore compares
the observed neighborhood relationship between two cell types A and B, to what could be observed if one
of the cell types was randomly distributed. First, the average number of cells of type B in the local
neighborhood of cell type A (defined by the distance k) is measured. This gives nAB. Next, the cells of type
B are randomized to the positions of all other cell types (excluding A), while all the cells of type A are kept
in their original positions. The randomization process is repeated many times (specified by the user, for
example, 1000 times), and for each randomization, the average number of cells of type B in the local
neighborhood of cell type A is measured. Finally, the mean (μAB) and the standard deviation (σAB) of cell
count averages over all randomizations is calculated, and the NET score is defined as

NETAB ¼ nAB�μAB
σAB

: (1)

A NET score close to zero indicates that cell types A and B are randomly distributed to one another,
while a positive score means that they are attracted to one another, and a negative score indicates that there
is a repulsion between the cell types. The output is saved as a csv-file. The code for running the NET
analysis can be found as a Jupyter notebook at https://github.com/BIIFSweden/accScore.

Our plugin for visualization and quality control of cell–cell interactions, InteractionV&QC, serves as a
tool to visualize and understand non-random tissue patterns and spatial cell–cell interactions, such as
those quantified by NET. As presented in Figure 4, first, cells in microscopy images are classified and
once the classification is regarded as valid (e.g., using the ClassV&QC plugin), accumulation scores are
calculated by spatial statistic tools, such as NET, Squidpy(23), or histoCAT(24). The resulting matrix has to
be saved as a .csv file for uploading to the InteractionV&QC plugin.

Themain screen of the plugin can be seen in Figure 4c. The left side shows the Spatial viewport and the
right side represents a visualization of the NET. The axes of the matrix are colored based on different cell
types as can be seen in the legend, and the color code is the same as the corresponding markers in the
Spatial viewport. This matrix is interactive and the user can click on the elements of the matrix and only
those two corresponding cell types are displayed on the Spatial viewport. If the interaction between two
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cell types is quantified as significant, this tool helps to visually explore the interactions and build an
understanding of why the interaction may be significant. A detailed description of the plugin settings can
be found in the Supplementary Figure S3.1. This plugin can be found at https://tissuumaps.github.io/
TissUUmaps/plugins/.

InteractionV&QC plugin helps the user to visualize possible non-random interaction between two cell
types in the space. This can be done for several differentmethods of calculating theNETscore and the user
can visually access which methods’ results make more sense from the spatial point of view.

3. Experimental Validation and Results

In this section, we present the application results of the plugins on real-life datasets. We show the plugins’
versatility and usefulness when investigating multiplexed microscopy images.

3.1. Results of StainV&QC plugin

For testing the utility of the StainV&QC plugin, we used a dataset from a tissue microarray (TMA) of
tumor cores with a diameter of 1.2 mm constructed at the Human Protein Atlas, Department of
Immunology, Genetics, and Pathology, Uppsala University, Sweden, previously presented in(27). The
TMA underwent octaplex immunofluorescence staining using a 7-plex Opal kit and additional Opal
480 and Opal 780 reagent kits (Akoya Biosciences, Marlborough, US) and DAPI counterstain of cell
nuclei. Images were obtained after scanning the TMA throughVectra Polaris (Akoya Biosciences) at 20�
magnification. For this experiment, we selected two TMA cores and used their corresponding DAPI
images as input for QuPath to segment all cell nuclei.We also created an approximate cell segmentation by
dilation of these cell nuclei. These areas were used to extract features per cell by QuPath. The features are
basic statistics of intensities (mean, min, max, and SD). The description of an example file can be found in
the Supplementary Figure S1.2.

Before proceeding to cell classification, we loaded the data to the StainV&QCplugin. As can be seen in
Figure 5middle, the feature spaces are distinct from each other whichmeans very strong differences in the
image intensities between the two cores. These differences may be due to variations in tissue fixation,
leading to variations in antibody binding properties. Next, we applied normalization of extracted features
through Winsorization(28), defined as

normx ¼ x�pct10 xð Þð Þ= pct90 xð Þ�pct10 xð Þð Þ (2)

Figure 4. Workflow for using the InteractionV&QC plugin. (a) Cell classification results,
(b) Accumulation scores (as quantified usingNET), blue bars represent the distribution of the randomized
counts of connections and the black line represent the actual count of connections, (c) Plugin Inter-

actionV&QC containing interactive matrix where the user can click on the elements of thematrix and only
those two corresponding cell types are displayed on the Spatial viewport.
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where pct10 and pct90 are the 10th and 90th percentiles of the corresponding feature measurements x. The
normalized data was loaded to the StainV&QC plugin and we got aligned feature spaces as can be seen in
Figure 5 right. Using the StainV&QC plugin, we can quickly confirm that the aim of the normalization
step, to make the feature distribution of the two cores more equal, has been reached. This is important for
the following steps involving automated cell classification.

3.2. Results of ClassV&QC plugin

For showcasing the ClassV&QC plugin, we used the same dataset presented above, and the ClassV&QC
plugin was used to compare two different cell classification results. The first classification result (referred
to as Expected class) consists of manual annotations by an expert and is described in the Materials
section of (27), and the second result (referred to as Predicted class) is the result of a fully automated
classification result based on a fully convolutional neural network (FCNN) model(27). Both classification
approaches start from the same cell segmentation/identification step as presented above. The description
of the example files can be found in the Supplementary Figure S2.2.

Figure 6 (left) shows the classification results of both approaches, circles represent the results of
manual annotations colored by cell type and stars represent the results of FCNN classification colored by
cell type. This visualization helps to investigate where selected methods match and mismatch from the
spatial point of view. In cases where the methods mismatch, the ClassV&QC plugin makes it easy to
investigate which result is correct by clicking on the cell marker to visualize patches from all the image
channels from the rawmicroscopy data. These patches are shown on the right side of the Spatial viewport.

Figure 5. Main screen of StainV&QC plugin, comparing two cores with corresponding data in feature
space before and after normalization. Colors represent individual tissue cores.

Figure 6.Main screen of the ClassV&QC plugin, comparing two classification techniques in the Spatial
viewport with a corresponding confusion matrix. Circles represent the results of manual annotations

colored by cell type and stars stand for FCNN classification colored by cell type.
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For instance, the selected cell was manually classified as a Glioma cell, corresponding to high-intensity
values in the Opal650 image channel marking mutIDH1. However, the FCNN algorithm classified the
same cell as Astrocyte, meaning there should be higher intensity in the Opal780 channel marking GFAP
and no signal from mutIDH1. Then the user can use the ClassV&QC plugin to visually evaluate which
method has a more reliable classification result. The right side of Figure 6 shows an interactive confusion
matrix that visualizes a comparison of the classification results by the two approaches. The user can
interactively click on the matrix’s elements to view only specific disagreements or only specific
agreements between the cells on the Spatial viewport. This can be used, for example, to investigate if
certain disagreements are significant only for a particular area of the tissue.

In order to further verify the value of the ClassV&QC plugin, we also tested it on fluorescence
microscopy images from the open dataset originally provided by Ilya Ravkin andmade publicly available
via the Broad Bioimage Benchmark Collection(29). The images are from a drug screening experiment,
where humanU2OS cells were grown in a 96-well plate with varying doses of two drugs. As the drug dose
increases, a protein tagged with the green fluorescent protein GFP is translocated from the cytoplasm to
the nucleus, and thus the amount of GFP expressed in the nuclei increases and GFP expressed in the
cytoplasm decreases. The goal of the analysis is to quantify this translocation of GFP, or more specifically,
to measure the fraction of cells in an image that have nuclear or cytoplasmic GFP expression. In the
evaluation of the ClassV&QC plugin, we compared results achieved by two different, fully automated
classification methods; SimSearch(30) and CellProfiler(19,20). CellProfiler classifies cells by first identi-
fying individual cell nuclei, and then extracting measurements such as staining intensities from the
surrounding area to assign cell classes. SimSearch is based on deep learning, and searches for image
patches that fit a pattern learned from examples of cells of different classes. This means that there may not
be a 1:1 match between cell IDs in SimSearch and CellProfiler. More detailed instructions on how to use
the plugin, as well as illustrations of example files can be found in the Supplementary Figure S2.3.

Figure 7 shows the results of these two classification methods; discs represent CellProfiler results
colored by the cell category and stars stand for SimSearch results colored by its proposed cell class
category. In this case, there are three cell categories: GFP in the nucleus (purple), GFP in the cytoplasm
(orange), and no GFP (green). Cropped patches from each staining image, specifically the distribution
of GFP (top) and a nuclear stain (bottom) are displayed in the right corner of the viewport. Using the

Figure 7.Main screen of ClassV&QC plugin, comparing two classification techniques applied to human
U2OS cell cultures. Discs represent CellProfiler results colored by the cell category and stars stand for

SimSearch results colored by the cell category.
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ClassV&QC plugin, it is easy to see that the selected cell has high GFP intensities localized to the
cytoplasm, so it has been correctly classified as having GFP in the cytoplasm by SimSearch (orange
star), while CellProfiler incorrectly classified it as having GFP in the nucleus (purple disc).

3.3. Results of InteractionV&QC plugin

Finally, we evaluated the usefulness of the InteractionV&QC plugin. For this experiment, we once again
used the multiplexed immunofluorescence dataset presented above. We selected one TMA core containing
all five possible cell types and then we used the NET score Jupyter Notebook described above to calculate
the neighborhood enrichment between all combinations of the cell type pairs and saved it as a .csv file. The
description of the example file can be found in the Supplementary Figure S3.2. Subsequently, the .csv file
was loaded into the InteractionV&QC plugin to visualize the matrix, as can be seen in Figure 8a. The user
can interactively click on any element of thematrix and it displays two corresponding cell types in the Spatial
viewport. In Figure 8, we selected the test results between Glioma (blue) and tumor-associated macro-
phages/microglia (TAMM) (green) cells since the test results show significant interaction (positive NET
score). The InteractionV&QC makes it possible to instantaneously observe the corresponding cell types in
the Spatial viewport, highlighting the spatial location of the interaction of these two cell types.

To illustrate the utility of the tool, we compare neighborhood enrichments calculated by the NETscore
and Squidpy as shown in Figure 8b. The difference is that when using our NETmethod for calculating the
accumulation score, we keep the locations and labels of one cell type and shuffle all the other ones. In the
implementation of Squidpy, all the cell locations are shuffled, which is faster. However, we would like to
argue that in the case of the NETmethod presented here, we automatically compensate for the presence of
tissue structures, such as vessels, or tissue samples section containing more than one tissue type. By
keeping the locations of one cell typewhich is appearing only in one part of the tissue (one tissue type), we
do not create false indications of repulsion or interaction when randomizing the remaining cell types in the
computation of the accumulation score. If we look at the highlighted matrix elements in Figure 8a,b, we
can see that our NET score is asymmetrical indicating that the green TAMM cells are repulsed in relation
to the Glioma cells (the TAMM cell are clustered and the NET score is negative), while the Glioma cells
are randomly distributed in relation to the TAMM cells (NET score close to zero). The Squidpy
implementation does not pick up these differences.

4. Conclusion

It is important to note that it is not possible to extract quantitative results of quality using these plugins.
The plugins serve as a means of visual quality control, and not as a processing step. Quantitative quality

Figure 8. The main screen of the InteractionV&QC plugin. (a) neighborhood enrichment calculated by
NET, (b) neighborhood enrichment calculated by Squidpy.
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control relies on a set of problem-specific definitions of what is considered “good enough.” For example,
in Figure 7, one could argue that the result is “good enough” if the cell count of the twomethods is within a
certain error range, or one could argue that the distance between the location of each cell of a given class
must be within a certain minimum distance of cells of the same class as presented by the other method.
And in the end, one may want to compare to visual annotations, which are very expensive to produce. A
fast and efficient tool, such as TissUUmaps, for visually presenting results, can give the user quick insights
into quality, without tedious annotations. Visual assessment can also be a valuable tool in designing
metrics for quantitative evaluation.

To conclude, the visualization and quality control tools presented here have the potential to function as
an important bridge between visual/manual assessment and fully automated approaches to quantitatively
extract information from large-scale multiplex microscopy experiments. Since truly validated ground
truth is lacking in this type of assay, tools for interactive quality control are necessary for methods
comparison, optimization, and validation. The plugins presented here are part of the free and open-source
TissUUmaps 3 project, designed to scale to very large datasets. Thanks to access via a web browser, it
enables easy sharing of the plugins and data in multi-disciplinary projects across different labs, without
having to transfer data. We believe these visualization and quality control plugins will forward the field
through efficient optimization and building of trust in automated analysis, enabling large-scale studies
advancing our understanding of medicine and biology.
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