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The atmospheric snow-transport model: SnowDrift3D
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ABSTRACT. SnowDrift3D, a high-resolution, atmospheric snow-transport model, is presented for the
first time. In contrast to most state-of-the-art snowdrift models, atmospheric particle transport, i.e.
saltation and suspension, is accounted for by one passive transport equation. The model uses unsteady
wind fields (spatial resolution of up to 2m) computed with an atmospheric computational fluid dynamics
model that is directly connected to the numerical weather prediction model ALADIN. Sensitivity runs
show that (1) the saltation mass flux is a function of cubic shear velocity, u3∗, (2) the model is marginally
sensitive to the grid spacing at high resolutions (up to 2m), (3) the model computes the redistribution of
snow at high resolution in real time on dual core personal computers and (4) the changing topography
of the snow cover should be included in cases of local erosion or deposition of a large amount of snow.
Finally, we present a comparison of modeled and measured snow distributions obtained by terrestrial
laser scanning showing area-wide linear correlation up to R = 0.33.

1. INTRODUCTION
The topic of environmental snow transport has attracted
many researchers over the past few decades. In alpine
areas, drifting and blowing snow have a significant influence
on avalanche danger, necessitate expensive road clearing
and create large snow cornices on mountain ridges. A
great number of numerical models with varying degrees of
numerical and physical complexity have been developed to
model blowing and drifting snow in tundra, scrubland or
complex, steep alpine terrain. To the authors’ knowledge,
only one of these models (Alpine3D (developed at the Swiss
Federal Institute for Snow and Avalanche Research); Mott
and others, 2010) has been satisfactorily validated against
area-wide snow depth measurements. On the one hand, this
might be explained by the complexity of the physical process
(extensively discussed by Lehning and others, 2008). On the
other hand, measurement methods providing accurate area-
wide snow heights have only recently become available,
including terrestrial laser scanning (TLS; Prokop, 2008;
Prokop and others, 2008). In this introduction, we discuss
important aspects of the numerical modeling of blowing
and drifting snow. Similarly to Liston and others (2007),
we distinguish numerical snowdrift models tailored to either
individual storm events or the entire snow season. The
SnowDrift3D model we present is primarily focused on
single events.
The most sensitive transport modeling parameter is the

driving wind field, or more specifically, the airborne shear
stresses acting on the snow cover (Liston and others, 2007;
Lehning and others, 2008; Bernhardt and others, 2009).
Wind-field data may be obtained by simple interpolation
from observations (i.e. measurements or numerical weather
models) using mathematical functions derived from terrain
topography (e.g. Ryan, 1977; Liston and others, 2007).
However, in alpine terrain, meteorological data are typically
scarce and an extrapolation of these data to the area of
interest can lead to homogeneous wind fields unsuitable for
accurate snowdrift modeling in complex terrain (Bernhardt

and others, 2009). Gauer (2001) applied the computational
fluid dynamics (CFD) solver CFX, which utilizes the com-
pressible Navier–Stokes equations, to compute the wide-
range atmospheric flow. In contrast, others have applied at-
mospheric mesoscale models (e.g. MM5 (the fifth-generation
Penn State/NCAR Mesoscale Model; Grell and others, 1995)
and ARPS (the Advanced Regional Prediction System; Xue
and others, 2000), which are specifically designed for the
numerical simulation of environmental flows. For example,
Bernhardt and others (2009) coupled SnowTran-3D (Liston
and others, 2007) with MM5, and Lehning and others
(2008), Mott and Lehning (2010) and Mott and others
(2010) used the wind field from ARPS in driving Alpine3D.
Raderschall and others (2008) suggested from sensitivity
studies that a minimal grid resolution of 25m is necessary
to resolve the overall structure of the wind field, as well
as characteristic flow features in steep terrain, i.e. speed-
up of the flow over ridges, flow separation, flow blocking
and recirculation downwind of the ridge. In the current
configuration, Alpine3D uses wind fields down to a vertical
and horizontal grid spacing of 5m to drive the environmental
snow transport. In contrast, the spatial resolution of MM5 is
not sufficient to resolve such small-scale flow features and,
hence, the wind fields are kinematically downscaled to fine
resolution. This procedure inevitably suppresses dynamical
flow effects, which are not already present in the input
fields (Schneiderbauer and Pirker, 2010). Furthermore, in
SnowTran-3D, simplified drift profiles are introduced instead
of an explicit analysis of the turbulent surface boundary layer.
These simplifications may inevitably lead to an inaccurate
evaluation of the wall shear stresses, which is directly
connected to the amount of aerodynamic entrainment
(Anderson and Haff, 1991; Shao and Li, 1999) and the
saltation mass fluxes (Pomeroy and others, 1993; Clifton
and Lehning, 2008). Explicitly accounting for the boundary
layer within the wind-field generation, as in ARPS, may
also lead to inaccurate estimations of the wall shear stress,
due to the simplified explicit logarithmic law-of-the-wall

https://doi.org/10.3189/002214311796905677 Published online by Cambridge University Press

https://doi.org/10.3189/002214311796905677


Schneiderbauer and Prokop: SnowDrift3D 527

(e.g. Gauer, 2001; Clifton and Lehning, 2008; Lehning and
others, 2008). In the wind-field modeling mentioned above,
with typical values of boundary layer conditions h+ > 60
(where h+ = ρau∗hc/μa with ρa the density of air, hc the
distance of the centroid of the first cell adjacent to the ground
and μa the molecular viscosity of air), the shear stress is
an implicit function of the friction velocity, u∗ (Prandtl and
others, 1990, ch. 4).
A further challenge of modeling wind flow in complex

terrain is the uncertainty connected with boundary and
initial conditions. The main concern is how to incorporate
remote meteorological data into the definition of the driving
wind field. Gauer (2001) simply extrapolated wind speed
and velocity directly from meteorological stations to the
inflow boundary. Although it was not clearly stated how this
extrapolation was realized, modeled and measured values
were correlated for the one specific drift period. Bernhardt
and others (2009) avoided the above extrapolation in a rather
simple and elegant way: a wind-field library for different
wind speeds and directions was created, and the specific
wind field best matching the meteorological observations
was taken ‘out of the library’ to compute the environmental
snow transport. However, huge computational effort is
required to create the library, especially when applying the
model to a new topography. Considerable computer memory
is also required, given that all wind fields complying to all
possible weather situations have to be computed and stored.
Such a strategy may become unfeasible if the temperature of
the flow is also taken into account, as it would induce an
exponential growth of the number of required wind fields
in the library. The wind field and temperature distribution
are tightly coupled through gravity winds, thermal air
currents, thermal instabilities, etc. Within Alpine3D, periodic
boundary conditions can be set (Raderschall and others,
2008; Mott and Lehning, 2010) and the wind field is
initialized with a standard logarithmic wind profile within
the atmospheric boundary layer. Above the boundary layer,
a layer with vertically constant free-stream velocity, u∞, is
assumed. This strategy may be more flexible than the method
of Bernhardt and others (2009); however, the adapted wind
field (characterized by speed-up at ridges, channeling, etc.),
which is supposed to accurately correlate to measurement
data in the area of interest, is strongly coupled to the choice
of u∞. This, in turn, requires knowledge about the correlation
between wind speeds at the locations of the measurements
and u∞. For example, this dependency is given by a
wind-field library or can be computed directly using an
optimization approach (Schneiderbauer and Pirker, 2010).
For modeling purposes, it is typical to differentiate

between grains transported in saltation and in suspension.
Strictly speaking, there is a third transport mode known as
creeping or reptation, but this is commonly neglected in
numerical snowdrift models, since its contribution is small
compared to the other transport processes. Saltation occurs
in a thin layer directly above the snow cover, and the
snow grains follow ballistic trajectories. Liston and others
(2007), Bernhardt and others (2009) and Naaim-Bouvet
and others (2010) accounted for saltation by the semi-
empirical relation of Pomeroy and Gray (1990), which uses
a linear scaling of the mass flux with the friction velocity.
However, this is a contradiction to the cubic dependence
suggested by Clifton and Lehning (2008). A more detailed,
albeit computationally more demanding, model of mass
transport in saltation was presented by Gauer (2001). Based

on the essential characteristics of the trajectories of saltating
grains (i.e. particle deposition, rebound and ejection of
other grains at impact), two-dimensional transport and
momentum equations for the saltation layer were deduced.
More recently, Doorschot and Lehning (2002) and later
Clifton and Lehning (2008) introduced a formally explicit,
computationally effective local momentum balance to obtain
the particle flux in saltation (this is the scheme used
in Alpine3D). This saltation model also suggests that the
mass flux is a cubic function of the friction velocity. In
most of the models that include saltation and suspension
independently, artificial boundary conditions are introduced
to model the mass exchange between both transport modes.
Shao and Li (1999) and Nemoto and Nishimura (2004),
however, computed the trajectories of individual grains in a
Lagrangian frame rendering the above numerical separation
unnecessary. In this work, a Lagrangian stochastic theory is
used to account for turbulence effects on the trajectories
of the snow grains. Although their approaches may be
characterized as the most physically based, they are not
applicable in the context of alpine snow transport and
operational use.
Turbulent suspension occurs in the layers above salta-

tion. The appropriate modeling of turbulence requires a
sophisticated turbulence model and the definition of relevant
boundary conditions. Equally important is the influence of
turbulence on the suspended snow grains. One family of
turbulence models is based on Reynolds averaging (e.g.
k–ε type) (see Kim and Patel, 2000; Kristóf and others,
2009; Schneiderbauer and Pirker, 2010). These can be
applied to atmospheric flows where the Reynolds number,
Re, is O(107). An alternative to the k–ε type turbulence
models involves applying large eddy simulation (LES) to
atmospheric flows (Wood, 2000; Porté-Agel and others,
2001; Kleissl and others, 2006; Raderschall and others,
2008). The atmospheric mesoscale model ARPS utilizes LES
in which a one-equation subgrid model accounts for the
subgrid turbulence. This requires capturing the unsteady
dynamics of the turbulent eddies by sufficiently small time-
steps (i.e. Courant number, C < 1) in the numerical
simulation, a step which increases the computational effort.
As most snowdrift models assume mean flow properties,
a time-averaged wind field has to be computed from the
time-dependent LES solution. To overcome such long time
integrations Lehning and others (2008) and Raderschall and
others (2008) suggested that the initial adaption of the flow,
i.e. at short integration times before turbulent structures
develop, is a good approximation for the time-averaged LES
wind field. This approximation is questionable with regard
to recirculation downwind of ridges which would also be
visible in time-averaged flows, in contrast to the initially
adapted wind fields.
The coupling of turbulence on the transport of suspended

grains is also important. Liston and others (2007) modeled
equilibrium suspension by a one-dimensional diffusion
equation and ignored the lateral advective effects. This
equilibrium assumption is doubtful for steep terrain. Déry
and others (1998), Gauer (2001), Lehning and others
(2008) and Naaim-Bouvet and others (2010) used a three-
dimensional transport equation, in which the influence of
the turbulent fluctuations is modeled by a simple diffusion
approach, thereby overcoming the limitations of the model
of Liston and others (2007). This simplification of the
suspension process should be sufficient for the needs of
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the numerical modeling of blowing snow, since diffusion is
mostly driven by the vertical gradient of the particle volume
fraction. Horizontally, the transport is advection dominated
(and the gradient in horizontal direction vanishes at
equilibrium suspension). Such a modeling approach should
result in approximately linear scaling of the suspension mass
flux with wind speed (Lehning and others, 2008; Dadic
and others, 2010). However, diffusive transport is strongly
affected by turbulent viscosity, requiring the appropriate
definition of turbulent boundary conditions, as used by
Schneiderbauer and Pirker (2010; and references therein).
Employing periodic boundary conditions, like Raderschall
and others (2008), is an elegant way to generate appropriate
turbulence boundary profiles, given that the integration time
is long enough to allow the atmospheric boundary layer to
fully develop.
The changing topography of the snow cover due to

ongoing snowdrift should also be considered in numerical
models. The snow depth increases in deposition areas
and decreases in erosion zones, influencing the local
velocity field. Hence, modification of the wind field causes
time-dependent spreading of these zones (Gauer, 2001;
Schneiderbauer and others, 2008; Schneiderbauer, 2010).
Mott and others (2010) reported a significant influence of the
topography on the snowdrift pattern, based on a comparison
of snowdrift modeling using a summer and a winter digital
elevation model (DEM). Gauer (2001) and Schneiderbauer
and others (2008) simulated the changing topography by
moving the gridpoints spanning the snow cover without
explicitly paying attention to the associated distortion of
the above volume mesh; however, notably stretched cells
or even negative cell volumes may appear. h+ boundary
layer conditions must be met when using the logarithmic
law-of-the-wall, but this may be violated with increasing
deformations. Even small displacements affect the quality of
the volume mesh and lead to reduced accuracy and finally
to numerical instabilities.
In this paper we introduce a new numerical model

(SnowDrift3D) for blowing and drifting snow. In developing
this model, the long-term goal was to consider the issues
discussed above and to integrate the most appropriate mod-
eling schemes without expecting to provide a solution for
them. An overview of the model characteristics and imple-
mentation is given below. We apply the CFD solver FLUENT
to generate the driving microscale atmospheric wind
field, temperature and turbulence distribution. Schneider-
bauer and Pirker (2010) showed that standard CFD can be
adapted to obtain sufficiently accurate atmospheric flows.
A short summary of necessary model adaptions is given
in the Appendix, and the spatial boundary conditions are
discussed in section 5.2. Moreover, the k–ε model used
(RNG; Yakhot and Orszag, 1986) meets the demands of
turbulence modeling in mountainous regions (Kim and
Patel, 2000). Furthermore, the whole wind-induced snow
transport (i.e. saltation and suspension) is covered by a
passive transport equation, whereas a diffusion approach
accounts for turbulent suspension (section 2). Sub-models
account for erosion and sedimentation of saltating snow
grains (section 3). These sub-models are founded in the
work of previously published literature. Section 4 deals with
details of the model implementation: (1) the timescale of
the atmospheric flow is an order of magnitude higher than
the timescale of the erosion and sedimentation processes
(a semi-implicit Euler method is utilized to integrate the

amount of eroded and accumulated snow in time during
a fluid time-step, which saves a significant amount of
computational time); (2) since the passive transport equation
for the snow grains does not incorporate fluid momentum
loss due to saltating particles, a local saltation momentum
balance is solved to obtain the excess airborne shear stress
for aerodynamic entrainment; (3) the implicit logarithmic
law-of-the-wall is directly evaluated to compute the wall
shear stress, instead of using simplified versions of this
relation; (4) an arbitrary Lagrangian Eulerian method, which
conserves the h+ condition for the numerical grid, includes
the changing topography. Sensitivity runs (section 6) show
the dependence of the saltation mass flux on wind speed,
the influence of the grid resolution on the final snowdrift
pattern and the impact of the time-dependent change in
the topography due to erosion and sedimentation. Finally,
the results of SnowDrift3D are compared to snow height
measurements obtained by TLS (Prokop, 2008) in section 7.

2. SNOW TRANSPORT EQUATION
Following Schneiderbauer and others (2008), we consider
the snow particles in saltation and suspension as one
continuous phase. The saltation and the suspension layers
are not separated numerically as they are in the work
of Gauer (2001), Doorschot and Lehning (2002), Liston
and others (2007), Lehning and others (2008), Mott and
Lehning (2010) and Naaim-Bouvet and others (2010). The
physical difference between saltation and suspension as
transport modes lies in the properties of particle trajectories:
in saltation, snow particles follow ballistic trajectories as
prescribed by their ejection angle and speed; in suspension
the motion of the snow grains is affected by the turbulent
eddies superimposed by the terminal falling velocity. Snow
transport is generally dependent on influencing flow factors,
average particle properties (size, shape, etc.) and gravity.
The degree of turbulence at the height of the saltation
layer is particularly important in determining the number of
resuspended snow grains. The ballistic particle trajectories
are interrupted by the turbulent velocity fluctuations (i.e. the
motion of the turbulent eddies).
The velocity of the snow phase, up, can be calculated as

follows for a typical ice particle, assuming a density ρp ≈
917 kgm−3 and a diameter dp ≈ 300μm (as Equation (A2))

up =

{
uhs cell layer adjacent to snow cover
ua+

ut
g
g else , (1)

where g = (0, 0,−g )T. The above equation implies that
all saltation activity is located in the cell layer adjacent
to the snow cover; snow transport elsewhere is referred to
as suspension. In Equation (1), ua represents the velocity
of the wind field of an arbitrary cell center, uhs the flow
velocity at the height of the saltation layer and g the standard
acceleration due to gravity. Furthermore,

ut =

√
4
3
dpg
CD

ρp − ρa

ρa
(2)

denotes the terminal falling velocity of spherical snow
grains including buoyancy, where CD is the drag coefficient
depending on the particle shape and ρa the density of air.
Note that the height of the saltation layer, hs, appearing in
Equation (1) is similar to that of Doorschot and Lehning
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(2002) or Lehning and others (2008), which is computed
from the initial velocity of entrained grains (Equation (33)).
It is known from previous work (Clifton and Lehning, 2008)
that the saltation flux rate is a cubic function of wind speed.
It is expected that this relationship would be produced in the
saltation modeling presented here and, indeed, this is shown
in section 6.1.
From the above, it can be argued that the Reynolds

averaged transport equation for the volume fraction of snow
particles, α, is

ρp
∂α

∂t
+ ρp∇ · (αup) = ∇ · Γ∇α− S+ + S (E)− + S (Ej)− , (3)

where superscripts ‘E’ and ‘Ej’ indicate aerodynamic en-
trainment and ejection, respectively. Detailed derivations
of the transport equation (3) and the resulting corrections
to the momentum equation of the wind field are given in
the Appendix. The source terms, S+ and S (i)− , account for
accumulation and erosion events discussed in section 3.
Note that such a transport equation is frequently used to
model the advective transport of suspended snow in other
snowdrift models (Gauer, 2001; Lehning and others, 2008;
Naaim-Bouvet and others, 2010).
From the discussion in the introduction it is concluded that

the turbulent transport of suspended grains can be described
by the simple diffusion term appearing in Equation (3). The
diffusion coefficient, Γ, is parameterized as

Γ =
ρpμt

ρaSct
with μt = ρaCμ

k2

ε
. (4)

Here μt indicates the turbulent eddy viscosity, ε the turbulent
dissipation rate appearing in the RNG k–ε model (Yakhot
and Orszag, 1986), Cμ = 0.09 a constant and Sct ≈ 1 the
turbulent Schmidt number. Evaluating Equation (4) for the
cell layer adjacent to the snow cover with height hc gives

Γ
ρp
= u∗κ(hc + h0), (5)

which corresponds to the boundary value proposed by Déry
and others (1998). Note that we use

k =
u2∗√
Cμ

and ε =
u3∗

κ(h + h0)
(6)

for values of k and ε at the numerical cells adjacent to the
snow cover, where u∗ denotes the friction velocity, u∗ =√

τa/ρa, with τa the airborne shear stress. Furthermore, h
represents the distance from the ground surface along the
direction of the unit surface normal, h0 the physical surface
roughness height and κ = 0.4 the von Kármán constant.
Note that the mass exchange between saltation and

suspension is part of the solution of Equation (3). Numerically
themass transfer rates, S↑ (from saltation into suspension) and
S↓ (from suspension into saltation), can be computed from

S↑ =
∂

∂z
Γ
∂α(salt)

∂z
and S↓ = ρput

∂α(susp)

∂z
, (7)

where z is the coordinate in the vertical direction and Si is
in kgm−3 s−1.

3. SNOW EROSION AND SEDIMENTATION
We use the parameterization of the erosion and sedimenta-
tion processes given by Schneiderbauer (2010), who provides
a validation of that parameterization by a wind tunnel
experiment. The following gives a brief overview of the
erosion and accumulation models.
There are two main modes of snow grain erosion:

aerodynamic entrainment and particle splashing. Anderson
and Haff (1991) estimate that the number of entrained grains
per unit time and unit area, NE, linearly depends on the
excess airborne shear stress, τE, which is used by Gauer
(2001) and Doorschot and Lehning (2002). More recently,
Shao and Li (1999) proposed that the proportionality factor,
ζ̄E, appearing in the formula of Anderson and Haff (1991) is
a function of the particle diameter and the excess airborne
shear stress. Taken together, this gives

NE =
ζE
(
τE − τt

)
d3p

√
τEρa

, (8)

where ζE is dimensionless and τt denotes the fluid threshold.
For particles with a diameter dp = 300μm, Shao and
Li (1999) claimed that ζE = 1.73 × 10−3; however,
Schneiderbauer (2010) found that ζE(dp) approximately
scales as 5.19 × 10−7d−1

p . Consequently, the mass source
(kgm−3 s−1) appearing in Equation (3) reads as follows when
accounting for aerodynamic entrainment:

S (E)− = ρp
πζEA
6V

√
τE
ρa

(
1− τt

τE

)
, (9)

where A denotes the area and V the volume of a cell
adjacent to the snow cover. In addition, Shao and Li (1999;
and references therein) suggest that the initial velocity of
entrained grains is in proportion to the friction velocity

wp,E = ξEu∗, (10)

where ξE is a dimensionless parameter. Equally important, the
formulation of Schmidt (1980) for the fluid threshold is used,
where a packing ratio of η = 0.21 and an angle of repose of
β = 33◦ are assumed. The cohesion force, FC, appearing in
this formulation of the fluid threshold is modeled using the
data of Hosler and others (1957), who found that cohesion
between snow particles at 0◦C is nine times that at −15◦C,
which gives

FC(T ) = 9FC,−15◦e
0.146T , (11)

where T denotes the temperature (◦C). Furthermore, we
assume a temperature of −15◦C for the cohesion force,
FC,−15◦ , at ice saturation

FC,−15◦ (dp) =
F (Hosler)C,−15◦

d3 (Hosler)p
d3p ≈ 951d3p . (12)

For snow particles with a diameter dp = 300μm, the
cohesion force, FC,−15◦ , is approximately 2.6 × 10−8 N.
However, the influence of the structural properties of the
snowpack is not addressed in the presented model at this
time. The coupling of snowdrift to snowpack models has
been dealt with in detail by, for example, Durand and others
(2005) and Lehning and Fierz (2008), though none of the
other work cited in this section has included this coupling.
When a saltating grain collides with the snow cover, it

either ejects other grains, rebounds or remains trapped. In
contrast to Gauer (2001), Andreotti and others (2002) and
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references therein suggesting that the number of ejecta per
impact NEj scales linearly with the impact speed up,I, we
follow Andreotti (2004) claiming that

NEj(up,I) = 0.3

(
up,I

ζI
√
gdp

)2
. (13)

Here the dimensionless parameter, ζI, defines a velocity scale
and up,I the velocity of an impacting grain. The splashing rate
(kgm−3 s−1) is then given by

S (Ej)− = ρpNINEj = 0.3
αρp

tp

(
up,I

ζI
√
gdp

)2
, (14)

where NI(α, tp) = α/tp is the number of collisions with the
snow cover per saltating particle and per unit time. tp =
2wp,E/g denotes the average travel time of a saltating grain
depending on the initial velocity, w0, of entrained grains.
Andreotti and others (2002) estimated the initial velocity
parallel to the snow cover of ejected grains as

up,Ej = ξRζI
√
gdp cos(θEj), (15)

with an ejection angle θEj ≈ 45◦. Here ξR = up,R/up,I
denotes the coefficient of restitution, where up,R indicates the
velocity of a rebounding grain. In this work, ξR is set equal
to 0.5 after Shao and Li (1999), Gauer (2001) and Andreotti
(2004).
The probability that a particle remains trapped is given by

(Anderson and Haff, 1991)

pT(up,I) = 0.05 + 0.95e
− up,I

ζI
√

gdp , (16)

with ζI = 10, and this equation has also been included in
the drift models of Gauer (2001) and Andreotti (2004). Given
the number of collisions of a grain with the snow cover
per unit time, NI(α, tp), and the probability that a particle
remains trapped at a specific impact, pT(up,I), the mass source
(kgm−3 s−1) accounting for accumulation is then calculated
as

S+ = ρpNIpT =
αρp

tp

(
0.05 + 0.95e

− up,I

ζI
√

gdp

)
. (17)

4. NUMERICAL IMPLEMENTATION
4.1. Semi-implicit Euler time integration subcycling
scheme
If the mean particle travel time, tp, is considered towards the
limit state of vanishing friction velocity (e.g. in leeward areas)
it would follow that

O(tp) = O
(
2ξRu∗
g

)
→ O(0). (18)

Despite this, during the numerical solution of the particle
transport equations (3) the following relationship for the
Courant number C should hold:

Cmax =
Umaxp Δt

Lmingrid
� 1, (19)

where Up defines the velocity scale and Lgrid the length scale
of the numerical grid. Furthermore, Δt denotes the time-step
size used in the numerical simulation of the wind field and
snow transport. If we assume that Lmingrid ≈ O(10) and Umaxp ≈
O(10) we are led to a maximal time-step size of Δt � 1 s.

Thus, the mean particle travel time, tp, defines the upper limit
for the time-step size, Δt . Consequently, if Δt exceeds the
ratio pT(up,I)/tp, more than the available volume fraction of
snow grains might accumulate within one time-step. Limiting
Δt by tp leads to impractically small time-steps which would
considerably increase the computational time, but limiting
tp by a fixed time-step size, Δt , leads to an underestimation
of the number of impinging grains, NI(α). To solve this, we
apply a semi-implicit Euler integration subcycling scheme
with time-step size Δt ′ = Δt/n ≈ tminp to compute the
amount of entrained, ejected and accumulated particles,
while the flow, temperature and turbulence distribution are
assumed to be constant within the time Δt (Cmax � 1). The
semi-implicit Euler integration of uhs and α is given by

u(k+1)hs
= u(k )hs + g

(
t (k ),α(k )

)
Δt ′, (20a)

and

α(k+1) = α(k ) + f
(
t (k ), u(k+1)hs

)
Δt ′, (20b)

with

g (t ,α) =
∂uhs (α)

∂t
, f (t , uhs ) =

∂α(uhs )
∂t

, (20c)

where k denotes the number of the subcycling time-step. The
acceleration, g

(
t (k ),α(k )

)
, reads as

g
(
t (k ),α(k )

)
=
min

(
τ (k )E , τ

(l)
t

)
A

m(k )
α

+
Δu(k+1)hs,E

Δt ′
. (21)

The first term on the right-hand side of Equation (21) indicates
the acceleration of the particles due to the excess airborne
shear stress. That is, if τE does not exceed the fluid threshold,
τt, which is evaluated at the fluid time-step l, the remaining
shear stress, τE, accelerates the saltating snow grains. m

(k )
α =

α(k )ρpV denotes the aggregate mass of particles within a
control volume V . Δu(k+1)hs,E

accounts for the momentum
change due to the change in volume fraction induced
by aerodynamic entrainment (as the initial velocity of the
entrained grains in the flow direction is 0):

Δu(k+1)hs,E
=

α(k−1)u(k )hs
α(k−1) + Δα(k )E

− u(k )hs . (22)

(The change in momentum induced by particle ejections is
addressed by Equation (26).)
Reviewing Equations (9), (14) and (17), the amount of sed-

imentation, particle ejections and aerodynamic entrainment
become

Δα(k+1)T = −NI
(
α(k ), t (l)p

)
pT
(
u(k+1)hs

)
Δt ′,

Δα(k+1)Ej = NI
(
α(k ), t (l)p

)
NEj

(
u(k+1)hs

)
Δt ′,

Δα(k+1)E =
πζEA
6V

√
τ (k+1)E
ρ a

max

(
1− τ (l)t

τ (k+1)E

, 0

)
Δt ′,

(23)

which leads to

f
(
t (k ), u(k+1)hs

)
Δt ′ = Δα(k+1)T + Δα(k+1)Ej + Δα(k+1)E . (24)

The mass sources, S (l)± , and momentum sources, f (l)p , in
Equations (3) and (A7) at fluid time-step l + 1 can finally be
deduced from ∑

±
S (l+1)i = ρp

α(l,n) − α(l,0)

Δt
(25a)
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and

f (l+1)p =
[
ρa

(
1− α(l,n)

)
+ ρpα

(l,n)
]u(l,n)hs

− u(l,0)hs
Δt

, (25b)

requiring that Δt = nΔt ′. Finally, the initial conditions for
the volume fraction, α(l,0) = α(l), and for the velocity at the
height of the saltation layer, u(l,0)hs

= u(l)hs , hold (these can be
obtained from Equations (3) and (A7)).

4.2. Saltation momentum balance
Since we model the snow transport by a passive trans-
port equation (3) and neglect the interphase momentum
exchange, the wind field is not influenced by the snow
grains in terms of the force required to accelerate rebounded,
entrained and ejected particles. Hence, the excess airborne
shear stress, τE, appearing in Equations (9) or (23) – the
shear stress available for aerodynamic entrainment – remains
unknown. Thus, we compute τE from a local momentum
balance at the snow cover:

τE = τa − τR − τEj − τα, (26)

where τa(ua) denotes the airborne shear stress, τR the
shear necessary to compensate for the momentum loss of
rebounding particles (grain shear), τEj the shear required to
accelerate ejected grains and τα the shear accounting for
the gravitational force acting on the snow grains. Similarly to
Gauer (2001), we use the following parameterizations of τR,
τEj and τα:

τR(α,up,I, ξR) = ρpNIup,I
(
1− ξR

)V
A
,

τEj(α,up,I, up,Ej) = ρpNI
(
up,I − up,EjNEj

)V
A
,

τα(α,φ) = ρpαg sin(−φ)
V
A
.

(27)

φ denotes the slope angle with respect to the flow direction
(positive for downward slopes). The excess airborne shear
stress, τE, from Equation (26) is computed as follows: First of
all, the airborne shear stress, τa, is directly evaluated from
the transcendental equation for the law-of-the-wall (Prandtl
and others, 1990, ch. 4):

ua(hc) =
u∗
κ
ln
(
Eρau∗hc

μar

)
, (28)

where u∗ =
√

τa/ρa, E = 9.8 denotes an empirical constant,
hc the distance of the cells adjacent to the snow cover, μa the
molecular viscosity of air and r a roughness function given
by

r = 1 + 0.5
ρau∗h0
μa

, (29)

with the physical roughness length h0. Owen (1964) found
that the aerodynamic roughness is proportional to

h0 = γ
u2∗
2g
, (30)

with γ ≈ 0.12. Since h+ = ρau∗hc/μa and r are not known
explicitly, Equation (28) has to be solved iteratively, requiring
the differentiation of implicit functions and possibly failing
to converge. This problem may be solved by the substitutions
h → Eh+ and h0 → r to obtain an explicit form of the law-of-
the-wall (Equation (28)) as applied by Gauer (2001), Liston

and others (2007), Clifton and Lehning (2008), Lehning and
others (2008) and Naaim-Bouvet and others (2010):

ua(h) =
u∗
κ
ln
h
h0

. (31)

These substitutions, however, lead to an overestimation of
the increase of shear stress with increasing wind speed
in the fully turbulent log region. We have chosen instead
to apply a linearized implicit scheme (Lew and others,
2001; Schneiderbauer, 2010) to Equation (28) to evaluate
the airborne shear stress. This linearized scheme does not
lead to a significant deviation in the resulting shear stress
compared to the evaluation of Equation (28) by Newton’s
method (Schneiderbauer, 2010). Furthermore, to obtain an
expression for the impact velocity of the saltating snow
grains we follow Pomeroy and Gray (1990), who suggest that
the horizontal particle velocity within the saltation layer is
constant with height. We also assume that the flow velocity
matches the particle velocity at the top of the saltation layer
with height hs implying

up,I = uhs = ua(hs). (32)

Typically hs isO(<10−1) m (Anderson and others, 1991) and
is derived from Equation (10), which gives

hs =

(
ξEu∗

)2
2g

. (33)

Greeley and Iversen (1985) estimated the height of the
saltation layer hs = 1.6u2∗/2g and therefore, ξ2E = 1.6. Note
that the determination of ξE strongly depends on an accurate
evaluation of u∗.
As a result of the assumptions made in Equation (1),

the height of the first cell layer adjacent to the snow
cover, hc, has to exceed hs over the entire computational
domain. In contrast, Hunt and others (1988) suggested that
the logarithmic law-of-the-wall (Equation (28)) applies only
within a thin layer adjacent to the surface with a height
O(1)m (i.e. h+ condition). A computational mesh with hc ≈
O(1)m implements the model’s prerequisites, and the flow
velocity at the top of the saltation layer can then be simply
computed from Equation (28) by the substitution hs → hc.
The shear stresses, τR, τEj and τα, are computed using

Equation (27). Equation (26) is treated as follows: First of
all, τα is subtracted from the airborne shear stress, τa. If τa−
τα < 0, no excess shear stress will be available for particle
rebound, particle splashing or aerodynamic entrainment;
hence, τE = 0 and the saltating snow grains accumulate.
Otherwise if τa − τα > 0 and τa − τα − τR < 0, the
saltating particles partly accumulate so that τR(α̃) = τa − τα,
and, as before, neither particle splashing nor aerodynamic
entrainment occurs. As long as τa − τα − τR > 0 and τE
from Equation (26) is still negative, particle erosion due to
particle ejection will take place so that τEj(ÑEj) = τa−τα−τR.
Finally, in the case of τE = τa − τα − τR − τEj > 0
aerodynamic entrainment will be possible after Equation (9).
An overview for the evaluation of τE is given in Table 1.
A comparable idea for solving a momentum balance as in
Equation (26) is proposed by Doorschot and Lehning (2002)
and Clifton and Lehning (2008). Note that τα, τR, τEj and
τE have to be evaluated at every subcycling step, k , while
τa remains constant for Δt = nΔt ′ and that α̃ < α and
ÑEj < NEj hold. In summary, aerodynamic entrainment is
the initializing process for saltation since τE(α = 0) = τa and
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for k = 1 to i = n do
evaluate u(k+1)hs

from Equation (20a)

if τa − τ (k+1)α < 0 then
τ (k+1)E ← 0
α(k+1) ← 0 (saltating snow grains accumulate)

else
if τa − τ (k+1)α − τ (k+1)R < 0 then

τ (k+1)E ← 0

compute α̃ so that τ (k+1)R (α̃) = τa − τ (k+1)α

α(k+1) ← α̃ (snow grains partly accumulate)
else
if τa − τ (k+1)α − τ (k+1)R − τ (k+1)Ej < 0 then

τ (k+1)E ← 0

compute ÑEj so that τ
(k+1)
Ej (ÑEj) = τa − τ (k+1)α − τ (k+1)R

else
τ (k+1)E ← τa − τ (k+1)α − τ (k+1)R − τ (k+1)Ej

end if
end if

end if
evaluate α(k+1) from Equation (20b)

end for

Algorithm 1. Pseudocode for the evaluation of τE from Equation (26)
within the subcycling proposed in section 4.1.

saltation will be maintained by particle ejections even if the
excess airborne shear stress for aerodynamic entrainment, τE,
is reduced below τt.

4.3. Changing topography
Following Schneiderbauer (2010), the changing topography
of the snow cover is considered by an arbitrary Lagrangian
Eulerian (ALE) approach. The snow depth (i.e. the sum of
vertical movements) at time-step l at an arbitrary node, i, at
the surface of the snowpack is given by

h(l)SD,i =
SΔt
η|Fi |

l∑
k=0

∑
j∈Fi

Vj
(
α(k ,n)j − α(k ,0)j

)
cos(ϕj )Aj

, (34)

where the set Fi contains all neighbor faces to node i, η
defines the packing ratio of the snow cover, |Fi | denotes the
number of neighbor faces to node i, Vj is the volume of the
cell adjacent to face j, and ϕj its slope angle. Downward
movement of a node i is limited by the ground topography.
Moreover, S = Tf/Th denotes a scale factor to decouple the
timescale of the flow, Tf (Equations (A1)), and the timescale
of the motion of the nodes, Th (Schneiderbauer and others,
2008; Schneiderbauer, 2010). If we consider Th as the
physical timescale, the flow field will be kept constant for a
time period STh. Schneiderbauer and others (2008) proposed
S = 100 as an upper limit, whereas in this work we generally
set S = 25.
As indicated in the introduction, the mesh quality may

significantly decrease when applying the ALE approach. In
order to distort the interior mesh along with the snow cover
while preserving the h+ condition to the mesh, a Laplace
equation for the nodal displacement field, δ(x , t ), is solved
(Schneiderbauer, 2010) by

∇2δ(x , t ) = ρa
∂δ(x, t )

∂t
, (35)

with the Dirichlet boundary conditions

δ(x i , lΔt ) =
{
Δh(l)SD,i x i ∈ snow cover
0 x i ∈ top boundary

with Δh(l)SD,i = h
(l)
SD,i − h(l−1)SD,i . (36)

4.4. Precipitation
In addition to snowdrift, preferential precipitation has a non-
negligible influence on the resulting snow depth, hSD. This
is especially true at low wind speeds, where precipitation
leads to an additional contribution at upwind and downwind
slopes (Lehning and others, 2008). In this work we account
for precipitation utilizing a mass source in Equation (3) as
follows:

Spre(z) = −ϑρp(α− αpre) with zl < z < zu, (37)

where z is the height above sea level, and zl and
zu denote a lower and an upper limit of the ‘virtual’
snow cloud. Furthermore, ϑ indicates a proportionality
factor with dimensions s−1 and is set to (Δt )−1. The
precipitation volume fraction within the snow cloud, αpre,
can be approximated by a measured precipitation rate, Φpre
(kgm−2 s−1), as

αpre ≈ Φpre
ρput

. (38)

5. ADDITIONAL METHODS AND MODEL SET-UP
5.1. Experimental set-up
The test site (Mohnensattel) is located in the vicinity of Lech
am Arlberg in the Austrian Alps. Given the relevant wind
direction, this area experiences typical snowdrift events,
i.e. a redistribution of snow by wind over a ridge with
accumulation in the leeward areas. More specifically, the
dominant westerly winds cause snow redistribution that
results in snow accumulation and cornice development on
leeward aspects. These features are often responsible for
triggering avalanches on a southeast-facing slope above
a ski run. The investigated area has spatial dimensions
of ∼1 km2 (Prokop, 2008). The TLS measurements were
performed using a Riegl LPM i800HA device (for a technical
description of the TLS methodology for scanning snow
surfaces see Prokop, 2008; Prokop and others, 2008). The
vertical measurement accuracy, which is determined by
reproducibility tests, is ∼0.05m. At a measuring distance
of 100m the average horizontal point spacing is 0.05m.
Accurate positioning of repeated scans was achieved using
a differential GPS with seven additional tie points located in
the scanning area. The resulting point cloud data can then
be georeferenced and registered, whereby the data points
are transformed from the local coordinate system of the
scanner into a referenced coordinate system. Finally, the TLS
data were post-processed by applying the method of Prokop
and Panholzer (2009), which utilizes RiPROFILE and ArcGIS
software to obtain the final spatial snow depths. The snow
depth is calculated as the vertical distance between two
digital snow surface grids (or between a terrain and snow
surface grid). The TLS dataset used in the present study was
one of the first such datasets applied to evaluate the quality
of snowdrift models.
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Fig. 1. The area around the Mohnensattel. The solid rectangle
indicates the computational domain for the snowdrift simulation,
the dark gray arrow shows the location of the Kriegerhorn station
and the light gray arrow indicates north. The redistribution of snow
is evaluated within the extent of the dashed rectangle. The color bar
indicates the elevation in meters; spatial coordinates are in meters;
black isolines correspond to Δz = 10m.

5.2. Boundary and initial conditions
We investigate the snowdrift patterns induced by two
different typical wind situations. Firstly, the absolute snow
heights around the Mohnensattel, Vorarlberg, Austria (Fig. 1)
are determined for 24 March 2007. The snow distribution
in this case is due to prevailing westerly winds. Secondly,
the redistribution of snow between 13 and 24 March
2007 is analyzed, in which case northeasterly winds and
precipitation contribute significantly to the overall weather
situation. In Figure 2 the distributions of wind speed and
wind direction at the Kriegerhorn station (Fig. 1) for the
chosen period are plotted. As can be seen in Figure 2,
westerly and northeasterly winds are generally dominant.
Strong westerly and northeasterly winds only prevail for
4% and 1%, respectively, of the period 13–24 March (wind

Table 1. Wind speeds and directions at the Kriegerhorn

Wind speed Wind direction

m s−1 ◦

W1 9 255
W2 19 260
NE 8 35

speeds >8ms−1 and temperatures <0◦C). We assume that
wind speeds measured at the Kriegerhorn lower than 8m s−1

do not contribute significantly to the redistribution of snow
at the Mohnensattel, so only events with wind speeds greater
than 8m s−1 are considered. (The influence of wind speed
on the amount of drifting snow is discussed in detail in
section 6.1.) We also suppose that at temperatures exceeding
the freezing point, snow erosion is suppressed by the
exponentially increased cohesion force between snow grains
(cf. Equation (11)). For the snowdrift simulation, we identified
a typical westerly and northeasterly wind pattern, henceforth
referred to as W1 (Fig. 3a) and NE (Fig. 4a). The precipitation
rate for the NE wind situation could be calculated from
precipitation measurements as

Φpre ≈ 5.4× 10−3 kgm−2 s−1, (39)

which is equivalent to an increase in the snow height
of 0.25m over windless conditions. Thus, precipitation
contributes considerably to the snow distribution within this
time interval. Substituting Φpre into Equation (38) gives

αpre ≈ 2× 10−6. (40)

We defined an additional westerly storm event, W2 (Fig. 3b),
for further parameter studies. Following Schneiderbauer
and Pirker (2010) the wind speed, wind directions and
temperature at the spatial Dirichlet-type boundary conditions
are deduced by a mass-conserving optimization approach
from the numerical weather prediction model ALADIN–
Austria for all three individual wind situations (W1, W2 and
NE). The wind speeds and wind directions at the Kriegerhorn
for these specific wind situations are given in Table 1.
Initial conditions for the flow and temperature distribution
within the snowdrift simulation are taken from the converged
boundary conditions analysis. Integration times for the initial
and boundary conditions simulation are set to O(103) s in
order to obtain fully developed flow fields (Schneiderbauer
and Pirker, 2010).

Fig. 2. Relative frequencies (%) (a) for the whole period and (b) for T < 0◦C of the wind speeds (m s−1) measured at the Kriegerhorn
between 13 and 24 March 2007.
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Fig. 3. Near-ground wind speeds (m s−1) and wind directions around the Mohnensattel at t = 2hours for two typical westerly wind
situations, (a) W1 and (b) W2. The spatial coordinates are in meters and the black isolines correspond to Δz = 4m.

The appropriate definition of the turbulent boundary
conditions deeply impacts the accurate prediction of the
turbulent diffusion in Equation (3). Although the turbulent
viscosity, μt, approximately equals the molecular viscosity
in the free stream region, μt is O(106μ) in the atmospheric
boundary layer (which is O(103)m in alpine terrain) leading
to intense resuspension. Following Schneiderbauer and
Pirker (2010; and references therein) atmospheric boundary
profiles are applied at the spatial boundaries.
The lower boundary at the snow cover is assumed to be a

rough wall with a roughness height given by Equation (30).
It should be noted that the roughness height in real terrain is
not influenced by drift, since the roughness height predicted
by Equation (30) is generally much smaller than the terrain
roughness (Doorschot and others, 2004), which is hterrain0 ≈
10−2 m in our case. However, in this paper we assume that
the terrain roughness is sufficiently resolved by the numerical
grid, and this, in turn, implies that the application of
Equation (30) at the bottom boundary is valid. Furthermore,
in areas where O(u∗) > 1, h0 strongly exceeds the terrain
roughness, hterrain0 . Finally, at the top boundary a zero-
gradient boundary condition is applied.

5.3. Numerical discretization and grid
For the discretization of the transport equations (3) and
(A7) a second-order upwind scheme is used. The derivatives
appearing in the diffusion terms in Equations (3) and (35)
are computed by central differencing, and the pressure–
velocity coupling is achieved by the SIMPLEC algorithm (Van
Doormal and Raithby, 1984), whereas the face pressures
are computed as the average of the pressure values in the
adjacent cells (linear interpolation).
We use a hexahedral finite-volume mesh. The horizontal

extensions of the grid are 1000m in the west–east direction
and 950m in the north–south direction. The top boundary is
placed 1000m above the mountain top. The minimal hori-
zontal resolution is 2m around deposition zones downwind
of the ridge, and is linearly expanded by 5% towards the
boundaries. The heights of the vertices at the surface level are
bilinearly interpolated from a 5m resolved DEM dataset. The
first cell layer above the surface level is of constant thickness
∼1m to meet the h+ conditions required by the law-of-the-
wall (Equation (28)). It has been shown that this is sufficient
to obtain acceptable results for the turbulence quantities near
the surface (Kim and Patel, 2000; Schneiderbauer and Pirker,
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Fig. 4. (a) Near-ground wind speeds (m s−1) and wind directions around the Mohnensattel at t = 2hours for the typical northeastern wind
situation, NE. (b) Ratio between the two westerly wind situations, computed by u[W2]/[W1] − 1. The spatial coordinates are in meters and
the black isolines correspond to Δz = 4m.
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Fig. 5. Snowdrift patterns around the Mohnensattel at t = 2hours for the westerly wind situations (a) W1 and (b) W2. The color bar indicates
the snow depth, hSD/hSD,0 − 1, the spatial coordinates are in meters and the black isolines correspond to Δz = 8m.

2010). The vertical stretching from the surface to the top
of the grid is set to 10%. The total number of gridcells is
106× 103× 30.

6. SENSITIVITY STUDIES
Prior to investigating the absolute snow distribution on 24
March 2007 and the redistribution of snow between 13 and
24 March 2007, we describe the impact of wind speed and
themodel dependency on the grid resolution. In both studies,
the influence of time-dependent change in the topography
was not considered. Its impact on the model results is shown
at the end of this section. The following parametrization is
used for these analyses: ρp = 917 kgm−3, dp = 300μm,
CD ≈ 0.4 (assuming spherical particles), hSD,0 = 2m,
S = 25, Δt = 0.5 s and Δt ′ = 10−3 s.

6.1. How does wind speed affect the redistribution
of snow?
The near-ground wind fields for both westerly wind situ-
ations, W1 and W2, are shown in Figure 3. It can be clearly
seen that large speed-up ratios appear due to the presence
of the ridge in both cases. Furthermore, a southerly wind
develops downwind of the ridge, causing a redistribution
of snow to the stagnation area formed by the cliffy terrain
at the northern boundary of the domain (200/150) (the
first coordinate corresponds to the west–east direction and
the second to the south–north direction, both in meters).
Figure 4b illustrates the ratio between the two westerly wind
situations. While the wind speed u[W2] is nearly double at
the ridge compared to u[W1], the velocity of the southerly
wind downwind of the ridge is approximately triple. This
nonlinearity in the wind field may lead to significantly
increased redistribution of snow in some leeward areas. The
ratio between the wind situations is ∼1.1 at the Kriegerhorn
station (Table 1). The corresponding snow distributions
h[W1]
SD /hSD,0 and h

[W2]
SD /hSD,0, with hSD,0 = 2m after a t =

2hour drifting period, are shown in Figure 5. It can be seen
by comparing the final snow depths that the increased wind
speed in the W2 case leads to four times more erosion than
in the W1 case upwind of the ridge (see Fig. 8a). Similarly,
in the stagnation area near the northeastern cliffy terrain (at
(200/150), Fig. 8a), up to nine times increased accumulation
can be observed, while u[W2] is only three times u[W1] in

the upwind area. Equations (9) and (14), which give the
mass sources for aerodynamic entrainment, S (E)− , and particle
ejections, S (Ej)− , support the above relationship between wind
speed and erosion rate:

S (E)− ∝
√

τE
ρa

(
1− τt

τE

)
≈ O(u∗) ≈ O(uhs )

S (Ej)− ∝ u2p,I ≈ O(u2∗) ≈ O(u2hs ).
(41)

Thus, particle ejections can be classified as the dominating
erosion mode in active saltation since a doubling of the wind
speed causes approximately a quadrupling of the ejection
rate. Furthermore, a doubling of the wind speed is equivalent
to an approximately four times increased airborne shear
stress, which makes it possible to keep four times more
particles in saltation (τa ∝ u2∗ and Equation (26)). If mass
exchange between saltation and suspension is neglected, the
volume fraction within saltation can be expressed simply as
αs ∝ u2∗. By reusing the above argument O(uhs ) ≈ O(u∗),
an estimation for the saltation mass flux, Φs (kgm−2 s−1),
computed by SnowDrift3D and integrated over the depth of
the saltation layer, D , is given by

Φ(D)s =
∫
D
Φs dy = αsρpuhshsD ∝ u3∗, (42)

which agrees with the known dependency of the integrated
saltation mass flux on u3∗ (Clifton and Lehning, 2008).
Equation (42) gives additional justification for the simple
approximation for the particle velocity, up (Equation (1)).
Strictly speaking, the suspension mass flux should have been
included in the above estimate, since the snowdrift patterns
shown in Figure 5 are a result of both transport modes.
Additional evidence for the above statement is given by the
analytical solution of Equation (3) in case of equilibrium
suspension (e.g. Budd, 1966; Bintanja, 2000):

α(h) = α(hc)
(
h
hc

)−ut/κu∗
, (43)

where it is assumed that the reference height, hc, approxi-
mately equals the height of the saltation layer, hs. In this case
the suspension mass flux is

Φ(D)sus (h) = α(h)ρpu(h)D. (44)
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Fig. 6. Comparison of vertical profiles of the volume fraction of
snow grains, α. Symbols × and � show simulated profiles at wind
situation W2 at two different locations upwind of the ridge with
τa = 3Pa. The solid curve corresponds to the analytical solution
(Equation (43)) of Equation (3) for equilibrium suspension (Budd,
1966; Bintanja, 2000).

As h → hs in Equation (43), i.e. when it tends towards
the limit, the saltation volume fraction, αs, is approached,
which is of the order of u2∗. This implies that Φ(D)sus approaches
Φ(D)s and this, in turn, supports Equation (42). Now, let us
assume that h > hs. If u∗ < u∗0, where u∗0 is a function
of h, Φ(D)sus strongly exceeds the cubed dependence on u∗;
otherwise Φ(D)sus ∝ u3∗ since (h/hc)−ut/κu∗ slowly approaches
1 as u∗ → ∞. Our results additionally support that directly
above the saltation layer Φ(D)sus ∝ ue∗ , with e > 3 locally
exceeding numerical values of e ≈ 4. These additionally
suggest that as h → ∞, i.e. where the suspension system is
negligibly influenced by saltation and corresponds to larger-
scale redistribution, e → 1, as indicated by Lehning and
others (2008) and Dadic and others (2010) for large-scale
transport. However, since Φ(D)sus exponentially decreases with
increasing h for fixed u∗ (Fig. 6), suspension contributes
subsidiarily to the overall snow transport and, hence, the
dependence of Φ(D)sus on u∗ is assumed to be peripheral and
saltation can be assumed to be the predominant transport
mode. Finally, Figure 6 illustrates that the numerical solution
of the transport equation (3) suitably matches the analytical

solution (Equation (43)). However, at ∼2hc the volume
fraction is over-predicted by the simulation, which can be
explained by a distorted logarithmic wind profile due to the
presence of the hill. Figure 6 also shows that the diffusion
coefficient proposed in Equation (4) fits the requirements for
the simulation of blowing snow. In summary, we conclude
that the amount of redistributed snow is u2∗ and the
predominant saltation mass flux is u3∗.

6.2. How does the grid resolution influence the
model results?
The choice of grid resolution is a compromise between the
spatial dimensions of the area of interest, the resolution of the
DEM, the numerical premises and computational resources.
It is important to have an adequate grid resolution tomaintain
the desired terrain features resolved within the DEM. The
numerical grid discussed in section 5.3 meets the condition
of conserving the DEM data downwind of the ridge, but the
number of gridcells was reduced in areas that were not of
specific interest (e.g. towards the spatial boundaries).
In order to evaluate the sensitivity of the solution to

the spatial discretization, a second grid with decreased
resolution (referred to as the coarse grid) was generated. The
maximal horizontal resolution is 4m and the growth rates are
set the same as for the fine grid. This gives a total number of
gridcells of 80×78×30 and a resolution generally less than
that of the DEM.
The snowdrift pattern for a t = 2hours drifting period with

hSD,0 = 2m s
−1 for wind situationW2 is plotted in Figure 7b.

A difference plot, i.e.
(
h[2]SD − h[1]SD

)
/hSD,0, comparing the

results from the [1] = coarse and [2] = fine grids is shown
in Figure 8c. Overall, the final snowdrift pattern obtained
using the coarse grid was similar to that using the fine grid
(Fig. 5b); however, as a result of the decreased resolution of
the coarse grid, the terrain edges in northern (200/150) and
northeastern directions and the minor depressions upwind
(−50/0) and downwind (100/50) of the ridge are less well
formed. Mott and Lehning (2010) made analog studies for
Alpine3D, and results suggested that less distinct elevation
leads to decreased speed-up ratios and therefore to less
erosion. In other words, less redistribution of windward snow
to the lee of the ridge is observed. Furthermore, as found by
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Fig. 7. Snowdrift patterns (a) using the ALE method with a fine grid and (b) using a coarse grid without applying the ALE method, around
the Mohnensattel at t = 2hours for the westerly wind situation, W2. The color bar indicates the snow depth hSD/hSD,0 − 1 (hSD,0 = 2m),
the spatial coordinates are in meters and the black isolines correspond to Δz = 8m.
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Fig. 8. Difference plots, i.e.
(
h[2]SD − h[1]SD

)
/hSD,0, for the snowdrift patterns in the test area at t = 2hours (a) for the two westerly wind

situations, [1] = [W1] and [2] = [W2], (b) for the activated ([2] = ALE) and deactivated ALE approach and (c) for the [1] = coarse and
[2] = fine grids. The spatial coordinates are in meters, and the black isolines correspond to Δz = 8m.

Mott and Lehning (2010), less variability of the snow depth
is retained using the coarse grid. Although the snow cornice
at the ridge is well formed at both resolutions, the absolute
snow height at the ridge cornice decreases with increasing
grid spacing, which is also supported by the results of Mott
and Lehning (2010).
In conclusion, the simulation on the coarse grid was able

to reproduce the typical snowdrift pattern, but a decreased
accuracy and variability of snow heights was observed.
The required computational time (including the wind-field
computation) using both CPUs of a personal computer with
an AMD Athlon 64 X2 Dual 2.2GHz processor was 71min
for the fine grid and 35min for the coarse grid.

6.3. How does the time-dependent change in
topography influence the model results?
Given the considerable computing times required by Snow-
Drift3D, reducing the number of equations to be solved is
desirable. The time-dependent change in the topography of
the snow cover could be omitted, as done in the previous
section. However, snow cornices up to 10m high are formed
frequently at the ridge at this site, in which case the above
simplification would be invalid. To quantify the error made
by such an omission, we compare the snowdrift patterns after
a t = 2hours period at wind situation W2 with and without
the topographical adaptions of section 4.3.
The final snowdrift pattern created by applying the time-

dependent topography changes is shown in Figure 7, and the
corresponding snowdrift pattern for the steady topography
is illustrated in Figure 5b. Visually comparing these figures,
one observes that the growing snow cover at the ridge leads
to a downwind shift of the snow cornice, which is also
indicated in the normalized difference plot in Figure 8b. The
difference in the snow depth at the ridge (Fig. 8b) can be
explained similarly by the propagation of the snow cornice.
As a result, the downwind wind field inevitably changes,
causing an additional minor modification of the downwind
snowdrift pattern. From Figure 8b it can also be seen that
snowdrift causes a smoothing of the terrain: depressions
and chutes are filled and snow is ablated at ridges. In this
simulation it led to less snow deposition in the depressions
directly upwind (−50/0) and downwind (100/50) of the
ridge. Further, less accumulation due to topographical
smoothing at the terrain edge at the northeastern stagnation
area (200/150) was also observed. In conclusion, excluding

the time-dependent changes in the topography should create
negligible errors for minor changes in the snow depth due
to erosion and sedimentation (O(�1)m); however, larger
deviations due to the growth and reduction of the snow
cover should be considered.

7. COMPARISON WITH TLS
In this section we present a comparison of simulated
snowdrift patterns with TLS of actual snowdrift events
(sections 5.1 and 5.2). The same parameterization was used
as in the sensitivity runs: ρp = 917 kgm−3, dp = 300μm,
CD ≈ 0.4 (assuming spherical particles), hSD,0 = 2m,
S = 25, Δt = 0.5 s and Δt ′ = 10−3 s.

7.1. Snow distribution on 24 March 2007
The first step was to adequately reproduce the snowdrift
pattern measured on 24 March 2007. This was primarily
affected by westerly winds. Absolute values of measured and
modeled snow depths were not compared, as the final snow-
drift pattern is a linear combination of two westerly wind
events, W1 and W2, instead of a reconstruction of the winds
appearing over the whole snow season. It was assumed that
the duration of both individual wind events was ∼8hours.
The simulated snow heights produced when (1) excluding

and (2) including the time-dependent changes in topography
are shown in Figures 9a and 10a, respectively. Based on
the outcomes of the sensitivity study in section 6.1, it is
appropriate to conclude that the final snow patterns plotted
in Figures 9a and 10a are primarily formed by the storm event
W2. Similarly, as concluded in section 6.3, the snow cornice
at the ridge is shifted downwind when additionally solving
Equations (34) and (35). Surprisingly, even for these high
snow depths, both simulations yielded comparable snow
distributions (Fig. 10b).
The absolute snow heights measured by TLS in the test area

on 24March 2007 are shown in Figure 9b. Snow depths up to
8m can be observed at the ridges, which is also given by the
simulation. Equally important, the downwind propagation of
the snow cornice at (0/0) seen in the measurement is also
produced by the modeled results. Another large deposition
area was identified by both methods at the northern terrain
edge at (200/150).
As discussed in section 6.3, snowdrift leads to terrain

smoothing and, as a result, less snow is deposited in
terrain sinks if the time-dependent change in topography is
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Fig. 9. (a) Computed snowdrift pattern for a linear combination of W1 including precipitation and W2. (b) Measured absolute snow heights
on 24 March 2007 (color bars in meters). The spatial coordinates are in meters, the black isolines correspond to Δz = 4.5m and the white
lines indicate the confidence region of the measurement.

included. This was especially true downwind of the ridge
where an intense southerly wind was present at W1 and
W2. Various small, well-defined areas of snow deposits were
observable in the measurements and the numerical results
(e.g. downwind of the ridge at (100/75) and upwind of the
ridge near the steep terrain at (−100/200)).
In conclusion, the snowdrift patterns resulting from the

numerical simulation are in close agreement with the
measurement results. A comparison of the absolute snow
heights was not possible, as we did not account for the entire
snow season leading up to 24 March 2007.

7.2. Snowdrift and precipitation between 13 and
24 March 2007
Here we consider a drift event with additional precipitation
between 13 and 24 March 2007. Similar investigations were
performed by Mott and others (2010) in the Wannengrat
area with the Alpine3D model. The wind data for this site
(Fig. 2) indicate that northeasterly (not only westerly) winds
contribute significantly to the redistribution of snow during

the defined time period. A representative northeasterly wind
load case was defined (as in section 5.2 and Fig. 4a). At
the ridge, the winds shift from northeasterly to easterly, and
windless or backflow regions are present downwind of the
ridge. The integration time, with S = 25, was 350 s for the
NE wind situation and 1200 s for the W1 wind situation.
(For a description of the relative frequencies of these wind
conditions, refer to section 5.2 and Fig. 2b.)
The snow redistribution patterns resulting from the nu-

merical simulation for the given time period are shown in
Figure 11a. The corresponding measurement data are given
in Figure 11b, and the differences between the simulation
and measurement results in Figure 12. Upon qualitative
inspection, it seems that SnowDrift3D was able to adequately
capture the typical deposition patterns, as seen for example
in (1) the widespread deposit at (−50/225), (2) the ac-
cumulation in the NE stagnation area at the terrain edge,
(200/150), and (3) below the steep terrain at (100/200).
The well-defined depositional area at (100/75) that was a
result of the westerly wind event was also reproduced by

Fig. 10. (a) Computed snowdrift pattern for a linear combination of W1 including precipitation and W2 including changing topography
(the black isolines correspond to Δz = 4.5m). (b) Differences between activated ([2] = ALE) and deactivated ALE approach computed by
(h[2]SD − h[1]SD)/hSD,0 (Δz = 8m). The spatial coordinates are in meters.
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Fig. 11. Redistribution of snow between 13 and 24 March 2007 (color bars in meters): (a) computed and (b) measured by TLS. The spatial
coordinates are in meters, the black isolines correspond to Δz = 8m, the thick black lines display the confidence region of the measurement
and the black arrows indicate snowslides. Both patterns were interpolated to a 5m grid for better comparability.

the model here. The model similarly reproduced the shift
of the cornice easterly at (50/0) and the back-distribution
of snow at the ridge to the west as a consequence of the
speed-up seen in the easterly winds. The numerical results,
however, overestimated the snow cornice formed by the
westerly winds at (25/100) (Fig. 12), which may be explained
by the uncertainty in the amount of erodible snow upwind
of the ridge.
The absolute values of redistributed snow are in good

agreement with measurements for the rest of the domain.
Pearson’s linear correlation coefficient was calculated for
the difference between the modeled and measured changes
in snow depth for two areas – east of the ridge (x ∈
[20; 100] and y ∈ [20; 90] (x denotes the spatial coordinate
from west to east and y from south to north)) and near
the steep terrain (x ∈ [100; 160] and y ∈ [160; 205]) –
which resulted in values of R = 0.31 and R = 0.33,
respectively. (To compute the correlation coefficients the
measurement data were interpolated to the grid used for
SnowDrift3D.) These values are less than those obtained
by Mott and others (2010) who used Alpine3D to model
two different snowdrift periods at three transects in the
Wannengrat area. This may be explained by differences in
the resolution of terrain features between the two grids:
the numerical model uses a grid created from DEM data,
which stem from airborne laser scan data, whereas the
measurement data come from TLS. Certain terrain features
may be shifted or not resolved by the numerical grid, leading
to potential discrepancies with the measurement results.
Furthermore, neglecting the time-dependent metamorphism
within the snowpack, in particular snow settling, which is
included in Alpine3D, inevitably leads to significant errors.
(High positive temperatures frequently occurred over the
investigated time period.)
The snowdrift pattern shown by the measurements at

(150/125) (Fig. 11b and 12, arrows) was not reproduced
by the numerical simulation. This is not a shortcoming of
the model, but rather is due to an artificial release of the
snowpack by blasting during routine avalanche control. The
spatial variability in snow depth is considerably less in the
numerical results in general, but this cannot be seen in the
figures, as all snow heights were interpolated to a 5m grid
for better comparability. Overall, SnowDrift3D was able to
capture the redistribution pattern appropriately.

8. CONCLUSIONS AND OUTLOOK
We have introduced the fine-scale atmospheric snowdrift
model SnowDrift3D with a resolution of up to 2m, which
is primarily designed for the numerical modeling of single
storm events.
We have presented detailed numerical studies showing the

influence of the wind speed on the amount of redistributed
snow. The model was able to reproduce the saltation mass
flux to the expected scale of u3∗ (Clifton and Lehning, 2008).
The results also suggest that the suspension mass flux is of the
order of ue∗ , where e ≈ 4 directly above the saltation layer
and where e → 3 with increasing height, h. This is reinforced
by analytical solution of the diffusion equation (3) for the case
of equilibrium suspension. For a large-scale distribution, i.e.
as h → ∞, the linear scaling of the suspensionmass flux with
wind suggested by Dadic and others (2010) is reproduced by
SnowDrift3D.

Fig. 12. Differences in meters of [2] = modeled and [1] = measured
changes in snow depth, i.e. Δh[2]SD−Δh[1]SD, for the redistribution of
snow between 13 and 24March 2007 (Δz = 5m). The thick black
lines display the confidence region of the measurement, the spatial
coordinates are in meters and the black arrows indicate snowslides.
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It was deduced from sensitivity runs that for minor
redistributions of snow (O(ΔhSD)� 1m), the time-dependent
change in the topography of the snow cover can be
neglected; however, this leads to an overestimation of snow
heights within small depressions, due to smoothing of the
terrain features.
A grid resolution sensitivity study has shown that using a

grid spacing of the order of the resolution of the DEM data
gives appropriate model results. Further decreasing the grid
spacing does not significantly improve the model results.
The main simplification/limitation of the model presented

here is the exclusion of the structural properties of the
snowpack. Hence, the model is restricted to the application
of single storm events. In order to model an entire
snow season, the necessary improvements in terms of
calculation efficiency can only be achieved by further gross
simplifications. A second limitation of the current model is
that sublimation of the saltation snow grains (Pomeroy and
others, 1998; Neumann and others, 2009) is not considered.
Future efforts will be invested to include a simple snowpack
modeling as a next step.
The results of SnowDrift3D were validated by area-

wide snow height measurements obtained by TLS. The
simulated snowdrift patterns were in agreement with the
measurement results for the two typical weather situations:
dominant westerly winds on 24 March 2007 and prevailing
northwesterly winds with precipitation over the period
13–24 March 2007. Both absolute snow heights and
the redistribution predicted by the model are positively
correlated with TLS measurements. However, correlations of
simulated and measured changes in snow heights were less
than those found by Mott and others (2010) using Alpine3D,
since an appropriate modeling of the structural properties of
the snowpack is missing in SnowDrift3D.
In conclusion, future modeling efforts need to concentrate

on including a scheme for the structural properties of the
snowpack, including snow metamorphism and the influence
of additional particle properties on the fluid threshold.
Furthermore, avalanche releases should be addressed, for ex-
ample by using a Bingham constitutive law for the numerical
modeling of the snowpack (Laaber, 2008). This would also
improve the unrealistic overestimation of snowheights at cor-
nices, by predicting breakage under weighting conditions.
At this time the model results show, however, an appropriate
quantitative measure of the amount of snow downwind and
upwind of the ridge, which can provide additional important
data to, for example, avalanche warning services.
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APPENDIX: DERIVATION OF THE MODEL
EQUATIONS
We start from the constant-density conservation equations
for phase q suitable for modeling the atmospheric boundary
layer (Kim and Patel, 2000; Kristóf and others, 2009;
Schneiderbauer and Pirker, 2010) reading as

∂αq

∂t
+∇ · (αquq ) = 1

ρq
(−S+,q + S−,q ) (A1a)

∂αquq
∂t

+∇ · (αququq )

=
1
ρq

(
− αq∇p +∇ · τ q + αqρqg +

n∑
p=1

Rpq + f q
)
,

(A1b)

where uq denotes the velocity, αq the volume fraction, ρq
the density of phase q and p the pressure. In addition, g
indicates the standard acceleration due to gravity and f
additional volumetric forces. Furthermore, the stress tensor
of phase q τ q = αqμq

(∇uq+∇uTq
)
, assuming a Newtonian

fluid, where μq indicates the molecular viscosity. Moreover,
the phase interaction term, Rpq , is proportional to τ−1p ,
where τp = ρpd2p /18μq denotes the particulate relaxation
time and dp denotes the diameter of the particulate phase.
For typical saltating ice particles (ρp ≈ 917 kgm−3, dp ≈
300μm) the particulate relaxation time is of the order of
magnitude τp ≈ Tp ≈ O(

10−1
)
s. Furthermore, we assume

that the vertical velocity of saltating particles does not exceed
Umaxp ≈ O(10)m s−1. Hence, the maximum distance, Lmaxp ,
covered by the snow particles during acceleration is given
by

Lmaxp =
Umaxp Tp
2

≈ O(1) � Lmingrid ≈ O(2) m, (A2)

where Lmingrid denotes the minimum length scale of the
numerical discretization. Therefore, the acceleration of the
particles is not considered in the numerical model. Thus, we
find the velocity of the snow particles, up = ua +gut/g with
ut from Equation (2). Here, ua denotes the velocity of the
wind field. Substituting up into Equation (A1a) yields

∂αp

∂t
+∇ · [αp(ua + u t)] = 1

ρp
(−S+,p + S−,p ), (A3)
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with the terminal velocity, u t = utg/g . Furthermore,
by substituting up into Equation (A1b) and adding both
momentum equations for phase ‘a’ (air) and phase ‘p’ we
are led to

∂ρmua
∂t

+∇ · (ρmuaua)
= −∇p +μmΔua + ρmg + f a + f̄ a,

(A4)

with

f̄ a = −ρpu t
∂αp

∂t
−∇ · [αpρp(2uau t + u tu t)] + f p, (A5)

since u t = constant. For the derivation of Equation (A4)
we used

∑
q αq = 1, Rap = −Rpa, ρm =

∑
q αqρq and

∇u t = 0 (subscript ‘m’ indicates a mixture). Moreover, in
the case of steady-state transport the time derivative, ∂αp/∂t ,
disappears. Furthermore, the order of magnitude of the
advective term in f̄ a has to be compared with the advective
term of the wind field, ∇ · (ρmuaua). For typical snow grain
properties it is valid to assumeO(ut) ≈ O(1). Furthermore, for
the driving wind field, O(ua) ≈ O(10) holds (Gauer, 2001).
Moreover, the maximum volume fraction of snow particles
in saltation is given by O(αp) � O[

10−4− 10−3] (Anderson
and others, 1991). To sum up, this leads to

O[
ρmuaua + αpρp(2uau t + u tu t)

] ≈ O(
102 + 101

)
. (A6)

Hence, the correction force, f̄ a, approximately equals f p.
Reusing the argument above, the density of the mixture,

ρm = αaρa + αpρp, can be approximated by the density of
air, ρa, for O(αp) � O(

10−4
)
. Thus, substituting the density

of air, ρa, into the momentum equation (A4) of the airflow
yields

∂ρaua
∂t

+∇ · (ρauaua) = −∇p + μaΔua + ρag + f , (A7)

with f = f a + f p. Furthermore, following Schneiderbauer
and Pirker (2010), a transport equation for the temperature,
T , is solved including adiabatic heating and cooling. The
closure of the momentum and energy equations is done by
a continuous Boussinesq approximation(

ρ− ρa
)
g ≈ −ρ0β

(
T − T0(h)

)
g , (A8)

where T0(h) is the operating temperature. Hence, the
variation of density, ρ, is taken into account by Equation (A8),
whereas a constant density, ρa, is used in all other terms in
Equation (A7) (Kristof´ and others, 2009). The buoyancy term
appears as a modification of the volumetric forces, f a, in
Equation (A7). Finally, the turbulent closure is achieved by
the RNG k–ε model approach (Yakhot and Orszag, 1986),
suitable for the simulation of flow over mountainous terrain
(Kim and Patel, 2000). As a result, the molecular viscosity is
augmented by a turbulent eddy viscosity, μt.
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