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Abstract

In this paper, we investigate the influence of certain subgroups of fixed prime power order on the
p-supersolubility of finite groups.

2010 Mathematics subject classification: primary 20D10; secondary 20D20.

Keywords and phrases: p-soluble group, p-supersoluble group, E–S -supplemented.

1. Introduction

Throughout this paper, all groups are assumed to be finite. The terminology
and notation employed agree with standard usage, as in Doerk and Hawkes [4].
Throughout, G always denotes a finite group, p denotes a prime and ZU(G) is the
U-hypercentre of G, that is, the product of all normal subgroups H of G such that all
G-chief factors of H are cyclic.

Recall that a subgroup H of G is said to be S -permutable [5] in G if H permutes with
all the Sylow subgroups of G. This notion is useful in establishing results concerning
the group structure. The study of the generalisations of S -permutability has become
a fruitful research area. For example, Ballester-Bolinches and Pedraza-Aguilera [3]
defined H to be S -permutably embedded in G if every Sylow subgroup of H is also
a Sylow subgroup of some S -permutable subgroup of G, and Skiba [11] called H
weakly S -permutable in G if there is a subnormal subgroup T of G such that G = HT
and H ∩ T ≤ HsG, where HsG is the subgroup of H generated by all those subgroups
of H which are S -permutable in G. In order to unify the above-mentioned subgroups,
Li et al. [8] introduced the following concept.

Definition 1.1. Let H be a subgroup of G and let HeG denote the subgroup of H
generated by all those subgroups of H which are S -permutably embedded in G. If
there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HeG, then H is
called E–S -supplemented in G.

The project is supported by the Natural Science Foundation of China (Nos. 11401264 and 11571145) and
the Priority Academic Program Development of Jiangsu Higher Education Institutions.
c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

431

https://doi.org/10.1017/S0004972716000319 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000319


432 C. Li, X. Yi and S. Qiao [2]

We say that G is p-nilpotent if every p-chief factor of G is central and G is
p-supersoluble if every p-chief factor of G is cyclic. In [8], the authors obtained
the following result: let P be a Sylow p-subgroup of a group G, where p is a prime
divisor of |G| with (|G|, p − 1) = 1. Suppose that there exists a subgroup D of P with
1 < |D| < |P| such that every subgroup H of P with order |D| and every cyclic subgroup
of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is E–S -supplemented in
G. Then G is p-nilpotent. From [6, Lemma 2.6], we know that p-supersolubility of
G implies p-nilpotency of G whenever (|G|, p − 1) = 1. In this paper, we remove the
hypothesis (|G|, p − 1) = 1 in the Theorem from [8] to arrive at the following main
result. Our main result also extends the work of Li et al. [7].

Theorem 1.2. Let E and X be p-soluble normal subgroups of G with Fp(E) ≤ X ≤ E,
where p is a prime divisor of |E|. Suppose that G/E is p-supersoluble, and a Sylow
p-subgroup P of X has a subgroup D with 1 < |D| < |P| such that every subgroup H
of P with order |D| and every cyclic subgroup of P with order 4 (if P is a nonabelian
2-group and |D| = 2) is E–S -supplemented in G. Then G is p-supersoluble.

Remark 1.3. Generally, Theorem 1.2 does not hold if we remove the hypothesis that E
is p-soluble. For example, let G = Z5 × A5, where A5 is the alternating group of degree
5. It is not hard to see that each subgroup of G with order 5 is E–S -supplemented in
G. However, G is not 5-supersoluble.

2. Preliminaries

Lemma 2.1 [8, Lemma 2.2]. Suppose that H is E–S -supplemented in G.

(1) If H ≤ L ≤ G, then H is E–S -supplemented in L.
(2) If N EG and N ≤ H ≤ G, then H/N is E–S -supplemented in G/N.
(3) If H is a π-subgroup and N is a normal π′-subgroup of G, then HN/N is

E–S -supplemented in G/N.

Lemma 2.2 [8, Theorem 1.4]. Let E be a normal subgroup of a group G and X ≤ E.
Suppose that for every noncyclic Sylow subgroup P of X, there exists a subgroup D
of P with 1 < |D| < |P| such that every subgroup H of P with order |D| and every
cyclic subgroup of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is
E–S -supplemented in G. If X = E or X = F∗(E), then every G-chief factor of E is
cyclic.

Lemma 2.3 [2, Lemma 2.10]. Let p be a prime and G a group.

(1) Soc(G) ≤ F∗p(G).
(2) Op′(G) ≤ F∗p(G). In fact, F∗(G/Op′(G)) = F∗p(G/Op′(G)) = F∗p(G)/Op′(G).
(3) If F∗p(G) is p-soluble, then F∗p(G) = Fp(G).

Lemma 2.4 [12, Theorem C]. Let E be a normal subgroup of G. If every G-chief factor
of F∗(E) is cyclic, then every G-chief factor of E is also cyclic.
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Lemma 2.5 [7, Theorem 3.1]. Let p be a fixed prime dividing the order of G and L
a p-soluble normal subgroup of G such that G/L is p-supersoluble. If there exists a
Sylow p-subgroup P of L such that every maximal subgroup of P is E–S -supplemented
in G, then G is p-supersoluble.

Combining [8, Lemma 2.2(5)] and [11, Lemma 2.11] gives the following lemma.

Lemma 2.6. Let N be an elementary abelian normal p-subgroup of a group G. If there
is a subgroup D of N with 1 < |D| < |N| such that every subgroup of N with order |D|
is E–S -supplemented in G, then there exists a maximal subgroup M of N such that M
is normal in G.

Lemma 2.7 [9, Lemma 2.3]. Suppose that H is S -permutable in G and let P be a Sylow
p-subgroup of H. If HG = 1, then P is S -permutable in G.

Lemma 2.8 [10, Lemma A]. If P is an S -quasinormal p-subgroup of a group G for
some prime p, then NG(P) ≥ Op(G).

Lemma 2.9 [1, Theorem 2.1.6]. If G is p-supersoluble and Op′(G) = 1, then the Sylow
p-subgroup of G is normal in G.

Lemma 2.10 [8, Theorem 1.5]. Let P be a Sylow p-subgroup of a group G, where p
is a prime divisor of |G| with (|G|, p − 1) = 1. Suppose that there exists a subgroup
D of P with 1 < |D| < |P| such that every subgroup H of P with order |D| and every
cyclic subgroup of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is
E–S -supplemented in G. Then G is p-nilpotent.

3. Main results

Theorem 3.1. Let P be a Sylow p-subgroup of a p-soluble group G, where p is an odd
prime divisor of |G|. If every cyclic subgroup of P with order p is E–S -supplemented
in G, then G is p-supersoluble.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal
order. Assume that Op′(G) , 1. From Lemma 2.1(3), it is easy to see that every
cyclic subgroup of P/Op′(G) with order p is E–S -supplemented in G/Op′(G). By the
minimal choice of G, G/Op′(G) is p-supersoluble and so G is also p-supersoluble.
This contradiction implies that Op′(G) = 1. Since G is p-soluble, we have Op(G) , 1.
In view of Lemma 2.3, F∗(G) = F∗p(G) = Fp(G) = Op(G). By hypothesis, every cyclic
subgroup of F∗(G) with order p is E–S -supplemented in G. Applying Lemma 2.2
shows that G is p-supersoluble. �

Theorem 3.2. Let P be a Sylow p-subgroup of a p-soluble group G, where p is an odd
prime divisor of |G|. If there exists a subgroup D of P with 1 < |D| < |P| such that every
subgroup H of P with order |D| is E–S -supplemented in G, then G is p-supersoluble.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal
order.

Step 1: Op′(G) = 1. If Op′(G) , 1, then, from Lemma 2.1(3), G/Op′(G) satisfies the
hypotheses of the theorem. Thus, G/Op′(G) is p-supersoluble by the minimal choice
of G. But then G is p-supersoluble, which is a contradiction.

Step 2: |D| > p. This follows from Theorem 3.1.

Step 3: |P : D| > p. This follows from Lemma 2.5.

Step 4: For any minimal normal subgroup N of G, we have p < |N|. Since G is
p-soluble and Op′(G) = 1, it follows that N ≤ P. Assume that |N| = p and consider
the factor group G/N. By Lemma 2.1(2) and Step 2, we know that G/N satisfies the
hypotheses of the theorem. Hence, G/N is p-supersoluble by the minimal choice of G.
But then G is p-supersoluble, which is a contradiction.

Step 5: For any minimal normal subgroup N of G, we have |N| ≤ |D|. This follows
from Lemma 2.6.

Step 6: G has the unique minimal normal subgroup N such that G/N is p-supersoluble
and Φ(G) = 1. Let N be a minimal normal subgroup of G. If |N| < |D|, then, from
Lemma 2.1(2), it is easy to see that G/N satisfies the hypotheses of the theorem. Thus,
G/N is p-supersoluble by the minimal choice of G. Therefore, we may assume that
|N| = |D| by virtue of Step 5. Let K/N be a subgroup of P/N with order p. According
to Step 2, N is noncyclic. Hence, there is a maximal subgroup L of K such that
K = LN. Of course, |N| = |D| = |L|. Since L is E–S -supplemented in G, there is
a subnormal subgroup T of G such that G = LT and L ∩ T ≤ LeG. If N * Op(G),
then N � NOp(G)/Op(G) ≤ G/Op(G). Since G/Op(G) is a p-group, it follows that
|NOp(G)/Op(G)| = |N| = |D| = p, contrary to Step 2. Hence, N ≤ Op(G). Since |G : T |
is a power of p and T is subnormal in G, Op(G) ≤ T . Then G/N = (K/N)(T/N)
and K/N ∩ T/N = LN/N ∩ T/N = (L ∩ T )N/N ≤ LeGN/N ≤ (LN/N)eG/N . This shows
that every cyclic subgroup of P/N with order p is E–S -supplemented in G/N. By
Theorem 3.1, G/N is p-supersoluble. Since the class of all p-supersoluble groups is a
saturated formation, the uniqueness of N and Φ(G)= 1 are obvious.

Step 7: Final contradiction. By Step 6, there is a maximal subgroup M of G such
that G = NM. Furthermore, P = N(P ∩ M) and P ∩ M , 1. Pick a maximal subgroup
P1 of P containing P ∩ M. Then P = NP1 and N ∩ P1 < N. If N ∩ P1 = 1, then
N is of prime order, which is a contradiction. Hence, N ∩ P1 , 1. By Step 3, we can
choose a subgroup H of P1 containing N ∩ P1 such that |H| = |D| and H is normal in P.
Furthermore, N ∩ H = N ∩ P1 , 1. By hypothesis, H is E–S -supplemented in G. Then
there is a subnormal subgroup T of G such that G = HT and H ∩ T ≤ HeG. Since |G : T |
is a power of p and T C CG, N ≤ Op(G) ≤ T . It follows that N ∩ H = N ∩ HeG. Let
U1,U2, . . . ,Us be all the nontrivial subgroups of H which are S -permutably embedded
in G. For every i ∈ {1,2, . . . , s}, there is an S -permutable subgroup Ki of G such that Ui

is a Sylow p-subgroup of Ki. Suppose that for some i ∈ {1,2, . . . , s}, we have (Ki)G , 1.
By Step 6, N ≤ (Ki)G ≤ Ki. Hence, N ≤ Ui ≤ H < P1. This contradiction shows that
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for all i ∈ {1, 2, . . . , s}, we have (Ki)G = 1. By Lemma 2.7, the Ui (i ∈ {1, 2, . . . , s}) are
S -permutable in G. It follows that HeG is S -permutable in G and so N ∩ HeG = N ∩ H
is S -permutable in G. Since NG(H ∩ N) ≥ Op(G) by Lemma 2.8 and H ∩ N is normal
in P by the choice of H, H ∩ N is normal in G. Therefore, H ∩ N = 1 by the minimality
of N, which is a contradiction. �

Theorem 3.3. Let E be a p-soluble normal subgroup of G and P a Sylow p-subgroup
of E, where p is a prime divisor of |E|. Suppose that there exists a subgroup D of P with
1 < |D| < |P| such that every subgroup H of P with order |D| and every cyclic subgroup
of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is E–S -supplemented in
G. Then E/Op′(E) ≤ ZU(G/Op′(E)).

Proof. By Lemma 2.1(1), every subgroup H of P with order |D| and every
cyclic subgroup of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is
E–S -supplemented in E. If p = 2, then E is 2-nilpotent by Lemma 2.10. In
particular, E is 2-supersoluble. If p > 2, then E is also p-supersoluble by
Theorem 3.2. If Op′(E) , 1, then, from Lemma 2.1(3), the hypothesis is still true
for (G/Op′(E), E/Op′(E)). By induction, E/Op′(E) = (E/Op′(E))/Op′(E/Op′(E)) ≤
ZU((G/Op′(E))/(Op′(E/Op′(E)))) = ZU(G/Op′(E)). Now assume that Op′(E) = 1. By
virtue of Lemma 2.9, P E E. Obviously, P is also normal in G. By Lemma 2.2,
P ≤ ZU(G). Since E is p-soluble, it follows from Lemma 2.3 that F∗(E) = F∗p(E) =

Fp(E) = Op(E) = P and so F∗(E) ≤ ZU(G). Applying Lemma 2.4, E ≤ ZU(G). �

Theorem 3.4. Let E and X be p-soluble normal subgroups of G with Fp(E) ≤ X ≤ E,
where p is a prime divisor of |E|. Suppose that a Sylow p-subgroup P of X has a
subgroup D with 1 < |D| < |P| such that every subgroup H of P with order |D| and
every cyclic subgroup of P with order 4 (if P is a nonabelian 2-group and |D| = 2) is
E–S -supplemented in G. Then E/Op′(E) ≤ ZU(G/Op′(E)).

Proof. By Theorem 3.3, X/Op′(X) ≤ ZU(G/Op′(X)). Since Fp(E) ≤ X ≤ E, it is
easy to see that Op′(X) = Op′(E). Hence, X/Op′(E) ≤ ZU(G/Op′(E)). Consequently,
Fp(E)/Op′(E) ≤ ZU(G/Op′(E)). Since E is p-soluble, it follows from Lemma 2.3
that F∗(E/Op′(E)) = F∗p(E/Op′(E)) = Fp(E)/Op′(E) ≤ ZU(G/Op′(E)). Applying
Lemma 2.4, E/Op′(E) ≤ ZU(G/Op′(E)). �

Proof of Theorem 1.2. By the conclusion of Theorem 3.4, E/Op′(E) ≤ ZU(G/Op′(E)).
Since (G/Op′(E))/(E/Op′(E)) � G/E is p-supersoluble, it follows that G/Op′(E) is
p-supersoluble and so G is p-supersoluble. �
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