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Summary

This paper describes the relationship between probabilities of identity by descent and the
distribution of coalescence times. By using the relationship between coalescence times and identity
probabilities, it is possible to extend existing results for inbreeding coefficients in regular systems of
mating to find the distribution of coalescence times and the mean coalescence times. It is also
possible to express Sewall Wright’s F, as the ratio of average coalescence times of different pairs
of genes. That simplifies the analysis of models of subdivided populations because the average
coalescence time can be found by computing separately the time it takes for two genes to enter a
single subpopulation and time it takes for two genes in the same subpopulation to coalesce. The
first time depends only on the migration matrix and the second time depends only on the total
number of individuals in the population. This approach is used to find Fg, in the finite island
model and in one- and two-dimensional stepping-stone models. It is also used to find the rate of
approach of Fg, to its equilibrium value. These results are discussed in terms of different measures
of genetic distance. It is proposed that, for the purposes of describing the amount of gene flow
among local populations, the effective migration rate between pairs of local populations, M, which
is the migration rate that would be estimated for those two populations if they were actually in an

island model, provides a simple and useful measure of genetic similarity that can be defined for

either allozyme or DNA sequence data.

1. Introduction

Population genetic models of neutral genes in finite
populations have traditionally been developed in
terms of inbreeding coefficients or probabilities of
identities by descent. These models are appropriate
for analyzing gene frequency data, from which
inbreeding coeflicients or identity probabilities can be
estimated. More recently, a different class of model,
called variously ‘retrospective’, ‘genealogical’ or
‘coalescent’ models has been introduced. These
models differ from traditional models in focusing on
the times at which two or more genes have a common
ancestor in the past. Tavaré (1984), Ewens (1990) and
Hudson (1990) provide reviews of coalescent models
and their applications. These two classes of models
are, of course, equivalent because they both describe
the mathematical consequences of inheritance, mu-
tation and genetic drift but they call on somewhat
different mathematical tools and relate to different
kinds of data. In this paper I show the relationship
between these two classes of models, particularly in
their application to subdivided populations. I will also
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show that by using coalescent models it is possible to
derive some general results for subdivided populations
because the effects of different processes can be
analysed separately.

2. Preliminaries

(i) Identities by descent and coalescence times

Throughout, I will be concerned with pairs of neutral
genes at a single locus. In this context, a gene is a non-
recombining segment of DNA. For our purposes,
inbreeding coefficients, as introduced by Wright
(1922), and probabilities of identity by descent, as
defined by Malécot (1948) are equivalent, although
Wright (1969, p. 178) emphasized that they are not
always so because inbreeding coefficients can be
negative while probabilities of identity by descent
cannot. For simplicity, I will use the term probability
of identity and denote probabilities of identity at time
t by f(t), which will have different subscripts to
indicate which pair of genes is being considered.
The results derived here will depend on the
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relationship between coalescence times and genetic
identity. Define g(¢) to be the probability that two
genes do not have a common ancestor by generation
¢ in the past or equivalently the probability that two
genes have not coalesced by generation ¢ in the past.
Let P(¢) be the probability that the coalescence occurs
in generation (¢ = 1). Clearly

P(1) = g(1—1)—g(). 6]

Note that Z;’S_lP(t) =g(0) = 1 because, in a finite
population, g(#) must go to O for large ¢. It is also
useful to note that the mean coalescence time is

F= 3 P() = 3 g(0). @

t=0

The reason for introducing g(r) is that the recursion
equations describing g(r+ 1) as a function of g(z) are
exactly the same as the recursion equations describing
the probability of non-identity, 1—f{r+1), as a
function of 1 —f{¢) in the absence of mutation, which
can be seen by noting that the probability of non-
identity decreases only if a coalescence event occurs.
The equivalence of these two quantities means that
existing theories describing changes in probabilities of
identities by descent can be used with only minor
changes to predict the distribution of coalescence
times and average coalescence times.

(i1) Regular systems of mating

We can see the utility of relating the probability of
non-identity to g(¢) by considering regular systems of
mating. Here, I will discuss only systems in which
there is the same number of individuals in each
generation. Consider, for example, a system of regular
full-sib mating. In this case, two probabilities of
identity are needed, f,(¢), the probability that the two
homologous genes from the same individual are
identical, and f;,(?), the probability that genes from
different individuals are identical. For continued full-
sib mating, two linear recursion equations are needed
to determine g,(r) and g,,(¢) and these can be obtained
from the standard recursion equations for f,(¢) and
f1,(8) (Crow and Kimura 1970, p. 87). The resulting
equations can be written in matrix form as

g(t+1) = Ag(), 3
where
_ gl(’))
g = (g”m ’
A= ((1) 1) 4

Equation (1) has the solution g(¢) = A°g(0) with
g,(0) =g,,(0)=1. The distribution of coalescence
times, P(¢) = g(t—1)—g(?) can be found directly. The
mean coalescence times can also be found,
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Obviously, this approach can be applied to any
regular system of mating in which the same number of
individuals are present each generation. The only
changes in the above calculations are that more values
of g(f) are needed and the matrix A4 has to be
redefined. Then, (3) and (5) provide the necessary
results.

(iii) Fg, and mean coalescence times

Wright (1951) partitioned the inbreeding coefficient of
an individual relative to a collection of local popu-
lations, F,, into a part attributable to non-random
mating within a local population, F,;, and a part
attributable to differences among populations, Fg.,.
The quantity Fg, can be expressed in terms of
probabilities of identity

Fyr =f1°_;—, (6)
where f; is the probability of identity of two genes
sampled from the same subpopulation and f is the
probability of identity of two genes sampled at random
from the collection of subpopulations being con-
sidered (Nei, 1973). It is possible to compute proba-
bilities of identity in various models of population
structure and hence predict the values of Fg, under
different conditions (Slatkin & Barton, 1989). The
problem with these calculations is that in general,
both £, and f depend not only on effective population
sizes and the migration matrix but also on the intensity
of mutation or other force that is maintaining genetic
variation. It would be desirable to predict the value of
Fi, in a way that did not confound the purely
demographic processes of genetic drift and migration
with purely genetic processes such as mutation. We
can do this by expressing F, in terms of coalescence
times.

If we assume that mutation is a Poisson process,
then the probability of identity of two genes is the
probability that no mutation occurred before those
genes had a common ancestor (Hudson, 1990). We
can compute the value of f for any pair of genes in
terms of coalescence times by noting that the
probability that a mutation has not occurred by
generation ¢ is (1 —u)* where x4 is the mutation rate.
Therefore, the probability that two genes are identical
is

f=Ea-p* PO, ™

where P(f) is the probability that the two genes
coalesced in generation ¢ in the past. Clearly, f
considered as a function of x goes to 1 as u goes to
0. However, F,, defined by equation (6) has a non-
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trivial limit as x goes to 0, which is found by applying
I’Hoépital’s rule:

FST=‘_""- (8)

f
where i, is the average coalescence time of two genes
drawn from the same subpopulation and 7 is the
average coalescence time of two genes drawn from the
collection of subpopulations. Equation (8) can also be
obtained by noting that for small u, f~ 1—uf.
Equation (8) allows us to express F, in a way that
does not depend on the mutation rate if mutation is a
weak force. Furthermore, if the DNA sequence of
~ genes are known, then those sequences can be used to
estimate the 7s directly and hence Fg;, which is in
effect what Nei (1982) suggests. In what follows, T will
find values of Fg, in different models of population
structure by computing average coalescence times and
then using equation (8).
The value of F, is often used to estimate average
levels of gene flow. Wright (1951) showed that at
equilibrium in an island model of population structure

1/ 1
i)
where m is the migration rate and N is the effective
population size. If we denote the estimate of Nm
obtained from equation (9) by M, then there is a
simple relationship between M and the average
coalescence times.

t0
-t

M= (10)

(iv) Average coalescence times in a subdivided
population

In equations (8) and (10), the value of 7,, the average
coalescence time of two genes in the same subpopu-
lation, enters. That is especially convenient because
the value of 7, is, under a very general model of
migration, independent of the migration pattern and
depends only on the total number of individuals in the
population being considered. Strobeck (1987) con-
sidered a model of a population divided into 4
subpopulations, with the ith subpopulation containing
N, individuals. He assumed that migration among the
subpopulations was isotropic and conservative, and
considered the infinite sites model of mutation, in
which each site can change only once. He showed that
the expected number of sites that differ between two
randomly chosen genes from the same population is
4N, p where N, =X N, and x4 is the mutation rate.
Because mutation in this model is a Poisson process
the expected number of differences is 27, # and hence
f, = 2N,, independently of the elements of the
migration matrix. Hey (1991) obtained the same result
using the general theory of Markov chains. Takahata
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(1988) analyses models of more than two genes in
population containing two demes.

This result greatly simplifies the calculation of F,
from (8). The value of 7 depends on the model of
population structure being considered and on which
populations are sampled. The value of 7 will be the
sum of two terms, with one term representing genes
that are in the same subpopulation and one term
representing genes that are in different subpopulations.
We already know the contribution of genes in the
same subpopulation because that is 7, = 2N,. Genes
that are in different subpopulations cannot coalesce
until they are present in the same subpopulation, after
which the mean coalescence time is again #,. Thus, all
that is needed to compute Fg, and M in any model of
a subdivided population is the average time it takes
for two genes present in different subpopulations to be
first present in the same population. That problem is
a standard problem in the theory of Markov processes
and one that has already been solved in numerous
special cases. The fact that we are concerned with the
process going backwards rather than forward in time
makes no difference in the calculation as long as we
use the appropriate backwards migration matrix.

3. Populations at equilibrium
(i) Finite island model

In the finite island model, there are d demes each
containing N individuals. Hence, N, = dN and 7, =
2dN. If we sample two genes at random from the set
of d demes, there is a probability (1/4) that both will
be drawn from the same deme and (d—1)/d that they
will be drawn from different demes. Therefore,

(1)

where 7, is the average time until two genes drawn
from different demes coalesce.

Consider two genes that are in different demes at
time ¢ in the past. They will be present in the same
deme at 1+ 1 only if either one of them has emigrated
from the deme the other occupies or if they both have
emigrated from the same deme. Let m be the
probability that each gene is an emigrant from some
other deme. The probability that one gene did not
emigrate in the previous generation is 1 —m and the
probability that the other emigrated from that same
deme is m/(d—1). The probability that both emigrated
from the same deme is m®/(d—1). Hence, the net
probability that the two genes were in the same deme
in the preceding generation is

2m(l—m) m*  2m
d—1 d—1"d-1’

if m is small. Therefore the average time until two
genes are present on the same deme is approximately
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(d—1)/(2m). Once they are present in the same deme,
their average coalescence time is 7, = 2Nd. Therefore

i, = 2Nd+512_71, (12)
and
f=2Nd+ (‘12;’31)2, (13)
so (8) implies

i (14)

For = 1+aNmd/(d—1)*’

a result that was obtained by Takahata (1983) and
Crow & Aoki (1984) under the assumption of small
mutation rates.

(ii) Stepping-stone models

The value of F,, in a stepping-stone model of
population structure is in general a function of the
locations of the demes that are sampled and the
mutation rate (Slatkin & Barton, 1989). We can use
the coalescent approach to find values of Fg, for
samples taken from pairs of demes a specified distance
apart. Consider first a circle of d demes with migration
rate m/2 between adjacent demes and assume that d is
even. A circular array simplifies the analysis because
we can assume that only the separation of demes
sampled is important. The same approach can be used
for a linear array. Assume that a value of Fg, is
computed for samples from only two demes separated
by i steps (i=0, 1,...,d/2). According to equation
(8),

St
A

i

£+

> (15)

s
0

FST(i) =

~

where 7, is the average coalescence time for two genes
sampled from demes i steps apart, because 7=
(f,+1,)/2 in this case.

As in the island model, 7, is the sum of two parts, the
average time for two genes to occupy the same deme
and the average time to coalesce given that they
occupy the same deme. The second time is {, = 2Nd.
The first time can be found from the standard theory
of random walks (Feller, 1957, ch. 14). The average
time until two genes i steps apart initially are first
found in the same deme is (d—i)i/2m so

. (d—i)i
f, = 2Nd+ (16)
and
. 1
Fop(D) = 17

1+8Nmd/[(d—i)i]’
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If d is large and i < d, then
Fynl) = —2
st = T ¥ 8NmJi (18)

and (10) implies that M(i) = 2Nm/i when i < d.

In a two-dimensional stepping-stone model, the
results are similar but more difficult to obtain.
Consider a two-dimensional ‘torus’ containing d demes
in each direction, each of size N. In this case N, =
Nd®. Assume that in each generation, a gene remains
in its deme with probability 1—m and emigrates to
one of the four adjacent demes with probability m/4.
Let 7, be the mean coalescence time of two genes
sampled from i and j steps apart in the two directions
(4, j=0,...,d/2). We know that 7, = {, = 2Nd&®. To
compute 7, we need to solve a standard problem in
the theory of random walks on a torus. The results are
derived in the Appendix. For small values of m, the
results are especially convenient:

1
Fo ()=
sr{i:/) 13 32Nm/S(i.j)" (194)
and hence
- 8Nm
=— 1956
5G.)) (196)

where S(7,j) is a function whose value depends on
only i, j, and d [see equation (A 10) in the Appendix].
Although S does not appear to be expressible in a
simple form, it is easy to evaluate numerically. The
Appendix shows that if d is large, S(i,0) is approxi-
mately independent of d.

The results are very similar in character to those
obtained by Slatkin & Maddison (1990). In that
paper, we used a cladistic method to estimate Nm
from a cladogram of genes sampled from a subdivided
population. We denoted the estimate of Nm obtained
by assuming an island model of population structure
by M. The definition of M that follows from equation
(9) is exactly the same: it is the estimate of Nm
obtained by assuming an island model. Using extensive
simulations, Slatkin & Maddison (1990) found that M
was approximately proportional to the inverse of
distance in a one-dimensional stepping-stone model
and was approximately proportional to the inverse of
the square root of distance in a two-dimensional
stepping-stone model. Equation (18) implies that M is
defined here is also inversely proportional to distance
in a one-dimensional model.

The results for the two-dimensional model are also
similar to those of Slatkin & Maddison (1990). Fig. 1
shows some numerical results obtained by summing
the series defining S(i, 0) in (19) [and also showing the
integral approximation, equation (A 12)]. The left
hand graph shows the numerical results plotted on a
long-linear scale, on which a straight line indicates
logarithmic dependence of S(i, 0) on i. The right hand
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Fig. 1. Values of S(i,0) = £'/d?, where £’ is sum in equation (A 8). In both graphs, the thin solid lines show the exact
values obtained from the sum, and the dashed lines show the approximate results obtained by numerically evaluating the
integral in equation (A 12). In the right-hand graph, the heavier solid line is a graph of 4+/i.

graph shows the same results plotted on a log-log
scale and compares the numerical results with a plot
of 44/i. Clearly, these results are best fit by a
logarithmic function of i, but for small /, they are also
close to the square root dependence found by Slatkin
& Maddison (1990).

We can conclude that in a model of isolation by
distance, the effective migration rate obtained by
assuming an island model, M, is an appropriate
measure of genetic differentiation if the goal is to
determine the extent and pattern of gene flow. How M
is defined depends on the kind of data available and

the way it is analysed.

4. Rate of approach to equilibrium

The results so far has assumed that the population of
interest is at an equilibrium under migration and
genetic drift. A disturbing feature of these results is
that values of F, computed from equation (8) depend
on the ratio of average coalescence times that may in
fact be very long, possibly much longer than a
population could remain at equilibrium under realistic
conditions. For that reason, it is of interest to
understand what determines the rate of approach of
F, to its equilibrium value.

Assume that we are concerned with a subdivided
population that has been present for 7 generations. At
time 7 in the past, individuals forming the population
were drawn at random from a single population. The
question of interest is the extent of genetic tdentity
that accumulates after the population is subdivided,
so it is reasonable to assume that all genes are not
identical by descent in the population at ¢ = 7. Define
P(t,7) to be the probability that the two genes
coalesce in generation ¢ given that they coalesce before
7 and, as before, g(¢) is the probability that two genes
have not coalesced before generation ¢. Clearly

P, 7) = P(1)/ 3 P() = P()/[1—g(r)). (20)
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The probability that two genes are identical is

f=ZU—p*P@,7). @1
t=1

If we now consider Fg, in a population not at an

equilibrium and use (21) to define the appropriate fs,

we find that in the limit as g goes to 0,

. i,
FST= t~ s

(22)

where [, is the average coalescence time of two genes
in the same subpopulation given that they coalesce
before 7 and 7 is the average coalescence time of two
genes chosen at random. from the collection of
subpopulations given that they coalesce before 7. F ST
defined by (22) depends on 7. As 7 increases, Fqg
approaches Fg,.

Equation (22) allows us to compute Fg, for a
population that has not had time to reach an
equilibrium under the balance between migration and
genetic drift. To illustrate how 7, and 7 are found,
consider the finite island model. Let g, () be the
probability that two genes initially in the same deme
have not coalesced by generation ¢ and let g,(¢) be the
probability that two genes initially in different demes
have not coalesced by generation ¢. Going backwards
in time, the transition probabilities for g.(¢) and g,(¢)
can be written in matrix form:

g(z+1) = Ag(n), (23)
where
_ (8D
0= (30) @0
and
_(1-2m—1/(2N) 2m
A= ( 2m/(d—1) 1—2m/(d—1)) (245)

where, for simplicity, we assume that m and 1/(2N)


https://doi.org/10.1017/S0016672300029827

M. Slatkin

are both small, in which case only one transition can
occur in any generation.

Equation (23) is the same equation that arose in
considering regular systems of mating and has the
~same solution: g(#) = A'g(0), with the relevant initial
condition, g,(0) = g,(0) = 1. From equation (20) it is
clear that P(f) will be nearly P(f) if g(r) is small.
Therefore, the rate of approach of Fg, to its
equilibrium value is determined by the rate of
approach of g,(¢) and g,(¢¥) to zero, which is in turn
determined by the largest eigenvalue of A,

A:

1_L_ m +_1_ 1+16N2m2d2_+_8Nm(d—2)
4N d—1 4N (d—1)? d—1 ’
(25)

Roughly speaking, the rate of approach of Fg, to its

equilibrium value is governed by the smaller of 1/N

and m/d. If 7 » 1/A then F, will be approximately at
its equilibrium value which is given by equation (14).

This method can be used with any other model of a
subdivided population. The matrix 4 needs to be
redefined to describe the particular migration pattern
assumed. That allows us to use existing results
concerning the rate of loss of genetic variability in a
subdivided population to predict the rate at which F.,
approaches equilibrium. For example, in a circle of
demes, Maruyama (1970 a) showed that the dominant
eigenvalue of A is approximately 1—(mn?)/Q2d) if
Nm < d/10 and is approximately 1 —1/(4Nd) if Nm >
d/10. For a two-dimensional array of demes on a
torus, Maruyama (1971) stated that A ~ 1 —1/(2Nd)
if Nm>1and A ~1-2m/d if Nm < 1. Maruyama
(1971) discussed the qualitative difference between the
results for one and two-dimensional stepping-stone
models.

5. Discussion
(i) Estimators of Fy, from DNA sequence data

DNA sequence data can be used to estimate Fg,
because differences in sequence can be used to estimate
divergence times of pairs of genes. There are several
statistics proposed for the analysis of sequence and
restriction site data that are related to Fg,. Nei (1982)
proposed the statistic y,, to characterize nucleotide
diversity within and between subpopulations.
Takahata & Palumbi (1985) proposed computing
Nei’s (1973) G, by treating each polymorphic
restriction site as a single locus. Their procedure
computing G, is equivalent to that for computing
Nei’s (1982) y4,. Lynch & Crease (1990) propose a
closely related statistic, Ng,.

All of these statistics depend on nucleotide diver-
sities within subpopulations, §,,, and between subpopu-
lations, ¥, [following Lynch & Crease’s (1990) no-
tation]. They all have the form 4,/(,+7,). The
difference between yg, and Ny, is that, for y,, the
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value of §, includes that possibility that two genes may
be in the same subpopulation [cf. equation (11)] while
for Ny, it does not. The values of 5, and &, provide
estimators of average coalescence times if mutation is
assumed to be a Poisson process. In fact, §, = 2uf,
and 5, = 2u(f—i,), if we follow Nei’s (1982) definition
of 4,. Hence vy, estimates F, as defined by equation

@®).

(ii) Estimating average levels of gene flow from DNA
sequence data

Values of Fg, estimated from allozyme data are
commonly used to estimate the average level of gene
flow (Nm) by using equation (9). In doing so, some
method is chosen for combining information from
different loci to produce a single estimate of Fg, and
hence Nm (Slatkin & Barton, 1989). It is clear that the
same approach can be used with DNA sequence data.
Nei’s (1982) y 4, or Lynch & Crease’s (1990) N, can
be computed for a particular data set and then used to
estimate Nm. The problem with this approach is that
the resulting estimates of Nm will not be very accurate
because currently available studies provide sequences
of only one part of the genome, usually the mito-
chondrial genome which for the purposes here is a
single gene. Furthermore, statistics such as y¢, and
N, do not make full use of the information in the
data. DNA sequences provide more than just in-
formation about coalescence times between different
pairs of genes. The sequences also provide information
about the gene tree. Maddison and I (Slatkin &
Maddison, 1989) have shown that a method that uses
some of this phylogenetic information provides
estimates of Nm that are comparable in accuracy to
estimates made using F,, based on 10 allozyme toci.
Unpublished simulations by Hudson, Slatkin and
Maddison show that Slatkin & Maddison’s (1989)
cladistic method yields much more accurate estimates
of Nm than does F, if there is no recombination.

(iii) Inferring patterns of gene flow

There have been a variety of statistics proposed to
estimate genetic distances or similarities. Nei (1987)
reviews several statistics that have been developed for
both gene frequency and DNA sequence data. The
approach taken here can show the relationship
between different statistics and average coalescence
times and suggest an appropriate measure of genetic
similarity if the goal is to understand the pattern of
gene flow.

One measure of genetic distance is the value of Fy,
for a pair of populations. We used that measure to
describe the results for stepping-stone models. For
any pair of populations,

LY
&T—ﬁ+a’ (26)
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where 7, the average coalescence time for two genes
drawn at random from the same population and 7, is
the average coalescence time for two genes, one drawn
from each population. Thus, F, measures the increase
in the mean coalescence time attributable to genes
being in different population relative to the average
coalescence time.

We can contrast Fg, as a measure of genetic
distance with Nei’s (1972) distance, D, which is related
to identities by descent by D = —In(f,/f;), where f, is
the probability of identity of two genes drawn from
the same population and f, is the probability of
identity of two genes drawn from different popu-
lations. In the limit of small mutation rates, equation
(7) implies that f; & 1 —uf, and f, ~ 1 — i, and hence

@7

If D is measured between populations that have been
separated for a long time, then 7, is approximately the
time of separation of those populations, in which case,
[, > 1, and D = pi,. That result is already known
(Nei, 1972), namely that D increases in proportion to
the time of separation of two populations, if mutation
rates are small. I have rederived it here to show the
relationship between Fy, and D as measures of genetic
distance.

The value of Fg, depends on the difference in
coalescence times scaled by the mean coalescence time
while D depends on the difference in coalescence times
scaled by the mutation rate. Hence, for small mutation
rates, Fg, depends only on those factors that make
coalescence times different, factors such as migration
patterns, population densities and breeding systems.
In contrast, D necessarily depends both on those
factors and on mutation rates. As Nei (1987) discusses,
other genetic distances tend to be similar in character
to either Fg, or D so other distances can be easily
related to average coalescence times.

Which measure of genetic distance is appropriate
depends on what use is made of the results. If data are
sampled from different species and the goal is to
estimate divergence times of those species, then Nei’s
or a genetic distance with similar properties is
appropriate because such distances are, under bio-
logically reasonable assumptions, proportional to
times of separation. If, on the other hand, data are
sampled from a single species and the concern is with
the extent and pattern of gene flow, then the measure
of genetic distance should be chosen to reflect the
amount of gene flow and other relevant features of
population structure. The results described here and
those of Slatkin & Maddison (1990) indicate that
the pairwise estimate of migration rate assuming an
island model of population structure, called M in both
cases, is an appropriate measure of genetic similarity.
Whether M is defined in terms of F, computed for
pairs of populations or by Slatkin & Maddison’s
(1990) results for an island model depends on the data
available. For allozyme data F, is appropriate and

D ~ u(t, —1,).

12
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for DNA sequence data the cladistic method is
appropriate. For reasons discussed above, using F,-
like measures on DNA sequence data (ys, or Nsy)
does not lead to accurate estimates of M if there is no
recombination because they do not make full use of
information in the data. Slatkin & Maddison (1990)
illustrate how their method can be used to detect
isolation by distance.

6. Conclusions

This paper has four goals. One is to show the
relationship between the average coalescence times of
pairs of genes and Wright’s Fg,, which measures the
extent of population subdivision. The second is to pre-
dict values of F, by computing average coalescence
times in different models of subdivided populations.
The third is to relate different measures of DNA
sequence differences to the theory of subdivided
populations. The fourth is to show that the ap-
propriate measure of genetic similarity is the effective
migration rate, M, if the goal is to understand the
pattern of gene flow in a subdivided population. The
simplicity of the results found here follows from
separating the effects of the different processes that
determine the extent of geographic variation in gene
frequencies.

Appendix

The problem is to find the mean coalescence time in a
two-dimensional array of demes on a ‘torus’, that is
the direct product of a circle with itself. We can do so
by wusing the notation and formal analysis of
Maruyama (1970 b). Although this is not the standard
method used in the general theory of random walks, it
is quite ecasy and makes use of methods familiar to
population geneticists. Assume that a fraction 1—m
of the individuals in each deme remain in the deme
each generation and a fraction m/4 go to each of the
four adjacent demes. For simplicity, we will consider
only the case in which m < 1 but the same method can
be used when that assumption is not made. There is a
total of ¢* demes in the model. Define the matrix M to
be a dxd periodic matrix with elements M, (i, j =
0,..., d—1). The non-zero elements of M are

M,=1-2m,
M .,= M, ,=2m,

(A 1a)
(A 1b)

where the subscripts are interpreted as being evaluated
modulo d. Let T be the matrix of average coalescence
times of genes separated initially by i and j steps:
(D), = 1,;. The standard theory of Markov chains
(Feller, 1957) can be combined with Maruyama’s
(1970 b) analysis of this population structure to write

an equation that must be satisfied by T
T=MTM-T,+U, (A2)

where T; is the matrix whose only non-zero element is
(T))eo = 4o/(2N) and U is a matrix containing all 1s.
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Maruyama (1970b) showed that T can be expressed
as the sum of eigenfunctions of the linear operator in
(A 2):

T=3Xa,E"?, (A3)
i
where E“? are matrices whose ki/th element is
cos(2mik/d)cos (2mjl/d), which are the eigen-
functions associated with the ijth eigenvalue, Ay =
1—m[2— cos(2ni/d)— cos(2nmj/d)]. That is,
ME®“?M = A, E*?. Note that A,, = 1 and E®® = U.
The coefficients, a,, are given by

(BT

a,; = (ECPEEDY (A4

where the inner product of two matrices is defined by

(4B = ZAij By;.

ij
Equation (A 4) follows from (A 3) and the fact that
(E@PE®DY =0 unless i=k and j=1 It will be
convenient to write

<E(i.j)E'(i,j)> — dzAij (A 5)

where Ay, =1, Ay = Ay, = 3, and A, = 11,/ > 0).

By substituting (A 3) in (A 2) and then taking the
inner product of the resulting equation with E®? we
obtain

(A3)

I N L (A6)

if “vij
where 6, =1 if i = 0 and 0 otherwise.
If i = j =0, (A 6) leaves the value of a,, unspecified
because A,, =1 but shows immediately that 7, =
2Nd?, as must be true in a population with & demes
each of size N. For i or j not zero, (A 6) implies

-“t_oo -1

i T ANPA(1—2X,)  A(—A,)

a (A7)
To find a,,, we can substitute the remaining values of
a;; in (A 3) and use the fact that we know 7,,. The 00th
element of each term in the resulting equation tells us
that

Foo = oo+ T ay, (A 8)

where 2’ indicates the sum over all i and Jj except for

i = j = 0. Equation (A 8) implies g4, = ), — & a,,and
hence
_ 1 o,
I, =2Nd*+ 3m >
1—cos (2nik/d) cos (2mjl/d) (A9

A, {1 —=[cos (2mi/d)+ cos 2mj/d)}/ 2}

Finally, let 2’ represent the sum in (A 9) so I, =
2N+ 2’ /2m. The value of Fg,(k, ) for a pair of
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demes k and / steps apart is, from equation (8),
(Fi—Fo0)/ (T, + Foo)- Therefore

1

FST(kal) = 1+8de2/2/

(A10)

The function S(k./) in equation (19) in the text is
2.

N.H. Barton (personal communication) has
pointed out that, for large 4, the S(k,0) can be
approximated by

1 j ! J 1 4[1 —cos (2kmx)]
2 )y Jo 1 ~[cos (2mx)+cos 2my)]/2

and that the integral with respect to y can be evaluated
to obtain

dx dy A1)

o 8[1 —cos (2kmx)]
Stk 0) NL V[B—4cos (27x) + cos? (2mx)]

dx. (A12)

In (A 12) d does not enter, so S(k,0) is approximately
independent of d if d is large. The integral in (A 12)
does not appear to be expressible in terms of
elementary functions, but numerical integration shows
that the approximation to the exact value S(k, 0) is
quite good (see Fig. 1).
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