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OCCUPATION TIMES, DRAWDOWNS,
AND DRAWUPS FOR ONE-DIMENSIONAL
REGULAR DIFFUSIONS

HONGZHONG ZHANG,∗ Columbia University

Abstract

The drawdown process of a one-dimensional regular diffusion process X is given by
X reflected at its running maximum. The drawup process is given by X reflected at its
running minimum. We calculate the probability that a drawdown precedes a drawup in an
exponential time-horizon. We then study the law of the occupation times of the drawdown
process and the drawup process. These results are applied to address problems in risk
analysis and for option pricing of the drawdown process. Finally, we present examples
of Brownian motion with drift and three-dimensional Bessel processes, where we prove
an identity in law.
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1. Introduction

In a filtered probability space (�, F, F , P), with filtration F = {Ft }, we consider a one-
dimensional regular time-homogenous diffusion X on I := (l, ∞) with natural (or entrance)
boundaries. Its evolution is governed by the stochastic differential equation

dXt = μ(Xt) dt + σ(Xt ) dBt , X0 = x ∈ I, (1)

with an infinitesimal generator

LX = 1

2
σ 2(x)

∂2

∂x2 + μ(x)
∂

∂x
.

Here B is a standard F-Brownian motion, and (μ(·), σ (·)) is a pair of real-valued continuous
functions, such that σ(x) > 0 for all x ∈ I . We introduce the running maximum and minimum
processes of X by

Xt := sup
0≤s≤t

Xs and Xt := inf
0≤s≤t

Xs, t ≥ 0.

The drawdown process of X, and its dual, the drawup process, are then defined as Y := X − X

and Ŷ := X − X, respectively. The first passage times of Y and Ŷ above a positive threshold
are respectively called the drawdown and drawup times. The occupation time of a stochastic
process is the amount of time the stochastic process stays within a certain range.
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Occupation times, drawdowns, and drawups 211

Laplace transforms of stopping times and occupation times for diffusion processes are well
studied due to analytical tractability and their applications in risk theory, mathematical finance,
and engineering. Some classical results for general diffusion processes using the Feynman–Kac
representation and excursion theory can be found in [22], [23]. Recent advances on this topic
include jumps in the underlying model [3], [12], [13], or incorporate memory into the model [7].
Among all the stopping times studied, one that is especially interesting is the drawdown time,
which finds applications in financial risk management [4], [9], [16], [26], [33], the theory of
optimal stopping [17], [21], [30] and the problem of the quickest change-point detection [11],
[24], [31], [38], [40]. The Laplace transform of the drawdown time for general diffusion
processes was first derived in [14]. Recently, [29] derived the probability that the minimum
of the drawdown and drawup times precedes an exponential random variable for a standard
Brownian motion. In [37], the authors derived the joint Laplace transform of the drawdown
time and the so-called speed of market crash for a general diffusion process, using progressive
enlargement of filtrations. Laplace transforms involving drawdowns for general spectrally
negative Lévy processes are studied, using excursion theory in [18], which generalizes a result
for diffusion-type processes in [10], [27], [35], [36].

In this paper we obtain a class of results regarding the sequential order of the drawdown and
drawup times in a finite time horizon, and laws of occupation times of the drawdown process Y

and the drawup process Ŷ , for a general one-dimensional regular diffusion X. In particular,
we derive the probability that the drawdown time precedes the drawup time in an exponential
time horizon. We then compute the Laplace transforms of the occupation times of X below y

and below the starting point, until the first exit time and the drawdown time, respectively.
Using these results, we proceed to study the law of occupation time of the drawdown process Y

above y, and of the drawup process Ŷ below y, until the drawdown time or an exponential time
independent of X.

Rather than relying on standard techniques in excursion theory, we use a perturbation
approach to obtain the Laplace transform results. To the author’s knowledge, the first use
of this approach dates back to [14], where the conditional Laplace transform of the drawdown
time is obtained by an approximation argument based on the Laplace transforms for the first
hitting times. Recent applications of this approach can be seen in [12], [13] for (refracted)
Lévy process and [15] for diffusion process. In this paper we subsequently reduce the laws of
complicated stopping times and occupation times at hand to those of the simpler case. This
reduction is made possible using an argument with a strong Markov property and progressive
enlargement of filtration [28], [37].

The results obtained can be applied in risk analysis and for option pricing of the drawdown
processes. In particular, we consider a time-homogenous diffusion with reduced form default
model. The probability of realizing a drawdown before a drawup before the default time can
be computed when the hazard rate is a constant. Using the so-called Omega model [1], [8], we
can describe the hazard rate of the default in such a way that it depends on the asset process,
its drawdown, or drawup processes. The probability of default before a large drawdown can
then be computed. Moreover, our results can be used to price Parisian-like digital call options
and α-quantile options of the drawdown process, a non-trivial extension of the option pricing
problem for maximum drawdowns [4], [25], [32], [33], [39].

As examples of our general result, we present explicit equations for some of the main results in
the cases of Brownian motions with drift and three-dimensional Bessel processes. Moreover, we
prove through Laplace transform that, in these two models, the law of the occupation time of the
drawdown process above a level is the same as that of the drawdown time of a certain threshold.
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212 H. ZHANG

The paper is structured in the following way: standard identities regarding the first hitting
time and the first exit time of a one-dimensional regular diffusion are reviewed in Section 2.
In Section 3 we compute the probability that a drawdown precedes a drawup in a finite time-
horizon. In Section 4 we derive the Laplace transforms of several occupation times related to
the drawdown and drawup processes. In Section 5 we discuss applications in risk analysis and
for option pricing of the results obtained. In Section 6 we present explicit equations for some
of the main results in the cases of Brownian motion with drift and three-dimensional Bessel
processes. The proofs of omitted propositions and theorems can be found in Appendix A.

2. Preliminaries

Let X be the linear diffusion process defined in (1). The first hitting time and the first passage
times to a level y ∈ I by X are, respectively, given by

τy := inf{t > 0 : Xt = y}, τ±
y := inf{t > 0 : Xt � y}.

Throughout the paper we use Px(·) to denote the measure P(· | X0 = x), and Ex the expectation
under Px . Moreover, for q ≥ 0, we denote by eq an exponential random variable with
parameter q, which is independent of X. (As a convention, we assume that P(e0 = ∞) = 1.)

It is well known that, for any q > 0, the Sturm–Liouville equation (LXf )(x) = qf (x) has
a positive increasing solution φ+

q (·) (decreasing solution φ−
q (·), respectively). In fact, for an

arbitrary fixed κ ∈ I , we can choose

φ+
q (x) =

⎧⎪⎨
⎪⎩

Ex{e−qτκ } if x ≤ κ,

1

Eκ{e−qτx } if x > κ,
φ−

q (x) =
⎧⎨
⎩

1

Eκ{e−qτx } if x ≤ κ,

Ex{e−qτκ } if x > κ,

(2)

for all x ∈ I . A scale function of X, s(·), is an increasing function from I to R, such that
(LXs)(x) = 0 for all x ∈ I . In particular, we can choose s′(x) = exp(−∫ x

κ ′(2μ(y)/σ 2(y)) dy)

for some κ ′ ∈ I . Fix a scale function s(·), there exists a constant wq > 0 such that (see, for
example, page 19 of [2])

wq · s′(x) = (φ+
q )′(x)φ−

q (x) − (φ−
q )′(x)φ+

q (x). (3)

Furthermore, we define the function

Wq(x, y) := w−1
q det

[
φ+

q (x) φ+
q (y)

φ−
q (x) φ−

q (y)

]
for all x, y ∈ I,

with its derivatives

Wq,1(x, y) := ∂

∂x
Wq(x, y), Wq,2(x, y) := ∂

∂y
Wq,1(x, y).

When q = 0, we extend the definition of Wq using

W0(x, y) := s(x) − s(y). (4)

The functions Wq and φ−
q have the following properties.
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Lemma 1. For any x, y, z ∈ I , and q > 0

Wq(x, y) = −Wq(y, x),
∂

∂x

Wq(x, y)

Wq(x, z)
= s′(x)

W 2
q (x, z)

Wq(y, z),

lim
x↓l

φ−
q (x) = ∞, lim

q↓0
Wq(x, y) = W0(x, y), lim

q↓0
Wq,1(x, y) = s′(x).

Proof. The proof can be found in Appendix A.

We recall the following result regarding the first exit of X from page 603 of [14].

Lemma 2. Suppose that x, y, z ∈ I and (x − y)(z − x) > 0, for q ≥ 0, we have

Ex{e−qτy ; τy < τz} = Px(τy < τz ∧ eq) = Wq(x, z)

Wq(y, z)
.

3. Drawdowns and drawups

In this section we study the law of drawdowns and drawups of X, where X is the linear
diffusion process defined in (1). To this end, we introduce the running maximum and minimum
processes of X by

Xt := sup
o≤s≤t

Xs and Xt := inf
0≤s≤t

Xs, t ≥ 0.

The drawdown and drawup processes of X are defined respectively as

Yt := Xt − Xt and Ŷt := Xt − Xt, t ≥ 0,

and the drawdown of a units and the drawup of b units are the following first passage times:

σa := inf{t ≥ 0, : Yt ≥ a}, σ̂b := inf{t ≥ 0 : Ŷt ≥ b}, for all a, b > 0.

In the remainder of this section we will derive the probability that σa precedes σ̂b in a
finite time interval [0, t] for any t > 0. This is a nontrivial extension of the infinite time-
horizon result in [27], which enables us to study the drawdowns and drawups for diffusions
with killing, as well as limiting conditional distributions of σa as the thresholds a, b tend to
infinity in a proper manner. The task is accomplished by computing the Laplace transform of
the function px;a,b(t) := Px(σa < σ̂b ∧ t). In particular, for any x, a such that x − a ∈ I , we
will calculate

Px(σa < σ̂b ∧ eq) = q

∫ ∞

0
e−qtPx(σa < σ̂b ∧ t) dt.

3.1. The case of a ≥ b > 0

Theorem 1. On the event {σa < σ̂b ∧ eq}, we have σb < σ̂b and Xσb
∈ (x − b, x). Moreover,

for u ∈ (x − b, x) we have,

Px(σa < σ̂b ∧ eq, Xσa ∈ b − a + du)

= s′(u + b)Wq(x, u)

W 2
q (u + b, u)

exp

(∫ u

u+b−a

Wq,1(v, v + b)

Wq(v, v + b)
dv

)
du. (5)
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214 H. ZHANG

On the event {σ̂a < σb∧eq}, we have σ̂b < σb and Xσ̂b
∈ (x, x+b). Moreover, for u ∈ (x, x+b)

we have,

Px(σ̂a < σb ∧ eq, Xσ̂a
∈ a − b + du)

= s′(u − b)Wq(u, x)

W 2
q (u, u − b)

exp

(
−

∫ u+a−b

u

Wq,1(v, v − b)

Wq(v, v − b)
dv

)
du. (6)

Proof. First, it is easily seen that for t > 0, and u ∈ (x − b, x),

{σb ∈ dt, Xt ∈ du, σ̂b > t} = {τu ∈ dt, Xt ∈ b + du}, Px-almost surely (Px-a.s.).

It follows from integration by parts that,

Px(σb < σ̂b ∧ eq; Xσb
∈ du) =

∫ ∞

0
qe−qtPx(σb < σ̂b ∧ t, Xσb

∈ du) dt

=
∫ ∞

0
e−qtPx(σb ∈ dt, Xt ∈ du, σ̂b > t).

On the other hand, we observe the fact that σb ∧ σ̂b = inf{t ≥ 0 : Xt − Xt ≥ b}, Px-a.s., is the
first range time. From page 117 of [2], we have,

Px(σb ∈ dt, Xt ∈ du, σ̂b > t) = ∂

∂u
Px{σb ∧ σ̂b ∈ dt, Xt ≤ u} du

= ∂

∂b
Px(τu ∈ dt, τu+b > t) du.

From Lemmas 1 and 2 we obtain (5) for the case a = b.
If a > b, then any path in the event {σa < σ̂b ∧ eq} can be decomposed into two fragments:

{Xt }0≤t≤σb
and {Xt }σb≤t≤σa . Conditioning on {Xσb

= u}, the second fragment is a process
starting at u, and decreasing to u + b − a before the drawup of b units. Formally, using the
Markov shifting operator (Xt ◦ θ(s) = Xt+s), we have,

σa = σb + τ−
u−a+b ◦ θ(σb) for all u ∈ (x − b, x).

Using the strong Markov property and the memoryless property of eq , we have,

Px(σa < σ̂b ∧ eq, Xσa ∈ b − a + du)

= Px{σb < σ̂b ∧ eq, Xσb
∈ du} · Pu(τ

−
u−a+b < σ̂b ∧ eq).

Now (5) follows from Proposition 1 below. Equation (6) can be proved using a similar argument.

Proposition 1. For x, y ∈ I , we define m = max(x, y) and n = min(x, y). Then we have

Pm(τ−
n < σ̂b ∧ eq) = exp

(∫ m

n

Wq,1(v, v + b)

Wq(v, v + b)
dv

)
, (7)

Pn(τ
+
m < σa ∧ eq) = exp

(
−

∫ m

n

Wq,1(v, v − a)

Wq(v, v − a)
dv

)
. (8)
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3.2. The case of b > a > 0

To obtain the result for general b > a, we recall the following result for the limiting case
b = ∞ from page 602 of [14].

Proposition 2. It holds that

Px(σa < eq) =
∫ ∞

x

s′(u)

Wq(u, u − a)
exp

(
−

∫ u

x

Wq,1(v, v − a)

Wq(v, v − a)
dv

)
du.

A useful observation is that

Px(σa < σ̂b ∧ eq) = Px(σa < eq) − Px(σ̂b < σa < eq). (9)

The second term on the right-hand side of the above equation is computed in the following
result.

Theorem 2. On the event {σ̂b < σa < eq}, Xσ̂b
∈ (x + b − a, x + b). Moreover, for

u ∈ (x, x + a) we have

Px(σ̂b < σa < eq, Xσ̂b
∈ b − a + du)

du

= s′(u − a)Wq(u, x)

W 2
q (u, u − a)

exp

(
−

∫ u+b−a

u

Wq,1(v, v − a)

Wq(v, v − a)
dv

)

×
∫ ∞

u+b−a

s′(v)

Wq(v, v − a)
exp

(
−

∫ v

u+b−a

Wq,1(w, w − a)

Wq(w, w − a)
dw

)
dv. (10)

Proof. Note that the event {σ̂b < σa < eq} = {σ̂b < σa ∧ eq} ∩ {σa < eq}, Px-a.s. Using
the strong Markov property and the memoryless property of eq , we have

Px(σ̂b < σa < eq, Xσ̂b
∈ b − a + du)

= Px(σ̂b < σa ∧ eq, Xσ̂b
∈ b − a + du) · Pu+b−a(σa < eq).

The result follows from Theorem 1 and Proposition 2.

Remark 1. By letting q ↓ 0 in (5), (6), (9), and (10), and using (4), we obtain Theorems 4.1
and 4.2 in [27]. Second, by letting b → ∞ in (9) and (10), we obtain the Laplace transform
of σa . The results in Theorems 1 and 2 also enable us to compute Ex{σa | σa < σ̂b} and the
limit law of σa , given σa < σ̂b, as a, b → ∞ in a certain way. These distributional results can
be applied to the problem of sequential detections and identification, which we leave as future
work.

4. Occupation time equations

In this section we begin by computing the Laplace transforms of the occupation time below
a level until the first exit time for a linear diffusion process X defined in (1). Although relevant
equations exist for special diffusions, the results for general linear diffusions that we provide
here are new. Using this result, we then proceed to study occupation times of X, its drawdown Y ,
and its drawup Ŷ until the drawdown time σa or until an exponential time which is independent
of X. These new results give several interesting identities and provide means of measuring
financial risk and pricing options as we shall in the next section.
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216 H. ZHANG

4.1. Occupation time below a level until the first exit time

In this subsection we study the law of occupation time until the first exit time. In particular,
for y ∈ (a, b) � I , the occupation time below y before exiting (a, b) is denoted by

Aa,b
y :=

∫ τ−
a ∧τ+

b

0
1{Xt<y} dt.

The law of A
a,b
y is summarized in the following result, the proof of which can be found in

Appendix A.

Proposition 3. For x, y ∈ (a, b) � I , q > 0, and p ≥ 0, we have

Ex{exp(−qAa,b
y − pτ+

b ); τ+
b < τ−

a }
= Wq+p(x, a)

Wq+p(y, a)

× s′(y)

Wp,1(y, b) + Wp(b, y)(Wq+p,1(y, a)/Wq+p(y, a))
if x ∈ (a, y],

= Wp(x, y)

Wp(b, y)
+

[
Wp(b, x)

Wp(b, y)

× s′(y)

Wp,1(y, b) + Wp(b, y)(Wq+p,1(y, a)/Wq+p(y, a))

]
if x ∈ (y, b). (11)

and

Ex{exp(−qAa,b
y ); τ+

b > τ−
a }

= Wq(y, x)

Wq(y, a)

+
[
Wq(x, a)

Wq(y, a)

× s′(y)

Wq,1(y, a) + (s′(y))/(s(b) − s(y))Wq(y, a)

]
if x ∈ (a, y],

= (s(b) − s(x))s′(y)

(s(b) − s(y))Wq,1(y, a) + s′(y)Wq(y, a)
if x ∈ (y, b). (12)

Proof. The proof can be found in Appendix A.

Remark 2. Lemma 2 can be recovered from Proposition 3 by the limit y ↑ b in (11) and (12).
Moreover, Corollary 3.1 in [15] can be easily obtained by letting x = y, b ↑ ∞, and a ↓ l.

Letting a ↓ l in (11) and using Lemma 1, we obtain the following result.

Corollary 1. For x ∈ (y, b) � I , p > 0, and q ≥ 0, we have

Ex

{
exp

(
−q

∫ τ+
b

0
1{Xt<y} dt − pτ+

b

)}

= Wp(x, y)

Wp(b, y)
+ (Wp(b, x)/Wp(b, y))s′(y)

Wp,1(y, b) + Wp(b, y)(φ+
q+p

′
(y)/φ+

q+p(y))
.
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4.2. Occupation time below a level until the drawdown time

For x − a, y ∈ I , the occupation time below y before the drawdown process Y hits a is
denoted by

Ba
y :=

∫ σa

0
1{Xt<y} dt.

While the occupation time of X below y until an exponential random variable independent of X

is well-studied in the literature [15], the new quantity Ba
y defined as above relates the occupation

time of X to its drawdown process Y , which can be used to characterize the drawdown risk
of X. The law of Ba

y is summarized in the following results, the proofs of which can be found
in Appendix A.

Proposition 4. For q ≥ 0 and x ∈ I ,

Ex{exp(−qBa
x )}

= exp

(
−

∫ x+a

x

(s′(u)/s′(x))(Wq,1(x, u − a)/Wq(x, u − a)) du

1 + ((s(u) − s(x))/s′(x))(Wq,1(x, u − a)/Wq(x, u − a))

)

+
∫ x+a

x

1

(1 + ((s(u) − s(x))/s′(x))(Wq,1(x, u − a)/Wq(x, u − a)))2

s′(u) du

Wq(x, u − a)
.

Proof. The proof can be found in Appendix A.

4.3. Occupation time of the drawdown process until the drawdown time

For any y ∈ (0, a) and x − a ∈ I , the occupation time of the drawdown process Y above y

before Y hits a is denoted by

Ca
y :=

∫ σa

0
1{Yt>y} dt. (13)

The occupation time Ca
y measures the amount of time for the drawdown process Y to finish the

‘last trip’ from y to a. It can be used as a measurement of performance for the CUSUM-type
(Cumulative sum control chart) stopping rule in change-point detection problems [24]. Because
of its obvious financial interpretation, Ca

y can also be used as a measure for drawdown risks.
To obtain the law of Ca

y , we first condition on Xσa , and then count separately the occupation
time before and after the moment when the peak Xσa is realized. To this end, we recall the
following result from page 602 of [14].

Lemma 3. For m > x,

Px(Xσa ≥ m) = exp

(
−

∫ m

x

s′(v)

s(v) − s(v − a)
dv

)
.

Theorem 3. For q ≥ 0, and 0 < y < a,

Ex{exp(−qCa
y ); σa < ∞}

=
∫ ∞

x

(s′(m)/Wq(m − y, m − a))

1 + ((s(m) − s(m − y))/s′(m − y))(Wq,1(m − y, m − a)/Wq(m − y, m − a))

× exp

(
−

∫ m

x

(s′(u)/s′(u − y))(Wq,1(u − y, u − a)/Wq(u − y, u − a)) du

1 + ((s(u) − s(u − y))/s′(u − y))(Wq,1(u − y, u − a)/Wq(u − y, u − a))

)
dm.
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218 H. ZHANG

Proof. Following the conditioning argument in [37], we consider the last passage time
ga := sup{t ≤ σa : Xt = Xt }. Given Xga , the path fragments {Xt }t∈[0,ga ] and {Xt }t∈[ga,σa ]
are two independent conditional processes. Moreover, by Proposition 1 of [37], the optional
projection of nonincreasing process 1{ga>t} : χt := Px(ga > t | Ft ) is a supermartingale, with
a Doob–Meyer decomposition χt = Mt − Lt , where

Mt = 1 +
∫ t∧σa

0

s′(Xs)σ (Xs) dBs

s(Xs) − s(Xs − a)
, Lt =

∫ t∧σa

0

s′(Xs) dXs

s(Xs) − s(Xs − a)
.

Now introduce a nonnegative bounded optional process

�t = exp

(
−q

∫ t

0
1{Ys>y} ds

)
1{t<σa<∞}, t ≥ 0.

Using the same argument as in the proof of Theorem 15 on page 380 of [28], we have that, for
any positive test function f (·) on [0, ∞),

Ex{f (Xga )�ga } = Ex

{∫ ∞

0
f (Xt )�t dLt

}
= Ex

{∫ ∞

0

f (Xt )�t s
′(Xt ) dXt

s(Xt ) − s(Xt − a)

}
.

By using a change of variable, m = Xt in the above equation, and also the fact that Xt = Xt

on the support of measure dXt , we have that,

Ex{f (Xga )�ga } =
∫ ∞

x

f (m)Ex

{
exp

(
−q

∫ τ+
m

0
1{Yt>y} dt

)
1{τ+

m <σa}
}

s′(m) dm

s(m) − s(m − a)
.

(14)
On the other hand, from Lemma 3 we have that, for all u > x,

Px(τ
+
m < σa) = exp

(
−

∫ m

x

s′(v)

s(v) − s(v − a)
dv

)
, (15)

Px(Xga ∈ dm) = s′(m)

s(m) − s(m − a)
exp

(
−

∫ m

x

s′(v)

s(v) − s(v − a)
dv

)
. (16)

From (14) and (15) we have,

Ex{f (Xga )�ga }

=
∫ ∞

x

f (m)Ex

{
exp

(
−q

∫ τ+
m

0
1{Yt>y} dt

) ∣∣∣∣ τ+
m < σa

}

× s′(m)

s(m) − s(m − a)
exp

(
−

∫ m

x

s′(v)

s(v) − s(v − a)
dv

)
dm

=
∫ ∞

x

f (m)Ex

{
exp

(
−q

∫ τ+
m

0
1{Yt>y} dt

) ∣∣∣∣ τ+
m < σa

}
Px(Xga ∈ dm), (17)

where the last line follows from (16). It follows from (17) that,

Ex

{
exp

(
−q

∫ τ+
m

0
1{Yt>y} dt

) ∣∣∣∣ τ+
m < σa

}
= Ex

{
exp

(
−q

∫ ga

0
1{Yt>y} dt

) ∣∣∣∣ Xga = m

}
.
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To obtain the conditional expectation on the left-hand side for any m > x, we let ε = (m − x)/N

for a large integer N > 0. Using the Lebesgue dominated convergence theorem, continuity
and the strong Markov property of X, we have that

Ex

{
exp

(
−q

∫ τm

0
1{Yt>y} dt

) ∣∣∣∣ σa > τ+
m

}

= lim
N→∞

N−1∏
i=0

Ex+iε{exp(−qA
x+iε−a,x+(i+1)ε
x+iε−y ) | τ+

x+(i+1)ε < τ−
x+iε−a}

= exp

(
lim

N→∞

N−1∑
i=0

[Ex+iε{exp(−qA
x+iε−a,x+(i+1)ε
x+iε−y ) | τ+

x+(i+1)ε < τ−
x+iε−a} − 1]

)

= exp

(∫ m

x

[
s′(u)

s(u) − s(u − a)

− (s′(u)/s′(u − y))(Wq,1(u − y, u − a)/Wq(u − y, u − a))

1 + ((s(u) − s(u − y))/s′(u − y))(Wq,1(u − y, u − a)/Wq(u − y, u − a))

]
du

)
,

where we used Proposition 3 in the last equality. Similarly, for the occupation time after the
random time ga , we have that

Ex

{
exp

(
−q

∫ σa

ga

1{Yt>y} dt

) ∣∣∣∣ Xga = m

}

= Em

{
exp

(
−q

∫ τ−
m−a

0
1{Xt<m−y} dt

)∣∣∣∣τ−
m−a < τ+

m

}

= lim
ε′↓0

Em{exp(−qA
m−a,m+ε′
m−y ); τ−

m−a < τ+
m+ε′ }

Pm(τ−
m−a < τ+

m+ε′)

= ((s(m) − s(m − a))/Wq(m − y, m − a))

1 + ((s(m) − s(m − y))/s′(m − y))(Wq,1(m − y, m − a)/Wq(m − y, m − a))
.

The result now follows from integration using the density in (16).

4.4. Occupation time of the drawup process until the drawdown time

For any y ∈ [a, ∞) and x − a ∈ I , the occupation time of the drawup process Ŷ below y

before the drawdown process Y hits a is denoted by

Da
y :=

∫ σa

0
1{Ŷt<y} dt.

The occupation time Da
y can be considered as a counterpart of Ca

y defined in (13). The law of
Da

y is summarized in the following result.
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Theorem 4. For all q > 0 and y ≥ a,

Ex{exp(−qDa
y ); σa < ∞}

= Px(σa < σ̂y ∧ eq)

+
∫ x+a

x

s′(u − a)Wq(u, x)

W 2
q (u, u − a)

× exp

(
−

∫ u+y−a

u

Wq,1(v, v − a)

Wq(v, v − a)
dv

)
Eu+y−a{exp(−qBa

u+y−a)} du,

where the probability is given in (9), and the expectation in the last line is given in Proposition 4.

Proof. Note that Da
y = σa , Px-a.s. on the event {σa < σ̂y}. On the other hand, on the event

{σ̂y < σa}, we have Xσ̂y
= Xσ̂y

− y ≤ Xσ̂y
− a < Xσa − a, Px-a.s. Thus,

Da
y = σ̂y + Ba

Xσ̂y
◦ θ(σ̂y).

Using the strong Markov property we have,

Ex{exp(−qDa
y ); σa < ∞}

= Ex{exp(−qσa); σa < σ̂y} + Ex{exp(−qσ̂y) 1{σ̂y<σa} EXσ̂y
{exp(−qBa

Xσ̂y
)}}

= Px(σa < σ̂y ∧ eq)

+
∫ x+a

x

Px(σ̂y < σa ∧ eq, Xσ̂y
∈ y − a + du)Eu−a+y{exp(−qBa

u−a+y)}.
The result now follows from Theorem 1.

4.5. Occupation time of the drawdown process at an independent exponential time

For any y ∈ (0, ∞) and x − y ∈ I , the occupation time of the drawdown process Y above y

before an independent exponential time eq is denoted by

E
q
y :=

∫ eq

0
1{Yt>y} dt.

The occupation time E
q
y can be identified with the Laplace transform of the occupation time in

a finite time horizon T > 0:
∫ T

0 1{Yt>y} dt , which is closely related to the maximum drawdown
supt∈[0,T ] Yt and other quantiles of Y in the finite time-horizon T . The law of E

q
y is summarized

in the following result, the proof of which can be found in Appendix A.

Theorem 5. For all q, p > 0 and y > 0,

Ex{exp(−pE
q
y )}

= 1 − exp

(
−

∫ ∞

x

Wq,2(u − y, u) + Wq,1(u, u − y)(φ+
q+p

′
(u − y)/φ+

q+p(u − y))

Wq,1(u − y, u) + Wq(u, u − y)(φ+
q+p

′
(u − y)/φ+

q+p(u − y))
du

)

−
∫ ∞

x

exp

(
−

∫ m

x

Wq,2(u − y, u) + Wq,1(u, u − y)(φ+
q+p

′
(u − y)/φ+

q+p(u − y))

Wq,1(u − y, u) + Wq(u, u − y)(φ+
q+p

′
(u − y)/φ+

q+p(u − y))
du

)

× (p/(q + p))s′(m)(φ+
q+p

′
(m − y)/φ+

q+p(m − y))

Wq,1(m − y, m) + Wq(m, m − y)(φ+
q+p

′
(m − y)/φ+

q+p(m − y))
dm.

Proof. The proof can be found in Appendix A.
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5. Application

5.1. Probabilities regarding drawdowns and defaults

A realization of a large drawdown is usually considered to be a sign of market recession.
In this section we use a reduced form model for default and compute the probabilities of
drawdowns and default. In particular, we consider an asset process X, which is given by a
time-homogeneous diffusion process with initial value x and lifetime ζ :

dXt = μ(Xt) dt + σ(Xt ) dBt , t < ζ.

Here ζ is an independent positive random variable which models the ‘default time’ of asset
process X. If we assume that the ‘default time’ ζ = eq for a, q > 0, then the probability
that there is a drawdown of a units before a drawup of b units by the default time is given by
Px(σa < σ̂b ∧ eq), which is readily available from Theorems 1 and 2.

Moreover, we can consider a more realistic model for the default time ζ , to reflect the fact
that realizations of drawdowns of the asset process are very likely to be followed by a default.
In particular, we adopt the Omega model studied in [1], [8], [13] to model the hazard rate of ζ

at time t > 0 as q 1{Yt>y}:

Px(ζ ∈ t + dt | ζ > t) = q 1{Yt>y} dt,

for some y ∈ (0, a). Here a is a large number that characterizes a critical level of a large
drawdown. Then the probability of default before the drawdown of a units is given by

Px(ζ < σa) = 1 − Px(ζ ≥ σa) = 1 − Ex{exp(−qCa
y )}. (18)

The Laplace transform in (18) can be found in Theorem 3.
The hazard rate of similar form can be considered. For example, we can model the hazard

rate of the default time ζ as q 1{Xt<x}. Here the initial value x is a critical benchmark level
which may trigger a default through default intensity. We can also model the hazard rate of the
default time ζ as q 1{Ŷt<y}. This is the case in which the default tends to occur when there is
not enough upside momentum for the asset process. In both cases, the probability of default
before a drawdown of a units can be found using Proposition 4 and Theorem 4.

5.2. Option pricing for the drawdown process

Options on maximum drawdown and drawdown processes have drawn lots of attention in
recent years (see [4], [5], [25], [32], [34], [39]). In this section we use a semi-analytic approach
to price a large class of options on the drawdown process. In particular, we assume that the
market is complete, P is the risk-neutral measure, and r ≥ 0 is the risk-free interest rate.
We model the underlying process as the time-homogeneous diffusion X defined in (1). Then a
Parisian-like (see [6] for a definition of standard Parisian option) digital call on the drawdown
process with barrier y > 0, maturity T > 0, and strike K ∈ (0, T ) is worth

P0(x, y, K, T ) = exp(−rT )Px

(∫ T

0
1{Yt>y} dt > K

)
, (19)

at its inception. Using double randomizations: T = eq and K = ep, then the randomized
option price is given by

P̂0(x, y, q, p) = exp(−rT ) − exp(−rT )Ex{exp(−pE
q
y )}. (20)
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(Note that the underlying process is not necessarily an asset price process. It can be, for example,
the logarithm of an asset price process.) The Laplace transform in (20) is readily available in
Theorem 5. Hence, the price (19) can be computed via double Laplace inversion:

P0(x, y, K, T ) = exp(−rT ) − exp(−rT )�p

(
1

p
�q

(
1

q
Ex{exp(−pE

q
y )}

)∣∣∣∣
T

)∣∣∣∣
K

,

where �p and �q are Laplace inversion operators.
Corridor options such as the α-quantile option have been studied in [19], [20]. Below we

consider pricing of α-quantile options on the drawdown process. To this end, for an α ∈ (0, 1],
we define the α-quantile of the drawdown process during [0, T ] by

Yα
T := inf

{
y > 0 :

∫ T

0
1{Yt>y} dt ≤ (1 − α)T

}
.

In particular, Y 1
T = supt∈[0,T ] Yt is the maximum drawdown at time T . An option on the

α-quantile with maturity T > 0 and an absolute continuous, bounded payoff function f (·)
such that f (0) = 0 is worth

A0(x, f, T ) = exp(−rT )Ex{f (Yα
T )}

at its inception. We note that

Ex{f (Yα
T )} = Ex

{∫ ∞

0
1{Yα

T ≥u} f ′(u) du

}

=
∫ ∞

0
f ′(u)Px(Y

α
T > u) du

=
∫ ∞

0
f ′(u)Px

(∫ T

0
1{Yt>u} dt ≥ (1 − α)T

)
du.

It follows from (19) that

A0(x, f, T ) =
∫ ∞

0
f ′(u)P0(x, u, (1 − α)T , T ) du. (21)

Again, by double Laplace inversion and Theorem 5 we can compute the price in (21).

6. Examples

6.1. Brownian motion with drift

In this section we derive a group of explicit equations for a Brownian motion with drift. In
particular, we consider a Brownian motion with drift μ �= 0 and diffusion coefficient σ > 0:

dXt = μ dt + σ dBt , I = (−∞, ∞).

Let us denote by

δ := μ

σ 2 , γ :=
√

δ2 + 2q

σ 2 .

Then the increasing and the decreasing eigenfunctions of X can be chosen as [2]

φ+
q (x) = exp((γ − δ)x), φ−

q (x) = exp(−(γ + δ)x).
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Fix the scale function s(x) = (1/δ)(1 − exp(−2δx)), we have that

wq = γ, Wq(x, y) = 2 exp(−δ(x + y))
sinh[γ (x − y)]

γ
,

Wq,1(x, y)

Wq(x, y)
= γ cosh[γ (x − y)] − δ.

From Theorems 1 and 2 we have the following corollary.

Corollary 2. It holds that

P0(σa < σ̂b ∧ eq)

= σ 2γ

2q

(
exp(−δb)(γ coth[γ b] + δ)

sinh[γ b] − γ

sinh2[γ b]
)

exp(−(a − b)(δ + γ coth[γ b])),
a ≥ b > 0;

P0(σa < σ̂b ∧ eq)

= 1 − (σ 2γ /2q)((exp(δa)(γ coth[γ a] − δ)/sinh[γ a]) − (γ /sinh2[γ a])) exp(−(b − a)(−δ + γ coth[γ a]))
γ cosh[γ a] − δ sinh[γ a]

× γ exp(−δa), b > a > 0.

For occupation time of the drawdown process, from Theorem 3 we have the following
corollary.

Corollary 3. For any y ∈ (0, a), the occupation time Ca
y has the same law as the drawdown

time σa−y .

Proof. Straightforward calculation using Theorem 3 yields that, for all q ≥ 0,

E0{exp(−qCa
y )} = γ exp(−δ(a − y))

γ cosh[γ (a − y)] − δ sinh[γ (a − y)] = E0{exp(−qσa−y)},
where the last equality follows from Proposition 2 or Corollary 2 as b → ∞. It follows that
the occupation time Ca

y has the same distribution as σa−y under P0.

6.2. Three-dimensional Bessel process (BES(3))

In this section we study the case of the three-dimensional Bessel process. In particular,
we consider

dXt = 1

Xt

dt + dBt , I = (0, ∞).

Let us denote by
ν := √

2q.

Then the increasing and the decreasing eigenfunctions of X can be chosen as [2]:

φ+
q (x) = 1

x

sinh[νx]
sinh[ν] , φ−

q (x) = exp(−ν(x − 1))

x
.

Fix the scale function s(x) = −1/x, we have that

wq = ν exp(ν)

sinh(ν)
, Wq(x, y) = 1

νxy
sinh[ν(x − y)],

Wq,1(x, y)

Wq(x, y)
= − 1

x
+ ν coth[ν(x − y)].

Using Theorem 3 we have the following corollary.

https://www.cambridge.org/core/terms. https://doi.org/10.1239/aap/1427814588
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.35, on 14 Jul 2025 at 19:57:15, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1239/aap/1427814588
https://www.cambridge.org/core


224 H. ZHANG

Corollary 4. For x > a > y > 0, the law of the occupation time Ca
y is the same as the

drawdown time σa−y .

Proof. Straightforward calculation using Theorem 3 yields that, for all q ≥ 0,

Ex{exp(−qCa
y )} = 1

cosh[ν(a − y)]
(

x − (a − y)

x
+ tanh[ν(a − y)]

νx

)

= Ex{exp(−qσa−y)}, (22)

where the last equality is obtained by substitutions a → a − y and y ↓ 0 in (22). It follows
that the law of Ca

y is the same as that of σa−y .

Remark 3. The results of Theorems 3 and 4 show a nontrivial fact: if X is a drifted Brownian
motion or a three-dimensional Bessel process, then for a fixed y > 0, the law of σy is the
same as C

y+a
a for any a > 0. That is, the amount of time the drawdown process Y spends in

[a, a + y] until the drawdown time σa+y is the same as the drawdown time σy .

Appendix A

In this appendix we provide proofs that have been skipped in the main text.

Proof of Lemma 1. Most equations are straightforward and we omit the proofs for them. In
the sequel we only prove

lim
x↓l

φ−
q (x) = ∞, for all q > 0; lim

q↓0
Wq(x, y) = W0(x, y), for all x, y ∈ I.

First, for x ∈ (l, κ), using (2) and the monotone convergence theorem, and inaccessibility of l

after time 0, we have

lim
x↓l

φ−
q (x) = lim

x↓l

1

Eκ{exp(−qτx)} = 1

0
= ∞.

Secondly, from (3) we have that for x ≥ y, x, y ∈ I ,

∂

∂x

(
φ−

q (x)

φ+
q (x)

)
= −wq

s′(x)

(φ+
q )2(x)

�⇒ Wq(x, y) = φ+
q (x)φ+

q (y)

∫ x

y

s′(u)

(φ+
q )2(u)

du.

We observe from (2) and regularity of X that, φ+
q (u), u ∈ [y, x] is uniformly bounded (away

from 0) for all q ∈ [0, q0] for any fixed q0 > 0:

0 < Ey{exp(−q0τκ)} ≤ φ+
q (u) ≤ 1

Eκ{exp(−q0τx)} < ∞, for all u ∈ [y, x].

Moreover, from (2) we obtain, for u ∈ [y, x] � I .

lim
q→0+ φ+

q (u) =

⎧⎪⎨
⎪⎩

Pu{τκ < ∞) if u ≤ κ

1

Pκ(τu < ∞)
if u > κ

⎫⎪⎬
⎪⎭ = lim

y↓l

s(u) − s(y)

s(κ) − s(y)
= β1s(u) + β2,

for some constant β1, β2 depending on the behavior of limit limy↓l s(y). By the dominated
convergence theorem, as q ↓ 0,
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1. if β1 �= 0,

Wq(x, y) → (β1s(x) + β2)(β1s(y) + β2)

∫ x

y

s′(u) du

(β1s(u) + β2)2

= 1

β1
[(β1s(x) + β2) − (β1s(y) + β2)]

= s(x) − s(y)

= W0(x, y);

2. if β1 = 0, then β2 ≥ Ey{exp(−q0τκ)} > 0, and

Wq(x, y) → β2
2

∫ x

y

s′(u) du

β2
2

= s(x) − s(y) = W0(x, y).

This completes the proof.

Proof of Proposition 1. First we note that

Pm(τ−
n < σ̂b ∧ eq) = Em{exp(−qτ−

n ); τ−
n < σ̂b}.

To compute the above expectation on the right-hand side, we follow the idea of [14], and
partition the interval [n, m] into N equal length subintervals with length ε = (m − n)/N .
In particular, using the fact that Pm(τ−

m = 0) = 1 and continuity of X, we have

exp

(
−q

N−1∑
i=0

(
τ−
m−(i+1)ε − τ−

m−iε

))
1{τ−

m−(j+1)ε
<τ+

m−jε+b for all 0≤j≤N−1}

→ exp(−qτ−
n ) 1{τ−

n <σ̂b}, Pm-a.s.

as N → ∞. Applying the Lebesgue dominated convergence theorem, the strong Markov
property, and continuity of X, we obtain

Em{exp(−qτ−
n ); τ−

n < σ̂b}

= lim
N→∞ Em

{
exp

(
−q

N−1∑
i=0

(τ−
m−(i+1)ε − τ−

m−iε)

)
; τ−

m−(j+1)ε < τ+
m−jε+b

for all 0 ≤ j ≤ N − 1

}

= lim
N→∞

N−1∏
i=0

Em−iε{exp(−qτ−
m−(i+1)ε); τ−

m−(i+1)ε < τ+
m−iε+b}. (23)

To compute the limit in (23), we use Lemma 2 to obtain

Em{exp(−qτ−
n ); τ−

n < σ̂b}

= lim
N→∞

N−1∏
i=0

Wq(m − iε, m − iε + b)

Wq(m − (i + 1)ε, m − iε + b)
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= exp

(
lim

N→∞

[N−1∑
i=0

Wq,1(m − (i + 1)ε, m − iε + b)

Wq(m − (i + 1)ε, m − iε + b)
· ε + O(ε)

])

= exp

(∫ m

n

Wq,1(v, v + b)

Wq(v, v + b)
dv

)
,

which completes the proof of (7). Equation (8) can be proved using a similar argument.

Proof of Proposition 3. We follow the perturbation method in [12], [13], [15]. For ε > 0
such that y + ε < b, we approximate A

a,b
y by A

a,b
y,ε :

Aa,b
y,ε :=

∞∑
n=1

(τ
+,n
y+ε ∧ τa,b − τ−,n

y ∧ τa,b),

where τ
−,1
y := τ−

y , and for n ≥ 1,

τ
+,n
y+ε := inf{t ≥ τ−,n

y : Xt ≥ y + ε}, τ−,n+1
y := inf{t ≥ τ

+,n
y+ε : Xt ≤ y}.

Using the strong Markov property and the continuity of X, we have that

Ey{exp(−qAa,b
y,ε − pτ+

b ); τ+
b < τ−

a }
= Ey{exp(−(q + p)τ+

y+ε); τ+
y+ε < τ−

a }Ey+ε{exp(−qAa,b
y,ε − pτ+

b ); τ+
b < τ−

a }
= Ey{exp(−(q + p)τ+

y+ε); τ+
y+ε < τ−

a }(Ey+ε{exp(−pτ+
b ); τ+

b < τ−
y }

+ Ey+ε{exp(−pτ−
y ); τ−

y < τ+
b }Ey{exp(−qAa,b

y,ε − pτ+
b ); τ+

b < τ−
a }),

from which we obtain

Ey{exp(−qAa,b
y,ε − pτ+

b ); τ+
b < τ−

a }

= Ey+ε{exp(−pτ+
b ); τ+

b < τ−
y }Ey{exp(−(q + p)τ+

y+ε); τ+
y+ε < τ−

a }
1 − Ey+ε{exp(−pτ−

y ); τ−
y < τ+

b }Ey{exp(−(q+p)τ+
y+ε ); τ+

y+ε < τ−
a }

= Wp(y + ε, y)

Wp(b, y)

(Wq+p(y, a)/Wq+p(y + ε, a))

1 − (Wp(b, y + ε)/Wp(b, y))(Wq+p(y, a)/Wq+p(y + ε, a))
. (24)

The quantity A
a,b
y,ε measures the time for X to spend below level y and the time to move from y

to y + ε, but not from y + ε to y, until X exits from (a, b). As ε → 0+, by continuity of X,
we have A

a,b
y,ε → A

a,b
y , Px-a.s. Using the Lebesgue dominated convergence theorem and the

continuity of X, letting ε ↓ 0 in (24) we have

Ey{exp(−qAa,b
y − pτ+

b ); τ+
b < τ−

a } = s′(y)

Wp,1(y, b) + Wp(b, y)(Wq+p,1(y, a)/Wq+p(y, a))
.

It follows that, for x ∈ (a, y), using the strong Markov property of X, we have

Ex{exp(−qAa,b
y − pτ+

b ); τ+
b < τ−

a }
= Ex{exp(−(q + p)τ+

y ); τ+
y < τ−

a }Ey{exp(−qAa,b
y − pτ+

b ); τ+
b < τ−

a }
= Wq+p(x, a)

Wq+p(y, a)

s′(y)

Wp,1(y, b) + Wp(b, y)(Wq+p,1(y, a)/Wq+p(y, a))
.
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For x ∈ (y, b), we can similarly obtain

Ex{exp(−qAa,b
y − pτ+

b ); τ+
b < τ−

a }
= Wp(x, y)

Wp(b, y)
+ Wp(b, x)

Wp(b, y)

s′(y)

Wp,1(y, b) + Wp(b, y)(Wq+p,1(y, a)/Wq+p(y, a))
.

Using the similar argument as above, we obtain (12).

Proof of Proposition 4. We let ε = a/N for a large integer N > 0. Using the Lebesgue
dominated convergence theorem, continuity, and the strong Markov property of X, we have

Ex{exp(−qBa
x ); Xσa ≥ x + a}

= Ex{exp(−qBa
x ); τ+

x+a < σa}

= lim
N→∞

N−1∏
i=0

Ex+iε{exp(−qAx+iε−a,x+(i+1)ε
x ); τ+

x+(i+1)ε < τ−
x+iε−a}

= exp

(
lim

N→∞

N−1∑
i=0

[Ex+iε{exp(−qAx+iε−a,x+(i+1)ε
x ); τ+

x+(i+1)ε < τ−
x+iε−a} − 1]

)

= exp

(
−

∫ x+a

x

(s′(u)/s′(x))(Wq,1(x, u − a)/Wq(x, u − a)) du

1 + ((s(u) − s(x))/s′(x))(Wq,1(x, u − a)/Wq(x, u − a))

)
.

Here we used Proposition 3 in the last equality. Moreover, notice that Ex{exp(−qA
u−a,z
x );

τ−
u−a < τ+

z } = Ex{exp(−qA
u−a,∞
x ); Xτ−

u−a
< z}. It follows that

Ex{exp(−qBa
x ); Xσa ∈ (x, x + a)}

=
∫ x+a

x

Ex{exp(−qAu−a,∞
x ); Xτ−

u−a
∈ du}

=
∫ x+a

x

∂

∂z

∣∣∣∣
z=u

Ex{exp(−qAu−a,z
x ); τ−

u−a < τ+
z } du

=
∫ x+a

x

(s′(u)/s′(x)) du/Wq(x, u − a))

(1 + ((s(u) − s(x))/s′(x))(Wq,1(x, u − a)/Wq(x, u − a)))2 ,

where we used Proposition 3 in the last equality.

Proof of Theorem 5. Consider the random time g := inf{t ≥ 0 : Xt = Xeq }. Then we have

E
q
y =

∫ g

0
1{Yt>y} dt +

∫ eq

g

1{Yt>y} dt := E
q,1
y + E

q,2
y .

Below we compute the Laplace transforms of E
q,1
y and E

q,2
y conditioning on Xeq . More

specifically, for m > x, we let ε = ((m − x)/N) for a large N > 0. Then we have

Ex{exp(−pE
q,1
y ); Xeq ∈ dm}
dm

= − ∂

∂h

∣∣∣∣
h=0

Ex

{
exp

(
−p

∫ τ+
m

0
1{Yt>y} dt

)
; Xeq ≥ m + h

}
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= exp

(
lim

N→∞

N−1∑
i=0

[
Ex+iε exp

{
−p

∫ τ+
x+(i+1)ε

0
1{Xt<x+iε−y} dt − qτ+

x+(i+1)ε

}
− 1

])

× φ+
q

′
(m)

φ+
q (m)

= exp

(
−

∫ m

x

Wq,2(u − y, u) + Wq,1(u, u − y)(φ+
q+p

′
(u − y)/φq+p(u − y))

Wq,1(u − y, u) + Wq(u, u − y)(φ+
q+p

′
(u − y)/φ+

q+p(u − y))
du

)

× φ+
q

′
(m)

φ+
q (m)

.

The fourth equality follows from Corollary 1. On the other hand,

Ex{exp(−pE
q,2
y ) | Xeq = m}

= lim
ε′↓0

Em{exp(−p
∫ eq

0 1{Xt<m−y} dt); eq < τ+
m+ε′ }

Pm(eq < τ+
m+ε′)

= 1 + lim
ε′↓0

[
Pm(τ−

m−y < eq ∧ τ+
m+ε′)

Pm(eq < τ+
m+ε′)

Em−y

×
{[

exp

(
−p

∫ eq

0
1{Xt<m−y} dt

)
− 1

]
; eq < τ+

m+ε′

}]
.

To get the limit in the above equation, we use Corollary 3.4 of [15] to obtain

lim
ε′↓0

[
Pm(τ−

m−y < eq ∧ τ+
m+ε′)

Pm(eq < τ+
m+ε′)

Em−y

{[
exp

(
−p

∫ eq

0
1{Xt<m−y} dt

)
− 1

]
; eq < τ+

m+ε′

}]

= − s′(m)

φ+
q

′
(m)

φ+
q

′
(m − y) + [(p/(q + p))φ+

q (m) − φ+
q (m − y)](φ+

q+p
′
(m − y)/φ+

q+p(m − y))

Wq,1(m − y, m) + Wq(m, m − y)(φ+
q+p

′
(m − y)/φ+

q+p(m − y))
.

It follows that

Ex{exp(−pE
q,2
y ) | Xeq = m}

= Wq,2(m − y, m) + [Wq,1(m, m −y) − (p/(q + p))s′(m)](φ+
q+p

′
(m −y)/φ+

q+p(m − y))

Wq,1(m − y, m) + Wq(m, m − y)(φ+
q+p

′
(m − y)/φ+

q+p(m − y))

× φ+
q (m)

φ+
q

′
(m)

.

The proof is complete after integration with respect to m.
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