THE STRONG MORITA EQUIVALENCE FOR INCLUSIONS OF C^{*}-ALGEBRAS AND CONDITIONAL EXPECTATIONS FOR EQUIVALENCE BIMODULES

KAZUNORI KODAKA ${ }^{\boxtimes}$ and TAMOTSU TERUYA

(Received 2 May 2017; accepted 17 September 2017; first published online 12 December 2017)

Communicated by A. Sims

Abstract

We shall introduce the notions of strong Morita equivalence for unital inclusions of unital C^{*}-algebras and conditional expectations from an equivalence bimodule onto its closed subspace with respect to conditional expectations from unital C^{*}-algebras onto their unital C^{*}-subalgebras. Also, we shall study their basic properties.

2010 Mathematics subject classification: primary 46L05.
Keywords and phrases: inclusions of C^{*}-algebras, strong Morita equivalence, equivalence bimodules, conditional expectations.

1. Introduction

In a previous paper [5], following Jansen and Waldmann [3], we introduced the notion of strong Morita equivalence for coactions of a finite-dimensional C^{*}-Hopf algebra on unital C^{*}-algebras. Modifying this notion, we shall introduce the notion of strong Morita equivalence for unital inclusions of unital C^{*}-algebras. Also, we shall introduce the notion of conditional expectations from an equivalence bimodule onto its closed subspace with respect to conditional expectations from unital C^{*}-algebras onto their unital C^{*}-subalgebras. Furthermore, we shall study their basic properties.

To specify, let A and B be unital C^{*}-algebras and H a finite-dimensional C^{*}-Hopf algebra. Let H^{0} be its dual C^{*}-Hopf algebra. Let ρ and σ be coactions of H^{0} on A and B, respectively. Then we can obtain the unital inclusions $A \subset A \rtimes_{\rho} H$ and $B \subset B \rtimes_{\sigma} H$ and the canonical conditional expectations E_{1}^{ρ} and E_{1}^{σ} from $A \rtimes_{\rho} H$ and $B \rtimes_{\sigma} H$ onto A and B, respectively. We suppose that ρ and σ are strongly Morita equivalent. Then there are an $A-B$-equivalence bimodule X and a coaction λ of H^{0} on X with respect to (A, B, ρ, σ). Let E^{λ} be the linear map from $X \rtimes_{\lambda} H$ onto X defined by

$$
E_{1}^{\lambda}\left(x \rtimes_{\lambda} h\right)=\tau(h) x
$$

for any $x \in X, h \in H$, where τ is the Haar trace on H.

[^0]In Section 2 we give the notion of strong Morita equivalence for unital inclusions of unital C^{*}-algebras so that $A \subset A \rtimes_{\rho} H$ and $B \subset B \rtimes_{\sigma} H$ are strongly Morita equivalent. We also give the notion of conditional expectations from an equivalence bimodule onto its closed subspace with respect to conditional expectations from unital C^{*}-algebras onto their unital C^{*}-subalgebras so that E^{λ} is a conditional expectation from $X \rtimes_{\lambda} H$ onto X with respect to E^{A} and E^{B}.

In Sections 3-5 we study the properties of conditional expectations from an equivalence bimodule onto its closed subspace with respect to conditional expectations from unital C^{*}-algebras onto their unital C^{*}-subalgebras. In Sections 6-8 we give the upward and downward basic constructions for a conditional expectation from an equivalence bimodule onto its closed subspace and a duality result which are similar to the ordinary basic constructions for conditional expectations from unital C^{*}-algebras onto their unital C^{*}-subalgebras. Furthermore, in Section 9, we study a relationship between the upward basic construction and the downward basic construction for the conditional expectation from an equivalence bimodule onto its closed subspace. Finally, in Section 10, we show that the strong Morita equivalence for unital inclusions of unital C^{*}-algebras preserves their paragroups.

Let A and B be C^{*}-algebras and X an $A-B$-bimodule. Then we denote the left A action and right B-action on X by $a \cdot x$ and $x \cdot b$ for any $a \in A, b \in B$ and $x \in X$. For a C^{*}-algebra A, we denote by $M_{n}(A)$ the $n \times n$ matrix algebra over A and by I_{n} the unit element in $M_{n}(\mathbb{C})$. We identify $M_{n}(A)$ with $A \otimes M_{n}(\mathbb{C})$.

2. The strong Morita equivalence and basic properties

We begin this section with the following definition. Let A, B, C and D be C^{*} algebras.

Defintition 2.1. Inclusions of C^{*}-algebras $A \subset C$ and $B \subset D$ with $\overline{A C}=C$ and $\overline{B D}=D$ are strongly Morita equivalent if there are a $C-D$-equivalence bimodule Y and its closed subspace X satisfying the following conditions:
(1) $a \cdot x \in X,{ }_{C}\langle x, y\rangle \in A$ for any $a \in A, x, y \in X$ and $\overline{{ }_{C}\langle X, X\rangle}=A, \overline{{ }_{C}\langle Y, X\rangle}=C$;
(2) $x \cdot b \in X,\langle x, y\rangle_{B} \in B$ for any $b \in B, x, y \in X$ and $\overline{\langle X, X\rangle_{D}}=B, \overline{\langle Y, X\rangle_{D}}=D$.

Then we say that the inclusion $A \subset C$ is strongly Morita equivalent to the inclusion $B \subset D$ with respect to the $C-D$-equivalence bimodule Y and its closed subspace X. We note that X can be regarded as an $A-B$-equivalence bimodule.

Remark 2.2. (1) If Y is a C-D-equivalence bimodule, $\overline{C \cdot Y}=\overline{Y \cdot D}=Y$ by Brown et al. [2, Proposition 1.7].
(2) If strongly Morita equivalent inclusions $A \subset C$ and $B \subset D$ are unital inclusions of unital C^{*}-algebras, we do not need to take the closure in Definition 2.1.

Proposition 2.3. The strong Morita equivalence for inclusions of C^{*}-algebras is an equivalence relation.

Proof. It suffices to show the transitivity since the other conditions clearly hold. Let $A \subset C$ and $B \subset D$ and $K \subset L$ be inclusions of C^{*}-algebras. We suppose that $A \subset C$ is strongly Morita equivalent to $B \subset D$ with respect to a C - D-equivalence bimodule Y and its closed subspace X and that $B \subset D$ is strongly Morita equivalent to $K \subset L$ with respect to a D-L-equivalence bimodule W and its closed subspace Z. We consider the closed subspace of $Y \otimes_{D} W$ spanned by the set

$$
\left\{x \otimes z \in Y \otimes_{D} W \mid x \in X, z \in Z\right\}
$$

We denote it by $X \otimes_{D} Z$. For any $x_{1}, x_{2} \in X, z_{1}, z_{2} \in Z$ and $a \in A, k \in K$,

$$
\begin{aligned}
a \cdot\left(x_{1} \otimes z_{1}\right) & =\left(a \cdot x_{1}\right) \otimes z_{1} \in X \otimes_{D} Z, \\
\left(x_{1} \otimes z_{1}\right) \cdot k & =x_{1} \otimes\left(z_{1} \cdot k\right) \in X \otimes_{D} Z, \\
{ }_{C}\left\langle x_{1} \otimes z_{1}, x_{2} \otimes z_{2}\right\rangle & ={ }_{C}\left\langle x_{1} \cdot{ }_{D}\left\langle z_{1}, z_{2}\right\rangle, x_{2}\right\rangle={ }_{C}\left\langle x_{1} \cdot{ }_{B}\left\langle z_{1}, z_{2}\right\rangle, x_{2}\right\rangle \\
& ={ }_{A}\left\langle x_{1} \cdot{ }_{B}\left\langle z_{1}, z_{2}\right\rangle, x_{2}\right\rangle \in A, \\
\left\langle x_{1} \otimes z_{1}, x_{2} \otimes z_{2}\right\rangle_{L} & =\left\langle z_{1},\left\langle x_{1}, x_{2}\right\rangle_{D} \cdot z_{2}\right\rangle_{L}=\left\langle z_{1},\left\langle x_{1}, x_{2}\right\rangle_{B} \cdot z_{2}\right\rangle_{L} \\
& =\left\langle z_{1},\left\langle x_{1}, x_{2}\right\rangle_{B} \cdot z_{2}\right\rangle_{K} \in K .
\end{aligned}
$$

Also, by Definition 2.1 and Remark 2.2,

$$
\begin{aligned}
\overline{{ }_{C}\left\langle X \otimes_{D} Z, X \otimes_{D} Z\right\rangle} & =\overline{{ }_{C}\left\langle X \cdot{ }_{B}\langle Z, Z\rangle, X\right\rangle}=\overline{{ }_{A}\langle X \cdot B, X\rangle}=\overline{{ }_{A}\langle X, X\rangle}=A, \\
\overline{\left\langle X \otimes_{D} Z, X \otimes_{D} Z\right\rangle_{L}} & =\overline{\left\langle Z,\langle X, X\rangle_{B} \cdot Z\right\rangle_{L}}=\overline{\langle Z, B \cdot Z\rangle_{K}}=\overline{\langle Z, Z\rangle_{K}}=K, \\
\overline{{ }_{C X}\left\langle Y \otimes_{D} W, X \otimes_{D} Z\right\rangle} & =\overline{{ }_{C}\left\langle Y \cdot{ }_{D}\langle W, Z\rangle, X\right\rangle}=\overline{{ }_{C}\langle Y \cdot D, X\rangle}=\overline{{ }_{C}\langle Y, X\rangle}=C, \\
\left\langle Y \otimes_{D} W, X \otimes_{D} Z\right\rangle_{L} & =\overline{\left\langle W,\langle Y, X\rangle_{D} \cdot Z\right\rangle_{L}}=\overline{\langle W, D \cdot Z\rangle_{L}}=\overline{\langle D \cdot W, Z\rangle_{L}} \\
& =\overline{\langle W, Z\rangle_{L}}=L .
\end{aligned}
$$

Therefore, we obtain the conclusion.
Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Let E^{A} and E^{B} be conditional expectations from C and D onto A and B, respectively. Let E^{X} be a linear map from Y onto X.
Definition 2.4. With the above notation, we say that E^{X} is a conditional expectation from Y onto X with respect to E^{A} and E^{B} if E^{X} satisfies the following conditions:
(1) $E^{X}(c \cdot x)=E^{A}(c) \cdot x$ for any $c \in C, x \in X$;
(2) $E^{X}(a \cdot y)=a \cdot E^{X}(y)$ for any $a \in A, y \in Y$;
(3) $E^{A}\left({ }_{C}\langle y, x\rangle\right)={ }_{C}\left\langle E^{X}(y), x\right\rangle$ for any $x \in X, y \in Y$;
(4) $E^{X}(x \cdot d)=x \cdot E^{B}(d)$ for any $d \in D x \in X$;
(5) $E^{X}(y \cdot b)=E^{X}(y) \cdot b$ for any $b \in B, y \in Y$;
(6) $E^{B}\left(\langle y, x\rangle_{D}\right)=\left\langle E^{X}(y), x\right\rangle_{D}$ for any $x \in X, y \in Y$.

By Definition 2.1, we can see that $E^{A}\left({ }_{C}\langle y, x\rangle\right)={ }_{A}\left\langle E^{X}(y), x\right\rangle$ for any $x \in X, y \in Y$, and that $E^{B}\left(\langle y, x\rangle_{D}\right)=\left\langle E^{X}(y), x\right\rangle_{B}$ for any $x \in X, y \in Y$.

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. By Kajiwara and Watatani [4, Lemma 1.7 and Corollary 1.28], there are elements $x_{1}, \ldots, x_{n} \in X$ such that $\sum_{i=1}^{n}\left\langle x_{i}, x_{i}\right\rangle_{B}=1$. We consider X^{n} as an $M_{n}(A)-B-$ equivalence bimodule in the obvious way and let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}$. Then $\langle\bar{x}, \bar{x}\rangle_{B}=1$. Let $p={ }_{M_{n}(A)}\langle\bar{x}, \bar{x}\rangle$ and $z={ }_{M_{n}(A)}\langle\bar{x}, \bar{x}\rangle \cdot \bar{x}$. Also, let Ψ_{B} be the map from B to $M_{n}(A)$ defined by

$$
\Psi_{B}(b)={ }_{M_{n}(A)}\langle z \cdot b, z\rangle=\left[A\left\langle x_{i} b, x_{j}\right\rangle\right]_{i j=1}^{n}
$$

for any $b \in B$. Then p is a full projection in $M_{n}(A)$, that is, $M_{n}(A) p M_{n}(A)=M_{n}(A)$ and Ψ_{B} is an isomorphism of B onto $p M_{n}(A) p$ by the proof of Rieffel [8, Proposition 2.1]. We repeat the above discussions for the $C-D$-equivalence bimodule Y in the following way: we note that

$$
\sum_{i=1}^{n}\left\langle x_{i}, x_{i}\right\rangle_{D}=\sum_{i=1}^{n}\left\langle x_{i}, x_{i}\right\rangle_{B}=1 .
$$

We consider Y^{n} as an $M_{n}(C)-D$-equivalence bimodule in the obvious way. Then $\bar{x}=\left(x_{1}, \ldots, x_{n}\right) \in Y^{n}$ and

$$
\begin{aligned}
& p=M_{M^{\prime}(A)}\langle\bar{x}, \bar{x}\rangle={ }_{M_{n}(C)}\langle\bar{x}, \bar{x}\rangle \in M_{n}(C), \\
& z={ }_{M_{n}(A)}\langle\bar{x}, \bar{x}\rangle \cdot \bar{x}={ }_{M_{n}(C)}\langle\bar{x}, \bar{x}\rangle \cdot \bar{x} \in Y^{n} .
\end{aligned}
$$

Let Ψ_{D} be the map from D to $M_{n}(C)$ defined by

$$
\Psi_{D}(d)={ }_{M_{n}(C)}\langle z \cdot d, z\rangle
$$

for any $d \in D$. By the proof of [8, Proposition 2.1] p is a full projection in $M_{n}(C)$, that is, $M_{n}(C) p M_{n}(C)=M_{n}(C)$, and Ψ_{D} is an isomorphism of D onto $p M_{n}(C) p$. Also, we see that $\Psi_{B}=\left.\Psi_{D}\right|_{B}$ by the definitions of Ψ_{B} and Ψ_{D}. Let Ψ_{X} be the map from X to $M_{n}(A)$ defined by

$$
\Psi_{X}(x)=\left[\begin{array}{cccc}
{ }_{A}\left\langle x, x_{1}\right\rangle & { }_{A}\left\langle x, x_{2}\right\rangle & \cdots & { }_{A}\left\langle x, x_{n}\right\rangle \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right]_{n \times n}
$$

for any $x \in X$. Let

$$
f=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]_{n \times n}
$$

Lemma 2.5. With the above notation, Ψ_{X} is a bijective linear map from X onto $(1 \otimes f) M_{n}(A) p$.

Proof. It is clear that Ψ_{X} is linear and that $(1 \otimes f) \Psi_{X}(x)=\Psi_{X}(x)$ for any $x \in X$. We note that $p=\left[{ }_{A}\left\langle x_{i}, x_{j}\right\rangle\right]_{i, j=1}^{n}$. Then for any $x \in X$,

$$
\Psi_{X}(x) p=\left[\begin{array}{ccc}
\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i}, x_{1}\right\rangle & \ldots & \sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i}, x_{n}\right\rangle \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]_{n \times n}
$$

Here, for $j=1,2, \ldots, n$,

$$
\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i}, x_{j}\right\rangle=\sum_{i=1}^{n}{ }_{A}\left\langle_{A}\left\langle x, x_{i}\right\rangle \cdot x_{i}, x_{j}\right\rangle=\sum_{i=1}^{n}{ }_{A}\left\langle x \cdot\left\langle x_{i}, x_{i}\right\rangle_{B}, x_{j}\right\rangle={ }_{A}\left\langle x, x_{j}\right\rangle .
$$

Thus we can see that $\Psi_{X}(x) p=\Psi_{X}(x)$ for any $x \in X$. Hence Ψ_{X} is the linear map from X to $(1 \otimes f) M_{n}(A) p$. Let $y \in(1 \otimes f) M_{n}(A) p$. Then we can write that

$$
y=\left[\begin{array}{ccc}
y_{1} & \ldots & y_{n} \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right] p=\left[\begin{array}{ccc}
\sum_{i=1}^{n} y_{i A}\left\langle x_{i}, x_{1}\right\rangle & \ldots & \sum_{i=1}^{n} y_{i A}\left\langle x_{i}, x_{n}\right\rangle \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right]
$$

where $y_{1}, \ldots, y_{n} \in A$. Modifying the Remark after [4, Lemma 1.11], let χ be the linear map from $(1 \otimes f) M_{n}(A) p$ to X defined by

$$
\chi(y)=\sum_{i j=1}^{n} y_{i A}\left\langle x_{i}, x_{j}\right\rangle \cdot x_{j} .
$$

Then since $\sum_{j=1}^{n}\left\langle x_{j}, x_{j}\right\rangle_{B}=1$,

$$
\begin{aligned}
& \left(\Psi_{X} \circ \chi\right)(y) \\
& =\left[\begin{array}{ccc}
{ }_{A}\left\langle\sum_{i j=1}^{n} y_{i A}\left\langle x_{i}, x_{j}\right\rangle \cdot x_{j}, x_{1}\right\rangle & \cdots & { }_{A}\left\langle\sum_{i j=1}^{n} y_{i A}\left\langle x_{i}, x_{j}\right\rangle \cdot x_{j}, x_{n}\right\rangle \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
{ }_{A}\left\langle\sum_{i j=1}^{n} y_{i} \cdot x_{i} \cdot\left\langle x_{j}, x_{j}\right\rangle_{B}, x_{1}\right\rangle & \cdots & A\left\langle\sum_{i j=1}^{n} y_{i} \cdot x_{i} \cdot\left\langle x_{j}, x_{j}\right\rangle_{B}, x_{n}\right\rangle \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

Also,

$$
\begin{aligned}
\left(\chi \circ \Psi_{X}\right)(x) & =\sum_{i j=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i}, x_{j}\right\rangle \cdot x_{j}=\sum_{i j=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle \cdot x_{i} \cdot\left\langle x_{j}, x_{j}\right\rangle_{B} \\
& =\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle \cdot x_{i}=\sum_{i=1}^{n} x \cdot\left\langle x_{i}, x_{i}\right\rangle_{B}=x .
\end{aligned}
$$

Thus we obtain the conclusion.
Lemma 2.6. With the above notation, Ψ_{X} satisfies the following:
(1) $\Psi_{X}(a \cdot x)=a \cdot \Psi_{X}(x)$ for any $a \in A, x \in X$;
(2) $\Psi_{X}(x \cdot b)=\Psi_{X}(x) \cdot \Psi_{B}(b)$ for any $b \in B, x \in X$;
(3) ${ }_{A}\left\langle\Psi_{X}(x), \Psi_{X}(y)\right\rangle={ }_{A}\langle x, y\rangle$ for any $x, y \in X$, where we identify A with $(1 \otimes$ f) $M_{n}(A)(1 \otimes f)=A \otimes f$;
(4) $\left\langle\Psi_{X}(x), \Psi_{X}(y)\right\rangle_{p M_{n}(A) p}=\Psi_{B}\left(\langle x, y\rangle_{B}\right)$ for any $x, y \in X$.

Proof. (1) Let $a \in A$ and $x \in X$. Then

$$
\Psi_{X}(a \cdot x)=\left[\begin{array}{ccc}
{ }_{A}\left\langle a \cdot x, x_{1}\right\rangle & \cdots & { }_{A}\left\langle a \cdot x, x_{n}\right\rangle \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]=a \cdot \Psi_{X}(x)
$$

Hence we obtain (1).
(2) Let $b \in B$ and $x \in X$. Then

$$
\begin{aligned}
\Psi_{X}(x) \cdot \Psi_{B}(b) & =\left[\begin{array}{ccc}
A^{\left\langle x, x_{1}\right\rangle} & \ldots & { }_{A}\left\langle x, x_{n}\right\rangle \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{array}\right]_{n \times n} \\
& =\left[\begin{array}{ccc}
& \\
& \\
\left.\left.x_{i} \cdot b, x_{j}\right\rangle\right]_{i j=1}^{n} \\
\sum_{i=1}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i} \cdot b, x_{1}\right\rangle & \ldots & \sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i} \cdot b, x_{n}\right\rangle \\
0 & \ldots & 0 \\
& \vdots & \ddots
\end{array}\right] \\
& 0
\end{aligned}
$$

Here, for $j=1,2, \ldots, n$,

$$
\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i} \cdot b, x_{j}\right\rangle=\sum_{i=1}^{n}{ }_{A}\left\langle x \cdot\left\langle x_{i}, x_{i}\right\rangle_{B} b, x_{j}\right\rangle={ }_{A}\left\langle x \cdot b, x_{j}\right\rangle .
$$

Thus we obtain (2).
(3) Let $x, y \in X$. Then since we identify A with $A \otimes f$,

$$
\begin{aligned}
{ }_{A}\left\langle\Psi_{X}(x), \Psi_{X}(y)\right\rangle & =\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle y, x_{i}\right\rangle^{*}=\sum_{i=1}^{n}{ }_{A}\left\langle x, x_{i}\right\rangle_{A}\left\langle x_{i}, y\right\rangle \\
& =\sum_{i=1}^{n}{ }_{A}\left\langle_{A}\left\langle x, x_{i}\right\rangle \cdot x_{i}, y\right\rangle=\sum_{i=1}^{n}{ }_{A}\left\langle x \cdot\left\langle x_{i}, x_{i}\right\rangle_{B}, y\right\rangle={ }_{A}\langle x, y\rangle .
\end{aligned}
$$

Hence we obtain (3).
(4) Let $x, y \in X$. Then

$$
\left\langle\Psi_{X}(x), \Psi_{X}(y)\right\rangle_{p M_{n}(A) p}=\Psi_{X}(x)^{*} \Psi_{X}(y)=\left[{ }_{A}\left\langle x, x_{i}\right\rangle^{*}{ }_{A}\left\langle y, x_{j}\right\rangle\right]_{i j=1}^{n} .
$$

On the other hand,

$$
\begin{aligned}
\Psi_{B}\left(\langle x, y\rangle_{B}\right) & =\left[{ }_{A}\left\langle x_{i} \cdot\langle x, y\rangle_{B}, x_{j}\right\rangle\right]_{i j=1}^{n}=\left[{ }_{A}\left\langle_{A}\left\langle x_{i}, x\right\rangle \cdot y, x_{j}\right\rangle\right]_{i j}^{n} \\
& =\left[{ }_{A}\left\langle x_{i}, x\right\rangle_{A}\left\langle y, x_{j}\right\rangle\right]_{i j=1}^{n} .
\end{aligned}
$$

Hence we obtain (4).
Let Ψ_{Y} be the map from Y to $M_{n}(C)$ defined by

$$
\Psi_{Y}(x)=\left[\begin{array}{ccc}
c\left\langle x, x_{1}\right\rangle & \cdots & c\left\langle x, x_{n}\right\rangle \\
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right]_{n \times n}
$$

for any $x \in Y$.
Corollary 2.7. With the above notation, Ψ_{Y} is a bijective linear map from Y onto $(1 \otimes f) M_{n}(C) p$ satisfying the following:
(1) $\Psi_{Y}(c \cdot x)=c \cdot \Psi_{Y}(x)$ for any $c \in C, x \in Y$;
(2) $\Psi_{Y}(x \cdot d)=\Psi_{Y}(x) \cdot \Psi_{D}(d)$ for any $d \in D, x \in Y$;
(3) ${ }_{C}\left\langle\Psi_{Y}(x), \Psi_{Y}(y)\right\rangle={ }_{C}\langle x, y\rangle$ for any $x, y \in Y$, where we identify C with $(1 \otimes$ f) $M_{n}(C)(1 \otimes f)=C \otimes f ;$
(4) $\left\langle\Psi_{Y}(x), \Psi_{Y}(y)\right\rangle_{p M_{n}(C) p}=\Psi_{D}\left(\langle x, y\rangle_{D}\right)$ for any $x, y \in Y$;
(5) $\Psi_{X}=\left.\Psi_{Y}\right|_{X}$.

Proof. It is clear that $\Psi_{X}=\left.\Psi_{Y}\right|_{X}$ by the definitions of Ψ_{X} and Ψ_{Y}. By Lemmas 2.5 and 2.6, we obtain the others.

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras. We suppose that $A \subset C$ and $B \subset D$ are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Then by Lemmas 2.5 and 2.6 and Corollary 2.7, we may assume that

$$
B=p M_{n}(A) p, \quad D=p M_{n}(C) p, \quad Y=(1 \otimes f) M_{n}(C) p, \quad X=(1 \otimes f) M_{n}(A) p
$$

where p is a projection in $M_{n}(A)$ satisfying $M_{n}(A) p M_{n}(A)=M_{n}(A)$, that is, p is full in $M_{n}(A)$ and n is a positive integer. We regard X and Y as an $A-p M_{n}(A) p$-equivalence bimodule and a $C-p M_{n}(C) p$-equivalence bimodule in the usual way.

We consider the following situation. Let $A \subset C$ be a unital inclusion of unital $C^{*}-$ algebras and p a full projection in $M_{n}(A)$. Then the inclusion $p M_{n}(A) p \subset p M_{n}(C) p$ is strongly Morita equivalent to $A \subset C$ with respect to the $C-p M_{n}(C) p$-equivalence bimodule $(1 \otimes f) M_{n}(C) p$ and its closed subspace $(1 \otimes f) M_{n}(A) p$. Let E^{A} be a conditional expectation of Watatani index-finite type from C onto A. We denote by $\operatorname{Ind}_{W}\left(E^{A}\right)$ the Watatani index of E^{A}. We note that $\operatorname{Ind}_{W}\left(E^{A}\right) \in C \cap C^{\prime}$. Let $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}_{i=1}^{N}$ be a quasi-basis for E^{A}. Then $\left\{\left(u_{i} \otimes I_{n}, u_{i}^{*} \otimes I_{n}\right)\right\}_{i=1}^{N}$ is a quasi-basis for $E^{A} \otimes \mathrm{id}$, the conditional expectation from $M_{n}(C)$ onto $M_{n}(A)$. Since p is a full projection in $M_{n}(A)$, there are elements $a_{1}, \ldots, a_{K}, b_{1}, \ldots, b_{K}$ in $M_{n}(A)$ such that $\sum_{i=1}^{K} a_{i} p b_{i}=1_{M_{n}(A)}$. Let E_{p}^{A} be the conditional expectation from $p M_{n}(C) p$ onto $p M_{n}(A) p$ defined by

$$
E_{p}^{A}(x)=\left(E^{A} \otimes \mathrm{id}\right)(x)
$$

for any $x \in p M_{n}(A) p$. Then by routine computations, we can see that

$$
\left\{\left(p\left(u_{i} \otimes I_{n}\right) a_{j} p, p b_{j}\left(u_{i}^{*} \otimes I_{n}\right) p\right)\right\}_{i=1, \ldots, N, j=1, \ldots, K}
$$

is a quasi-basis for E_{p}^{A}. Furthermore,

$$
\begin{aligned}
\operatorname{Ind}_{W}\left(E_{p}^{A}\right) & =\sum_{i, j} p\left(u_{i} \otimes I_{n}\right) a_{j} p b_{j}\left(u_{i}^{*} \otimes I_{n}\right) p=\sum_{i} p\left(u_{i} u_{i}^{*} \otimes I_{n}\right) p \\
& =p\left(\operatorname{Ind}_{W}\left(E^{A}\right) \otimes I_{n}\right) p=\left(\operatorname{Ind}_{W}\left(E^{A}\right) \otimes I_{n}\right) p .
\end{aligned}
$$

Let F be the linear map from $(1 \otimes f) M_{n}(C) p$ onto $(1 \otimes f) M_{n}(A) p$ defined by

$$
F((1 \otimes f) x p)=\left(E^{A} \otimes \mathrm{id}\right)((1 \otimes f) x p)=(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(x) p
$$

for any $x \in M_{n}(C)$.
Lemma 2.8. With the above notation, F is a conditional expectation from $(1 \otimes$ f) $M_{n}(C) p$ onto $(1 \otimes f) M_{n}(A) p$ with respect to E^{A} and E_{p}^{A}.

Proof. It suffices to show that F satisfies conditions (1)-(6) in Definition 2.4.
(1) For any $c \in C, x \in M_{n}(A)$,

$$
\begin{aligned}
F(c \cdot(1 \otimes f) x p) & =F((c \otimes f) x p)=F\left((1 \otimes f)\left(c \otimes I_{n}\right) x p\right) \\
& =(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)\left(\left(c \otimes I_{n}\right) x\right) p=(1 \otimes f)\left(E^{A}(c) \otimes I_{n}\right) x p \\
& =E^{A}(c) \cdot(1 \otimes f) x p
\end{aligned}
$$

Thus we obtain condition (1) in Definition 2.4.
(2) For any $a \in A, y \in M_{n}(C)$,

$$
\begin{aligned}
F(a \cdot(1 \otimes f) y p) & =F\left((1 \otimes f)\left(a \otimes I_{n}\right) y p\right)=(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)\left(\left(a \otimes I_{n}\right) y\right) p \\
& =a \cdot(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(y) p=a \cdot F((1 \otimes f) y p)
\end{aligned}
$$

Thus we obtain condition (2) in Definition 2.4.
(3) For any $x \in M_{n}(A), y \in M_{n}(C)$,

$$
\begin{aligned}
c^{c}\langle F((1 \otimes f) y p),(1 \otimes f) x p\rangle & =c_{c}\left\langle(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(y) p,(1 \otimes f) x p\right\rangle \\
& =(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(y) p x^{*}(1 \otimes f) \\
& =\left(E^{A} \otimes \mathrm{id}\right)\left((1 \otimes f) y p x^{*}(1 \otimes f)\right) \\
& =\left(E^{A} \otimes \mathrm{id}\right)\left({ }_{c}\langle(1 \otimes f) y p,(1 \otimes f) x p\rangle\right)
\end{aligned}
$$

since we identify C with $(1 \otimes f) M_{n}(C)(1 \otimes f)=C \otimes f$. Thus we obtain condition (3) in Definition 2.4.
(4) For any $y \in M_{n}(C), x \in M_{n}(A)$,

$$
\begin{aligned}
F((1 \otimes f) x p \cdot p y p) & =F((1 \otimes f) x p y p)=(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(x p y) p \\
& =(1 \otimes f) x p\left(E^{A} \otimes \mathrm{id}\right)(y) p=(1 \otimes f) x p \cdot E_{p}^{A}(p y p) .
\end{aligned}
$$

Thus we obtain condition (4) in Definition 2.4.
(5) For any $x \in M_{n}(A), y \in M_{n}(C)$,

$$
\begin{aligned}
F((1 \otimes f) y p \cdot p x p) & =F((1 \otimes f) y p x p)=(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(y p x) p \\
& =(1 \otimes f)\left(E^{A} \otimes \mathrm{id}\right)(y) p \cdot p x p=F((1 \otimes f) y p) \cdot p x p .
\end{aligned}
$$

Thus we obtain condition (5) in Definition 2.4.
(6) For any $x \in M_{n}(A), y \in M_{n}(C)$,

$$
\begin{aligned}
\langle F((1 \otimes f) y p),(1 \otimes f) x p\rangle_{p M_{n}(C) p} & =p\left(E^{A} \otimes \mathrm{id}\right)(y)^{*}(1 \otimes f) x p \\
& =p\left(E^{A} \otimes \mathrm{id}\right)\left(y^{*}(1 \otimes f) x\right) p \\
& =E_{p}^{A}\left(\langle(1 \otimes f) y p,(1 \otimes f) x p\rangle_{p M_{n}(C) p}\right) .
\end{aligned}
$$

Thus we obtain condition (6) in Definition 2.4. Therefore, we obtain the conclusion.
Theorem 2.9. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a C-D-equivalence bimodule Y and its closed subspace X. If there is a conditional expectation E^{A} of Watatani index-finite type from C onto A, then there are a conditional expectation E^{B} of Watatani indexfinite type from D onto B and a conditional expectation E^{X} from Y onto X with respect to E^{A} and E^{B}. Also, if there is a conditional expectation E^{B} of Watatani index-finite type from D onto B, then we have the same result as above.

Proof. This is immediate by Lemmas 2.5, 2.6 and 2.8 and Corollary 2.7.

3. One-sided conditional expectations on full Hilbert C^{*}-modules

Let $B \subset D$ be a unital inclusion of unital C^{*}-algebras and let Y be a full right Hilbert D-module and X its closed subspace satisfying the following:

$$
\begin{align*}
& x \cdot b \in X,\langle x, y\rangle_{D} \in B \text { for any } b \in B, x, y \in X ; \tag{1}\\
& \frac{\langle X, X\rangle_{D}}{}=B, \overline{\langle Y, X\rangle_{D}}=D \tag{2}
\end{align*}
$$

(3) there is a finite set $\left\{x_{i}\right\}_{i=1}^{n} \subset X$ such that for any $y \in Y$,

$$
\sum_{i=1}^{n} x_{i} \cdot\left\langle x_{i}, y\right\rangle_{D}=y
$$

We note that Y is of finite type and that X can be regarded as a full right Hilbert B module of finite type in the sense of Kajiwara and Watatani [4]. Let $\mathbb{B}_{D}(Y)$ be the C^{*}-algebra of all right D-linear operators on Y for which has a right adjoint D-linear operator on Y. Let $C=\mathbb{B}_{D}(Y)$. For any $x, y \in Y$, let $\theta_{x, y}^{Y}$ be the rank-one operator on Y defined by

$$
\theta_{x, y}^{Y}(z)=x \cdot\langle y, z\rangle_{D}
$$

for any $z \in Y$. Then $\theta_{x, y}^{Y}$ is a right D-module operator. Hence $\theta_{x, y}^{Y} \in C$ for any $x, y \in Y$. Since D is unital, by [4, Lemma 1.7], C is the C^{*}-algebra of all linear spans of such $\theta_{x, y}^{Y}$. Let A_{0} be the linear spans of the set $\left\{\theta_{x, y}^{Y} \mid x, y \in X\right\}$. By the assumptions, $\sum_{i=1}^{n} \theta_{x_{i}, x_{i}}^{Y}=1_{Y}$. Hence A_{0} is a $*$-algebra. Let A be the closure of A_{0} in $\mathbb{B}_{D}(Y)$. Then A is a unital $C^{*}-$ subalgebra of C. Let $\mathbb{B}_{B}(X)$ be the C^{*}-algebra defined in the same way as above. Let π be the map from $\mathbb{B}_{B}(X)$ to A defined by $\pi\left(\theta_{x, y}^{X}\right)=\theta_{x, y}^{Y}$, where $x, y \in X$ and $\theta_{x, y}^{X}$ is the rankone operator on X defined as above. Then clearly π is injective and $\pi\left(\mathbb{B}_{B}(X)\right)=A_{0}$. Thus A_{0} is closed and $A_{0}=A$.

Lemma 3.1. With the above notation and assumptions, the inclusion $A \subset C$ is unital and strongly Morita equivalent to the unital inclusion $B \subset D$ with respect to Y and its closed subspace X.

Proof. By the above discussions, the inclusion $A \subset C$ is unital. Clearly A and B are strongly Morita equivalent with respect to X, and C and D are strongly Morita equivalent with respect to Y. For any $x, y, z \in Y$,

$$
\begin{aligned}
\theta_{x, y}^{Y}(z) & =x \cdot\langle y, z\rangle_{D}=x \cdot\left\langle\sum_{i=1}^{n} x_{i} \cdot\left\langle x_{i}, y\right\rangle_{D}, z\right\rangle_{D}=\sum_{i=1}^{n} x \cdot\left\langle y, x_{i}\right\rangle_{D}\left\langle x_{i}, z\right\rangle_{D} \\
& =\sum_{i=1}^{n} \theta_{\left[x \cdot\left\langle y, x_{i}\right\rangle_{D}\right], x_{i}}^{Y}(z) .
\end{aligned}
$$

Since $x_{i} \in X,\left[x \cdot\left\langle y, x_{i}\right\rangle_{D}\right] \in Y$ for $i=1,2, \ldots, n, \theta_{x, y}^{Y} \in_{C}\langle Y, X\rangle$ for any $x, y \in Y$. Thus ${ }_{C}\langle Y, X\rangle=C$. Therefore, $A \subset C$ is strongly Morita equivalent to $B \subset D$ with respect to a $C-D$-equivalence bimodule Y and its closed subspace X.

Furthermore, we suppose that there is a conditional expectation E^{B} of Watatani index-finite type from D onto B.

Defintition 3.2. Let E^{X} be a linear map from Y onto X. We say that E^{X} is a right conditional expectation from Y onto X with respect to E^{B} if E^{X} satisfies the following conditions:
(1) $E^{X}(x \cdot d)=x \cdot E^{B}(d)$ for any $d \in D, x \in X$;
(2) $E^{X}(y \cdot b)=E^{X}(y) \cdot b$ for any $b \in B, y \in Y$;
(3) $E^{B}\left(\langle y, x\rangle_{D}\right)=\left\langle E^{X}(y), x\right\rangle_{D}$ for any $x \in X, y \in Y$.

Remark 3.3. (i) By Definition 3.2, we can see that $E^{B}\left(\langle y, x\rangle_{D}\right)=\left\langle E^{X}(y), x\right\rangle_{B}$ for any $x \in X, y \in Y$.
(ii) E^{X} is a projection of norm one from Y onto X. Indeed, by Raeburn and William [7, proof of Lemma 2.8], for any $y \in Y$,

$$
\begin{aligned}
\left\|E^{X}(y)\right\| & =\sup \left\{\left\|\left\langle E^{X}(y), z\right\rangle_{B}\right\| \mid\|z\| \leq 1, z \in X\right\} \\
& =\sup \left\{\left\|E^{B}\left(\langle y, z\rangle_{D}\right)\right\| \mid\|z\| \leq 1, z \in X\right\} \\
& \leq \sup \{\|y\|\|z\| \mid\|z\| \leq 1, z \in X\} \\
& =\|y\| .
\end{aligned}
$$

Since $E^{X}(x)=x$ for any $x \in X, E^{X}$ is a projection of norm one from Y onto X.
Lemma 3.4. With the same assumptions as in Lemma 3.1, we suppose that there is a conditional expectation E^{B} of Watatani index-finite type from D onto B. Then there is a right conditional expectation E^{X} from Y onto X with respect to E^{B}.

Proof. Let E^{X} be the linear map from Y to X defined by

$$
\left\langle E^{X}(y), x\right\rangle_{B}=E^{B}\left(\langle y, x\rangle_{D}\right)
$$

for any $x \in X, y \in Y$. We show that conditions (1) and (2) in Definition 3.2 hold. Indeed, for any $x, y \in X, d \in D$,

$$
\left\langle y, E^{X}(x \cdot d)\right\rangle_{B}=E^{B}\left(\langle y, x \cdot d\rangle_{D}\right)=E^{B}\left(\langle y, x\rangle_{D} d\right)=\langle y, x\rangle_{B} E^{B}(d)=\left\langle y, x \cdot E^{B}(d)\right\rangle_{B} .
$$

Hence $E^{X}(x \cdot d)=x \cdot E^{B}(d)$ for any $x \in X, d \in D$. For any $b \in B, y \in Y, x \in X$,

$$
\begin{aligned}
\left\langle x, E^{X}(y \cdot b)\right\rangle_{B} & =E^{B}\left(\langle x, y \cdot b\rangle_{D}\right)=E^{B}\left(\langle x, y\rangle_{D} b\right)=E^{B}\left(\langle x, y\rangle_{D}\right) b \\
& =\left\langle x, E^{X}(y)\right\rangle_{B} b=\left\langle x, E^{X}(y) \cdot b\right\rangle_{B} .
\end{aligned}
$$

Hence $E^{X}(y \cdot b)=E^{X}(y) \cdot b$ for any $y \in Y, b \in B$.
Lemma 3.5. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a C-D-equivalence bimodule Y and its closed subspace X. Let E^{B} be a conditional expectation of Watatani index-finite type from D onto B, and E^{X} a right conditional expectation from Y onto X with respect to E^{B}. Then for any $a \in A, y \in Y, E^{X}(a \cdot y)=a \cdot E^{X}(y)$.

Proof. Since X is full with the left A-valued inner product, it suffices to show that

$$
E^{X}\left({ }_{A}\langle x, z\rangle \cdot y\right)={ }_{A}\langle x, z\rangle \cdot E^{X}(y)
$$

for any $x, z \in X, y \in Y$. Indeed,

$$
\begin{aligned}
E^{X}\left({ }_{A}\langle x, z\rangle \cdot y\right) & =E^{X}\left(x \cdot\langle z, y\rangle_{D}\right)=x \cdot E^{B}\left(\langle z, y\rangle_{D}\right)=x \cdot\left\langle z, E^{X}(y)\right\rangle_{B} \\
& ={ }_{A}\langle x, z\rangle \cdot E^{X}(y) .
\end{aligned}
$$

Proposition 3.6. With the same assumptions as in Lemma 3.5, there is a conditional expectation E^{A} from C onto A such that E^{X} is a conditional expectation from Y onto X with respect to E^{A} and E^{B}.

Proof. Let E^{A} be the linear map from C onto A defined by

$$
E^{A}(c) \cdot x=E^{X}(c \cdot x)
$$

for any $c \in C, x \in X$. First, we note that the conditions in Definition 2.4 except for condition (3) hold by the assumptions and Lemma 3.5. We show that condition (3) in Definition 2.4 holds. Indeed for any $x, z \in X, y \in Y$,

$$
E^{A}\left({ }_{C}\langle y, x\rangle\right) \cdot z=E^{X}\left({ }_{C}\langle y, x\rangle \cdot z\right)=E^{X}\left(y \cdot\langle x, z\rangle_{B}\right)=E^{X}(y) \cdot\langle x, z\rangle_{B}={ }_{C}\left\langle E^{X}(y), x\right\rangle \cdot z .
$$

Hence for any $x \in X, y \in Y, E^{A}\left({ }_{C}\langle y, x\rangle\right)={ }_{C}\left\langle E^{X}(y), x\right\rangle$. Next, we show that E^{A} is a conditional expectation from C onto A. For any $a \in A, x \in X$,

$$
E^{A}(a) \cdot x=E^{X}(a \cdot x)=a \cdot E^{X}(x)=a \cdot x
$$

by Lemma 3.5. Hence $E^{A}(a)=a$ for any $a \in A$. For any $c \in C, x \in X$,

$$
\left\|E^{A}(c) \cdot x\right\|=\left\|E^{X}(c \cdot x)\right\| \leq\|c \cdot x\| \leq\|c\|\|x\|
$$

by Remark 3.3(ii). Hence $\left\|E^{A}\right\|=1$ since $E^{A}(a)=a$ for any $a \in A$. Thus E^{A} is a projection of norm one from C onto A. It follows by Tomiyama [9, Theorem 1] that E^{A} is a conditional expectation from C onto A. Therefore, we obtain the conclusion.

Let $B \subset D$ be a unital inclusion of unital C^{*}-algebras and let Y be a full right Hilbert D-module and X its closed subspace satisfying conditions (1)-(3) at the beginning of this section. We suppose that there is a conditional expectation E^{B} of Watatani indexfinite type from D onto B. Let $C=\mathbb{B}_{D}(Y)$ and let A be the C^{*}-subalgebra, the linear spans of the set $\left\{\theta_{x, y}^{Y} \mid x, y \in X\right\}$. Then by Lemmas 3.1-3.5 and Proposition 3.6, there are a conditional expectation E^{X} from Y onto X and a conditional expectation E^{A} from C onto A such that E^{X} is a conditional expectation from Y onto X with respect to E^{A} and E^{B}. We note that a conditional expectation E^{A} is dependent only on E^{B} and E^{X} by condition (3) in Definition 2.4. Hence by Theorem 2.9, E^{A} is of Watatani index-finite type. Thus we obtain the following corollary.
Corollary 3.7. With the same notation as in Proposition 3.6, a conditional expectation E^{A} from C onto A defined in Proposition 3.6 is of Watatani index-finite type.

Combining the above results, we obtain the following theorem.

Theorem 3.8. Let $B \subset D$ be a unital inclusion of unital C^{*}-algebras and let Y be a full right Hilbert D-module and X its closed subspace satisfying conditions (1)-(3) at the beginning of this section. Let E^{B} be a conditional expectation of Watatani index-finite type from D onto B. Let $C=\mathbb{B}_{D}(Y)$ and let A be the C^{*}-subalgebra, the linear spans of the set $\left\{\theta_{x, y}^{Y} \mid x, y \in X\right\}$. Then there are a conditional expectation E^{A} of Watatani index-finite type from C onto A and a conditional expectation E^{X} from Y onto X with respect to E^{A} and E^{B}.

Remark 3.9. (i) In the same way as in Definition 3.2, we can define a left conditional expectation in the following situation. Let $A \subset C$ be a unital inclusion of unital C^{*} algebras and let Y be a full left Hilbert C-module and X its closed subspace satisfying the following conditions:

$$
\begin{equation*}
a \cdot x \in X,{ }_{c}\langle x, y\rangle \in A \text { for any } a \in A, x, y \in X \tag{1}
\end{equation*}
$$

$\overline{{ }_{C}\langle X, X\rangle}=A, \overline{{ }_{c}\langle Y, X\rangle}=C ;$
(3) there is a finite set $\left\{x_{i}\right\}_{i=1}^{n} \subset Y$ such that for any $y \in Y$,

$$
\sum_{i=1}^{n} c\left\langle y, x_{i}\right\rangle \cdot x_{i}=y
$$

We note that Y is of finite type and that X can be regarded as a full left Hilbert A module of finite type in the sense of Kajiwara and Watatani [4].
(ii) A conditional expectation from an equivalence onto its closed subspace in Definition 2.4 is a left and right conditional expectation.
(iii) We have the results on a left conditional expectation similar to the above.

4. Examples

In this section, we shall give two examples of conditional expectations from equivalence bimodules onto their closed subspaces.

First, let A and B be unital C^{*}-algebras which are strongly Morita equivalent with respect to an $A-B$-equivalence bimodule X. Let H be a finite-dimensional C^{*}-Hopf algebra with its dual C^{*}-Hopf algebra H^{0}. Let ρ and σ be coactions of H^{0} on A and B, respectively. We suppose that ρ and σ are strongly Morita equivalent with respect to a coaction λ of H^{0} on X, that is, ($A, B, X, \rho, \sigma, \lambda, H^{0}$) is a covariant system (see [5]). We use the same notation as in [5]. Let

$$
C=A \rtimes_{\rho} H, \quad D=B \rtimes_{\sigma} H
$$

be crossed products of C^{*}-algebras A and B by the actions of the finite-dimensional C^{*}-Hopf algebra H induced by ρ and σ, respectively. Also, let $Y=X \rtimes_{\lambda} H$ be the crossed product of an $A-B$-equivalence bimodule X by the action of H induced by λ. Then by [5, Corollary 4.7], Y is a $C-D$-equivalence bimodule and C and D are strongly Morita equivalent with respect to Y. Easy computations show that the unital inclusions $A \subset C$ and $B \subset D$ are strongly Morita equivalent with respect to Y and its
closed subspace X. Indeed, it suffices to show that ${ }_{C}\langle X, Y\rangle=C$ and $\langle X, Y\rangle_{D}=D$ since the other conditions in Definition 2.1 clearly hold. For any $x, y \in X, h \in H$,

$$
\begin{aligned}
C_{C}\left\langle x \rtimes_{\lambda} 1,\left(1 \rtimes_{\rho} h\right)^{*}\left(y \rtimes_{\lambda} 1\right)\right\rangle & =\left(\left(1 \rtimes_{\rho} h\right)^{*}{ }_{C}\left\langle y \rtimes_{\lambda} 1, x \rtimes_{\rho} 1\right\rangle\right)^{*} \\
& ={ }_{C}\left\langle x \rtimes_{\lambda} 1, y \rtimes_{\lambda} 1\right\rangle\left(1 \rtimes_{\rho} h\right)={ }_{A}\langle x, y\rangle \rtimes_{\rho} h .
\end{aligned}
$$

Hence ${ }_{C}\langle X, Y\rangle=C$. Also,

$$
\left\langle x \rtimes_{\lambda} 1, y \rtimes_{\lambda} h\right\rangle_{D}=\langle x, y\rangle_{B} \rtimes_{\sigma} h .
$$

Thus $\langle X, Y\rangle_{D}=D$.
Let E_{1}^{ρ} and E_{1}^{σ} be the canonical conditional expectations from $A \rtimes_{\rho} H$ and $B \rtimes_{\sigma} H$ onto A and B defined by

$$
E_{1}^{\rho}\left(a \rtimes_{\rho} h\right)=\tau(h) a, \quad E_{1}^{\sigma}\left(b \rtimes_{\sigma} h\right)=\tau(h) b,
$$

for any $a \in A, b \in B, h \in H$, respectively, where τ is the Haar trace on H. Let E_{1}^{λ} be the linear map from $X \rtimes_{\lambda} H$ onto X defined by

$$
E_{1}^{\lambda}\left(x \rtimes_{\lambda} h\right)=\tau(h) x
$$

for any $x \in X, h \in H$.
Proposition 4.1. With the above notation, E_{1}^{λ} is a conditional expectation from $X \rtimes_{\lambda} H$ onto X with respect to E^{A} and E^{B}.

Proof. Let X, Y and E_{1}^{λ} be as above. We claim that $E_{1}^{\rho}, E_{1}^{\sigma}$ and E_{1}^{λ} satisfy conditions (1)-(6) in Definition 2.4. Indeed, we make the following computations.
(1) For any $a \in A, x \in X, h \in H$,

$$
\begin{aligned}
E_{1}^{\lambda}\left(\left(a \rtimes_{\rho} h\right) \cdot\left(x \rtimes_{\lambda} 1\right)\right) & =E_{1}^{\lambda}\left(a \cdot\left[h_{(1)} \cdot \varkappa_{\lambda} x\right] \rtimes_{\lambda} h_{(2)}\right) \\
& =a \cdot x \tau(h) \rtimes_{\lambda} 1=E_{1}^{\rho}\left(a \rtimes_{\rho} h\right) \cdot\left(x \rtimes_{\lambda} 1\right) .
\end{aligned}
$$

(2) For any $a \in A, x \in X, h \in H$,

$$
E_{1}^{\lambda}\left(\left(a \rtimes_{\rho} 1\right) \cdot\left(x \rtimes_{\lambda} h\right)\right)=E_{1}^{\lambda}\left(a \cdot x \rtimes_{\lambda} h\right)=\tau(h) a \cdot x \rtimes_{\lambda} 1=\left(a \rtimes_{\rho} 1\right) \cdot E_{1}^{\lambda}\left(x \rtimes_{\lambda} h\right) .
$$

(3) For any $x, y \in X, h \in H$,

$$
\begin{aligned}
E_{1}^{\rho}\left(c_{c}\left\langle y \rtimes_{\lambda} h, x \rtimes_{\lambda} 1\right\rangle\right) & =E_{1}^{\rho}\left({ }_{A}\left\langle y,\left[S\left(h_{(1)}\right)^{*} \cdot{ }_{\lambda} x\right]\right\rangle \rtimes_{\rho} h_{(2)}\right) \\
& ={ }_{A}\left\langle y,\left[S\left(h_{(1)}\right)^{*} \cdot{ }_{\lambda} x\right]\right\rangle \tau\left(h_{(2)}\right) \\
& ={ }_{A}\langle y, \overline{\tau(h)} x\rangle={ }_{A}\left\langle E_{1}^{\lambda}\left(y \rtimes_{\lambda} h\right), x\right\rangle .
\end{aligned}
$$

(4) For any $b \in B, x \in X, h \in H$,

$$
E_{1}^{\lambda}\left(\left(x \rtimes_{\lambda} 1\right) \cdot\left(b \rtimes_{\sigma} h\right)\right)=E_{1}^{\lambda}\left(x \cdot b \rtimes_{\lambda} h\right)=\tau(h)\left(x \cdot b \rtimes_{\lambda} 1\right)=\left(x \rtimes_{\lambda} 1\right) \cdot E_{1}^{\sigma}\left(b \rtimes_{\sigma} h\right) .
$$

(5) For any $b \in B, x \in X, h \in H$,

$$
\begin{aligned}
E_{1}^{\lambda}\left(\left(x \rtimes_{\lambda} h\right) \cdot\left(b \rtimes_{\sigma} 1\right)\right) & =E_{1}^{\lambda}\left(x \cdot\left[h_{(1)} \cdot{ }_{\sigma} b\right] \rtimes_{\lambda} h_{(2)}\right)=x \cdot b \tau(h) \rtimes_{\lambda} 1 \\
& =E_{1}^{\lambda}\left(x \rtimes_{\lambda} h\right) \cdot\left(b \rtimes_{\sigma} 1\right) .
\end{aligned}
$$

(6) For any $x, y \in X, h \in H$,

$$
\begin{aligned}
E_{1}^{\sigma}\left(\left\langle y \rtimes_{\lambda} h, x \rtimes_{\lambda} 1\right\rangle_{D}\right) & =E_{1}^{\sigma}\left(\left[h_{(1)}^{*} \cdot{ }_{\sigma}\langle y, x\rangle_{B}\right] \rtimes_{\sigma} h_{(2)}^{*}\right) \\
& =\tau\left(h^{*}\right)\langle y, x\rangle_{B}=\left\langle E_{1}^{\lambda}\left(y \rtimes_{\lambda} h\right), x \rtimes_{\lambda} 1\right\rangle_{B} .
\end{aligned}
$$

Therefore, we obtain the conclusion.
We shall give another example. Let $A \subset B$ be a unital inclusion of unital C^{*}-algebras and let F be a conditional expectation of Watatani index-finite type from B onto A. Let f be the Jones projection and B_{1} the C^{*}-basic construction for F. Let F_{1} be its dual conditional expectation from B_{1} onto B. Let f_{1} be the Jones projection and B_{2} the C^{*}-basic construction for F_{1}. Let F_{2} be the dual conditional expectation of F_{1} from B_{2} onto B_{1}. Then A is strongly Morita equivalent to B_{1} and B is strongly Morita equivalent to B_{2} by Watatani [10]. Since F and F_{1} are of Watatani index-finite type, B and B_{1} can be equivalence bimodules, that is, B can be regarded as a $B_{1}-A$-equivalence bimodule as follows: for any $a \in A, x, y, z \in B$,

$$
{ }_{B_{1}}\langle x, y\rangle=x f y^{*}, \quad\langle x, y\rangle_{A}=F\left(x^{*} y\right), \quad x f y \cdot z=x F(y z), \quad x \cdot a=x a .
$$

Also, B_{1} can be regarded as a $B_{2}-B$-equivalence bimodule as follows: for any $b \in B$, $x, y, z \in B_{1}$,

$$
{ }_{B_{2}}\langle x, y\rangle=x f_{1} y^{*}, \quad\langle x, y\rangle_{B}=F_{1}\left(x^{*} y\right), \quad x f_{1} y \cdot z=x F_{1}(y z), \quad x \cdot b=x b .
$$

We denote by $\operatorname{Ind}_{W}(F)$ the Watatani index of a conditional expectation F from B onto A. Also, let $\left\{\left(w_{i}, w_{i}^{*}\right)\right\}_{i=1}^{n}$ be a quasi-basis for F_{1}.
Lemma 4.2. With the above notation, we suppose that $\operatorname{Ind}_{W}(F) \in A$. Then the inclusions $A \subset B$ and $B_{1} \subset B_{2}$ are strongly Morita equivalent.

Proof. Let θ be the linear map from B to B_{1} defined by

$$
\theta(x)=\operatorname{Ind}_{W}(F)^{1 / 2} x f
$$

for any $x \in B$. Then for any $a \in A, x, y, z \in B$,

$$
\theta(x f y \cdot z \cdot a)=\theta(x F(y z) a)=\operatorname{Ind}_{W}(F)^{1 / 2} x F(y z) a f=\operatorname{Ind}_{W}(F)^{1 / 2} x F(y z) f a .
$$

On the other hand, since $\operatorname{Ind}_{W}(F) \in A \cap B^{\prime}$,

$$
\begin{aligned}
x f y \cdot \theta(z) \cdot a & =x f y \cdot \operatorname{Ind}_{W}(F)^{1 / 2} z f \cdot a=\sum_{i=1}^{n} x f y w_{i} f_{1} w_{i}^{*} \cdot \operatorname{Ind}_{W}(F)^{1 / 2} z f \cdot a \\
& =x f y \operatorname{Ind}_{W}(F)^{1 / 2} z f a=x F\left(y \operatorname{Ind}_{W}(F)^{1 / 2} z\right) f a=\operatorname{Ind}_{W}(F)^{1 / 2} x F(y z) f a .
\end{aligned}
$$

Thus θ is a $B_{1}-A$-bimodule map. Furthermore, for any $x, y \in B$,

$$
\begin{aligned}
\langle\theta(x), \theta(y)\rangle_{B} & =F_{1}\left(\theta(x)^{*} \theta(y)\right)=F_{1}\left(\left(\operatorname{Ind}_{W}(F)^{1 / 2} x f\right)^{*}\left(\operatorname{Ind}_{W}(F)^{1 / 2} y f\right)\right) \\
& =\operatorname{Ind}_{W}(F) F_{1}\left(f x^{*} y f\right)=\operatorname{Ind}_{W}(F) F_{1}\left(F\left(x^{*} y\right) f\right)=F\left(x^{*} y\right) \\
& =\langle x, y\rangle_{A}, \\
B_{B_{2}}\langle\theta(x), \theta(y)\rangle & =\theta(x) f_{1} \theta(y)^{*}=\operatorname{Ind}_{W}(F) x f f_{1} f y^{*}=x f y^{*}={ }_{B_{1}}\langle x, y\rangle
\end{aligned}
$$

by [10, Lemma 2.3.5]. Thus we regard B as a closed subspace of the $B_{2}-B$-equivalence bimodule B_{1} by the map θ. In order to obtain the conclusion, it suffices to show that ${ }_{B_{2}}\left\langle B, B_{1}\right\rangle=B_{2}$ and $\left\langle B, B_{1}\right\rangle_{B}=B$ since the other conditions in Definition 2.1 clearly hold. Let $x, y, z \in B$. Then

$$
{ }_{B_{2}}\langle x, y f z\rangle={ }_{B_{2}}\langle\theta(x), y f z\rangle={ }_{B_{2}}\left\langle\operatorname{Ind}_{W}(F)^{1 / 2} x f, y f z\right\rangle=\operatorname{Ind}_{W}(F)^{1 / 2} x f f_{1} z^{*} f y^{*} .
$$

Since $f_{1} z^{*}=z^{*} f_{1},{ }_{B_{2}}\left\langle B, B_{1}\right\rangle=B_{2}$. Also,

$$
\begin{aligned}
\langle x, y f z\rangle_{B} & =\langle\theta(x), y f z\rangle_{B}=\left\langle\operatorname{Ind}_{W}(F)^{1 / 2} x f, y f z\right\rangle_{B}=F_{1}\left(\operatorname{Ind}_{W}(F)^{1 / 2} f x^{*} y f z\right) \\
& =F_{1}\left(\operatorname{Ind}_{W}(F)^{1 / 2} F\left(x^{*} y\right) f z\right)=\operatorname{Ind}_{W}(F)^{-1 / 2} F\left(x^{*} y\right) z .
\end{aligned}
$$

Hence $\left\langle B, B_{1}\right\rangle_{B}=B$. Therefore, we obtain the conclusion.
Proposition 4.3. With the above notation, we regard B as a closed subspace of B_{2} by the linear map θ defined in Lemma 4.2 and we suppose that $\operatorname{Ind}_{W}(F) \in A$. Then there is a conditional expectation G from B_{1} onto B with respect to F and F_{2}.
Proof. Let G be the linear map from B_{1} onto B defined by

$$
G(x f y)=x F(y) f=\theta\left(\operatorname{Ind}_{W}(F)^{-1 / 2} x F(y)\right)
$$

for any $x, y \in B$, where we identify $\theta\left(\operatorname{Ind}_{W}(F)^{-1 / 2} x F(y)\right)$ with $\operatorname{Ind}_{W}(F)^{-1 / 2} x F(y)$. By routine computations, we can see that G satisfies conditions (1)-(6) in Definition 2.4. Indeed, we make the following computations.
(1) For any $x_{1}=a f b, y_{1}=a_{1} f b_{1} \in B_{1}, a, b, a_{1}, b_{1} \in B$ and $z \in B$,

$$
\begin{aligned}
G\left(x_{1} f_{1} y_{1} \cdot \theta(z)\right) & =G\left(x_{1} f_{1} y_{1} \cdot \operatorname{Ind}_{W}(F)^{1 / 2} z f\right)=G\left(x_{1} F_{1}\left(y_{1} \operatorname{Ind}_{W}(F)^{1 / 2} z f\right)\right) \\
& =G\left(a f b F_{1}\left(a_{1} f b_{1} \operatorname{Ind}_{W}(F)^{1 / 2} z f\right)\right) \\
& =G\left(\operatorname{Ind}_{W}(F)^{1 / 2} a f b F_{1}\left(a_{1} F\left(b_{1} z\right) f\right)\right) \\
& =\operatorname{Ind}_{W}(F)^{-1 / 2} a F\left(b a_{1} F\left(b_{1} z\right)\right) f \\
& =\operatorname{Ind}_{W}(F)^{-1 / 2} a F\left(b a_{1}\right) F\left(b_{1} z\right) f .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
F_{2}\left(x_{1} f_{1} y_{1}\right) \cdot z & =\operatorname{Ind}_{W}(F)^{-1} x_{1} y_{1} \cdot z=\operatorname{Ind}_{W}(F)^{-1} a f b a_{1} f b_{1} \cdot z \\
& =\operatorname{Ind}_{W}(F)^{-1} a F\left(b a_{1}\right) f b_{1} \cdot z=\operatorname{Ind}_{W}(F)^{-1} a F\left(b a_{1}\right) F\left(b_{1} z\right) .
\end{aligned}
$$

Since we identify $\theta\left(\operatorname{Ind}_{W}(F)^{-1} a F\left(b a_{1}\right) F\left(b_{1} z\right)\right)$ with $\operatorname{Ind}_{W}(F)^{-1 / 2} a F\left(b a_{1}\right) F\left(b_{1} z\right) f$, we can see that G satisfies condition (1) in Definition 2.4.
(2) For any $a, b, x, y \in B$,

$$
G(a f b \cdot x f y)=G(a f b x f y)=G(a F(b x) f y)=\theta\left(\operatorname{Ind}_{W}(F)^{-1 / 2} a F(b x) F(y)\right)
$$

On the other hand,

$$
\begin{aligned}
a f b \cdot G(x f y) & =a f b \cdot \operatorname{Ind}_{W}(F)^{-1 / 2} x F(y)=a F\left(b \operatorname{Ind}_{W}(F)^{-1 / 2} x F(y)\right) \\
& =\operatorname{Ind}_{W}(F)^{-1 / 2} a F(b x) F(y) .
\end{aligned}
$$

Thus G satisfies condition (2) in Definition 2.4.
(3) For any $x, y, z \in B$,

$$
{ }_{B_{2}}\langle G(x f y), \theta(z)\rangle={ }_{B_{2}}\left\langle x F(y) f, \operatorname{Ind}_{W}(F)^{1 / 2} z f\right\rangle=\operatorname{Ind}_{W}(F)^{-1 / 2} x F(y) f z^{*} .
$$

On the other hand,

$$
\begin{aligned}
F_{2}\left({ }_{B_{2}}\langle x f y, \theta(z)\rangle\right) & =F_{2}\left(B_{B_{2}}\left\langle x f y, \operatorname{Ind}_{W}(F)^{1 / 2} z f\right\rangle\right)=F_{2}\left(x f y f_{1} f z^{*} \operatorname{Ind}_{W}(F)^{1 / 2}\right) \\
& =\operatorname{Ind}_{W}(F)^{-1 / 2} x f y f z^{*}=\operatorname{Ind}_{W}(F)^{-1 / 2} x F(y) f z^{*} .
\end{aligned}
$$

Thus G satisfies condition (4) in Definition 2.4.
(4) For any $b, z \in B$,

$$
G(\theta(z) \cdot b)=G\left(\operatorname{Ind}_{W}(F)^{1 / 2} z f \cdot b\right)=G\left(\operatorname{Ind}_{W}(F)^{1 / 2} z f b\right)=\operatorname{Ind}_{W}(F)^{1 / 2} z F(b) f
$$

On the other hand,

$$
\theta(z) \cdot F(b)=\operatorname{Ind}_{W}(F)^{1 / 2} z f F(b)=\operatorname{Ind}_{W}(F)^{1 / 2} z F(b) f
$$

Thus G satisfies condition (4) in Definition 2.4.
(5) For any $a \in A, x, y \in B$,

$$
G(a \cdot x f y)=G(a x f y)=a x F(y) f=a \cdot G(x f y) .
$$

Thus G satisfies condition (5) in Definition 2.4.
(6) For any $x, y, z \in B$,

$$
\begin{aligned}
F\left(\langle x f y, \theta(z)\rangle_{B}\right) & =F\left(F_{1}\left(y^{*} f x^{*} \operatorname{Ind}_{W}(F)^{1 / 2} z f\right)\right)=F\left(F_{1}\left(y^{*} F\left(x^{*} z\right) \operatorname{Ind}_{W}(F)^{1 / 2} f\right)\right) \\
& =\operatorname{Ind}_{W}(F)^{-1 / 2} F\left(y^{*} F\left(x^{*} z\right)\right)=\operatorname{Ind}_{W}(F)^{-1 / 2} F\left(y^{*}\right) F\left(x^{*} z\right) .
\end{aligned}
$$

On the other hand,

$$
\langle G(x f y), \theta(z)\rangle_{B}=\left\langle x F(y) f, \operatorname{Ind}_{W}(F)^{1 / 2} z f\right\rangle_{B}=\operatorname{Ind}_{W}(F)^{-1 / 2} F\left(y^{*}\right) F\left(x^{*} z\right)
$$

Thus G satisfies condition (6) in Definition 2.4. Therefore, we obtain the conclusion.

5. Linking algebras and conditional expectations

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a C - D-equivalence bimodule Y and its closed subspace X. We regard Y and X as a full right Hilbert D-module and its closed subspace, respectively. Then Y and X satisfy the conditions at the beginning of Section 3. We also note that the full right Hilbert D-module $Y \oplus D$ and its closed subspace $X \oplus B$ satisfy conditions at the beginning of Section 3. Let $L_{X}=\mathbb{B}_{B}(X \oplus B)$ and $L_{Y}=\mathbb{B}_{D}(Y \oplus D)$. By Raeburn and Williams [7, Corollary 3.21], L_{X} and L_{Y} are isomorphic to the linking algebras induced by equivalence bimodules X and Y, respectively. We denote the linking algebras by the same symbols L_{X} and L_{Y}, respectively. In the same way as in the proof of Brown, Green and Rieffel [1, Theorem 1.1], we obtain the following proposition.

Proposition 5.1. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras. Then the inclusions $A \subset C$ and $B \subset D$ are strongly Morita equivalent if and only if there is a unital inclusion of unital C^{*}-algebras $K \subset L$ and projections p and q in K satisfying:

$$
\begin{align*}
& \text { (1) } p K p \cong A, p L p \cong C \tag{1}\\
& \text { (2) } q K q \cong B, q L q \cong D \\
& \text { (3) } K p K=K q K=K, L p L=L q L=L, p+q=1_{L}
\end{align*}
$$

We suppose that there is a conditional expectation E^{B} of Watatani index-finite type from D onto B. By Lemma 3.4, there is a right conditional expectation E^{X} from Y onto X with respect to E^{B}.

Lemma 5.2. The linear map $E^{X} \oplus E^{B}$ is a right conditional expectation from $Y \oplus D$ onto $X \oplus B$ with respect to E^{B}.

Proof. We show that conditions (1)-(3) in Definition 3.2 hold.
(1) For any $x \in X, b \in B, d \in D$,
$\left(E^{X} \oplus E^{B}\right)((x \oplus b) \cdot d)=\left(E^{X} \oplus E^{B}\right)((x \cdot d) \oplus b d)=x \cdot E^{B}(d) \oplus b E^{B}(d)=(x \oplus b) \cdot E^{B}(d)$.
(2) For any $b \in B, y \in Y, d \in D$,

$$
\left(E^{X} \oplus E^{B}\right)((y \oplus d) \cdot b)=\left(E^{X} \oplus E^{B}\right)((y \cdot b) \oplus d b)=\left(E^{X}(y) \oplus d\right) \cdot b
$$

(3) For any $x \in X, b \in B, y \in Y, d \in D$,

$$
\begin{aligned}
\left\langle\left(E^{X} \oplus E^{B}\right)(y \oplus d), x \oplus b\right\rangle_{D} & =\left\langle E^{X}(y) \oplus E^{B}(d), x \oplus b\right\rangle_{D} \\
& =\left\langle E^{X}(y), x\right\rangle_{D}+E^{B}(d)^{*} b \\
& =E^{B}\left(\langle y, x\rangle_{D}\right)+E^{B}\left(d^{*} b\right) \\
& =E^{B}\left(\langle y \oplus d, x \oplus b\rangle_{D}\right) .
\end{aligned}
$$

Therefore, conditions (1)-(3) in Definition 3.2 hold.

By Proposition 3.6 and Corollary 3.7, there is a conditional expectation $E^{L_{X}}$ of Watatani index-finite type from L_{Y} onto L_{X} such that $E^{X} \oplus E^{B}$ is a conditional expectation from $Y \oplus D$ onto $X \oplus B$ with respect to $E^{L_{X}}$ and E^{B}. Since we identify L_{X} and L_{Y} with the linking algebras induced by equivalence bimodules X and Y, respectively, we obtain the following proposition.

Proposition 5.3. With the above notation, we can write

$$
E^{L_{X}}\left(\left[\begin{array}{cc}
c & x \\
\widetilde{y} & d
\end{array}\right]\right)=\left[\begin{array}{ll}
E^{A}(c) & E^{X}(x) \\
\widetilde{E^{X}(y)} & E^{B}(d)
\end{array}\right]
$$

for any element $\left[\begin{array}{cc}c & x \\ \bar{y} & d\end{array}\right] \in L_{Y}$, where for any $z \in X$, we denote by \widetilde{z} its corresponding element in \widetilde{X}, the dual Hilbert C^{*}-bimodule of X.

Proof. Let $\theta_{y \oplus d, z \oplus f}$ be the rank-one operator on $Y \oplus D$ induced by $y \oplus d, z \oplus f \in Y \oplus D$. Then by Definition 2.4, for any $x \oplus b \in X \oplus B$,

$$
\begin{aligned}
E^{L_{X}}\left(\theta_{y \oplus d, z \oplus f}\right) \cdot(x \oplus b) & =\left(E^{X} \oplus E^{B}\right)\left(\theta_{y \oplus d, z \oplus f}(x \oplus b)\right) \\
& =\left(E^{X} \oplus E^{B}\right)\left(y \oplus d \cdot\langle z \oplus f, x \oplus b\rangle_{D}\right) \\
& =\left(E^{X} \oplus E^{B}\right)\left(y \oplus d \cdot\left(\langle z, x\rangle_{D}+f^{*} b\right)\right) \\
& =E^{X}\left(y \cdot\left(\langle z, x\rangle_{D}+f^{*} b\right)\right) \oplus E^{B}\left(d\left(\langle z, x\rangle_{D}+f^{*} b\right)\right) .
\end{aligned}
$$

On the other hand, since we identify L_{X} and L_{Y} with the linking algebras induced by X and Y, respectively, by the proof of [7, Corollary 3.21], we regard $\theta_{y \oplus d, z \oplus f}$ as an element $\left[\begin{array}{ccc}c\langle y, z\rangle & y \cdot f^{*} \\ z \cdot d^{*} & d f^{*}\end{array}\right]$. Then

$$
\begin{aligned}
{\left[\begin{array}{cc}
E^{A}\left(c_{C}\langle y, z\rangle\right) & E^{X}\left(y \cdot f^{*}\right) \\
E^{X}\left(z \cdot d^{*}\right) & E^{B}\left(d f^{*}\right)
\end{array}\right]\left[\begin{array}{c}
x \\
b
\end{array}\right] } & =\left[\begin{array}{c}
E^{A}\left(c^{\prime}\langle y, z\rangle\right) \cdot x+E^{X}\left(y \cdot f^{*}\right) \cdot b \\
\left\langle E^{X}\left(z \cdot d^{*}\right), x\right\rangle_{D}+E^{B}\left(d f^{*}\right) b
\end{array}\right] \\
& =\left[\begin{array}{c}
E^{X}\left(c\langle y, z\rangle \cdot x+y \cdot f^{*} b\right) \\
E^{B}\left(\left\langle z \cdot d^{*}, x\right\rangle_{D}+d f^{*} b\right)
\end{array}\right] \\
& =E^{L_{X}}\left(\theta_{y \oplus d, z \oplus f}\right) \cdot(x \oplus b) .
\end{aligned}
$$

Therefore, we obtain the conclusion.
Lemma 5.4. With the above notation, let $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}_{i=1}^{n}$ and $\left\{\left(v_{j}, v_{j}^{*}\right)\right\}_{j=1}^{m}$ be any quasi-bases for E^{A} and E^{B}, respectively. Then for any $y \in Y$,

$$
y=\sum_{j=1}^{m} E^{X}\left(y \cdot v_{j}\right) \cdot v_{j}^{*}=\sum_{i=1}^{n} u_{i} \cdot E^{X}\left(u_{i}^{*} \cdot y\right)
$$

Proof. By the discussions in Section 2, we may assume that

$$
B=p M_{k}(A) p, \quad D=p M_{k}(C) p, \quad X=(1 \otimes f) M_{k}(A) p, \quad Y=(1 \otimes f) M_{k}(C) p
$$

where k is a positive integer,

$$
f=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]_{k \times k}
$$

and p is a full projection in $M_{k}(A)$. Furthermore, we regard X and Y as an $A-p M_{k}(A) p-$ equivalence bimodule and a $C-p M_{k}(C) p$-equivalence bimodule in the usual way. Also, we can suppose that

$$
E^{B}=\left.\left(E^{A} \otimes \operatorname{id}_{M_{k}(\mathbb{C})}\right)\right|_{p M_{k}(C) p}, \quad E^{X}=\left.\left(E^{A} \otimes \operatorname{id}_{M_{k}(\mathbb{C})}\right)\right|_{(1 \otimes f) M_{k}(C) p}
$$

respectively. Let $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}_{i=1}^{n}$ be any quasi-basis for E^{A}. For any $c \in C, h \in M_{k}(\mathbb{C})$,

$$
\begin{aligned}
\sum_{i=1}^{n} u_{i} \cdot E^{X}\left(u_{i}^{*} \cdot(1 \otimes f)(c \otimes h) p\right) & =\sum_{i=1}^{n} u_{i} \cdot\left(E^{A} \otimes \operatorname{id}_{M_{k}(\mathbb{C})}\right)\left(\left(u_{i}^{*} \otimes f\right)(c \otimes h) p\right) \\
& =\sum_{i=1}^{n} u_{i} \cdot\left(E^{A}\left(u_{i}^{*} c\right) \otimes f h\right) p \\
& =\sum_{i=1}^{n}\left(u_{i} E^{A}\left(u_{i}^{*} c\right) \otimes f h\right) p \\
& =\sum_{i=1}^{n}(c \otimes f h) p=(1 \otimes f)(c \otimes h) p
\end{aligned}
$$

Replacing the left-hand side by the right-hand side, in a similar way to the above, we can obtain the other equation.
Lemma 5.5. With the above notation, for any $y \in Y$,

$$
\operatorname{Ind}_{W}\left(E^{A}\right) \cdot y=y \cdot \operatorname{Ind}_{W}\left(E^{B}\right)
$$

Proof. By Lemma 5.4, for any $y \in Y$,

$$
\sum_{i, j} u_{i} \cdot E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot v_{j}^{*}=\sum_{j} y \cdot v_{j} v_{j}^{*}=y \cdot \operatorname{Ind}_{W}\left(E^{B}\right) .
$$

Similarly,

$$
\sum_{i, j} u_{i} \cdot E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot v_{j}^{*}=\operatorname{Ind}_{W}\left(E^{A}\right) \cdot y
$$

Hence, we obtain the conclusion.
Corollary 5.6. With the above notation,

$$
\left\{\left.\left(\left[\begin{array}{cc}
u_{i} & 0 \\
0 & v_{j}
\end{array}\right],\left[\begin{array}{cc}
u_{i} & 0 \\
0 & v_{j}
\end{array}\right]^{*}\right) \right\rvert\, i=1,2, \ldots, n, j=1,2, \ldots, m\right\}
$$

is a quasi-basis for $E^{L_{X}}$ and $\operatorname{Ind}_{W}\left(E^{L_{X}}\right)=\left[\begin{array}{cc}\operatorname{Ind}_{W}\left(E^{A}\right) & 0 \\ 0 & \operatorname{Ind}_{W}\left(E^{B}\right)\end{array}\right]$.

Proof. By Lemma 5.4 and routine computations, we can see that

$$
\left\{\left.\left(\left[\begin{array}{cc}
u_{i} & 0 \\
0 & v_{j}
\end{array}\right],\left[\begin{array}{cc}
u_{i} & 0 \\
0 & v_{j}
\end{array}\right]^{*}\right) \right\rvert\, i=1,2, \ldots, n, j=1,2, \ldots, m\right\}
$$

is a quasi-basis for $E^{L_{X}}$. Hence by the definition of Watatani index, we can see that $\operatorname{Ind}_{W}\left(E^{L_{X}}\right)=\left[\begin{array}{cc}\operatorname{Ind}_{W}\left(E^{4}\right) & 0 \\ 0 & \operatorname{Ind}_{W}\left(E^{B}\right)\end{array}\right]$.

6. The upward basic construction

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. We suppose that there are conditional expectations E^{A} and E^{B} from C and D onto A and B, which are of Watatani index-finite type, respectively. Also, we suppose that there is a conditional expectation E^{X} from Y onto X with respect to E^{A} and E^{B}. Let e_{A} and e_{B} be the Jones projections for E^{A} and E^{B}, respectively and let C_{1} and D_{1} be the C^{*}-basic constructions for E^{A} and E^{B}, respectively. We regard C and D as a $C_{1}-A$-equivalence bimodule and a $D_{1}-B$-equivalence bimodule in the same way as in Section 4. Let

$$
Y_{1}=C \otimes_{A} X \otimes_{B} \widetilde{D}
$$

where \widetilde{D} is the dual equivalence bimodule of D, a $B-D_{1}$-equivalence bimodule. Clearly Y_{1} is a $C_{1}-D_{1}$-equivalence bimodule. Let E^{Y} be the linear map from Y_{1} to Y defined by

$$
E^{Y}(c \otimes x \otimes \widetilde{d})=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c \cdot x \cdot d^{*}
$$

for any $c \in C, d \in D, x \in X$. Then E^{Y} is clearly well defined. For any $y \in Y$,

$$
E^{Y}\left(\sum_{i=1}^{n} u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y\right) \otimes \widetilde{1}\right)=\sum_{i=1}^{n} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1} u_{i} \cdot E^{X}\left(u_{i}^{*} \cdot y\right)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot y
$$

by Lemma 5.4. Hence E^{Y} is surjective. Also, we note that

$$
E^{Y}(c \otimes x \otimes \widetilde{d})=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c \cdot x \cdot d^{*}=c \cdot x \cdot d^{*} \operatorname{Ind}_{W}\left(E^{B}\right)^{-1}
$$

for any $c \in C, d \in D, x \in X$ by Lemma 5.5. Let ϕ be the linear map from Y to Y_{1} defined by

$$
\phi(y)=\sum_{i, j} u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}
$$

for any $y \in Y$.
Lemma 6.1. With the above notation, we have the following conditions: for any $c \in C$, $d \in D, y, z \in Y$,
(1) $\phi(c \cdot y)=c \cdot \phi(y)$;
(2) $\phi(y \cdot d)=\phi(y) \cdot d$;
(3) $C_{C_{1}}\langle\phi(y), \phi(z)\rangle={ }_{C}\langle y, z\rangle$;
(4) $\langle\phi(y), \phi(z)\rangle_{D_{1}}=\langle y, z\rangle_{D}$.

Proof. Let $c \in C, d \in D, y, z \in Y$. Then

$$
\begin{aligned}
\phi(c \cdot y) & =\sum_{i, j} u_{i} \otimes E^{X}\left(u_{i}^{*} c \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}=\sum_{i, j, k} u_{i} \otimes E^{X}\left(E^{A}\left(u_{i}^{*} c u_{k}\right) u_{k}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}} \\
& =\sum_{i, j, k} u_{i} E^{A}\left(u_{i}^{*} c u_{k}\right) \otimes E^{X}\left(u_{k}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}=\sum_{j, k} c u_{k} \otimes E^{X}\left(u_{k}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}} \\
& =c \cdot \phi(y) .
\end{aligned}
$$

Hence we obtain condition (1). In a similar way to the above, we can obtain condition (2). Next we show conditions (3) and (4):

$$
\begin{aligned}
c_{1}\langle\phi(y), \phi(z)\rangle & =\sum_{i, j, k, l} c_{1}\left\langle u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}, u_{k} \otimes E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right) \otimes \widetilde{v_{l}}\right\rangle \\
& =\sum_{i, j, k, l} c_{1}\left\langle u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right) \otimes \widetilde{v_{l}}\right\rangle, u_{k}\right\rangle \\
& =\sum_{i, j, k, l} u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right) \otimes \widetilde{v_{l}}\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{i, j, k, l} u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot\left\langle v_{j}, v_{l}\right\rangle_{B}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{i, j, k, l} u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot E^{B}\left(v_{j}^{*} v_{l}\right), E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{i, j, k, l} u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j} E^{B}\left(v_{j}^{*} v_{l}\right)\right), E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{i, k, l} u_{i A}\left\langle E^{X}\left(u_{i}^{*} \cdot y \cdot v_{l}\right), E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{i, k, l} u_{i} E^{A}\left(c_{c}\left\langle u_{i}^{*} \cdot y \cdot v_{l}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle\right) e_{A} u_{k}^{*} \\
& =\sum_{i, k, l} u_{i} E^{A}\left(u_{i}^{*} c\left\langle y \cdot v_{l}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle\right) e_{A} u_{k}^{*} \\
& =\sum_{k, l} c\left\langle y \cdot v_{l}, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right)\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{k, l} c\left\langle y, E^{X}\left(u_{k}^{*} \cdot z \cdot v_{l}\right) \cdot v_{l}^{*}\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{k} c\left\langle y, u_{k}^{*} \cdot z\right\rangle e_{A} u_{k}^{*} \\
& =\sum_{k} c_{k}\langle y, z\rangle u_{k} e_{A} u_{k}^{*} \\
& ={ }_{c}\langle y, z\rangle .
\end{aligned}
$$

Hence we obtain condition (3). We obtain condition (4) in a similar manner.

By the above lemma, we can identify Y with a closed subspace of Y_{1} satisfying conditions (1), (2) in Definition 2.1 except for the conditions that ${ }_{C}\left\langle Y_{1}, Y\right\rangle=C$ and $\left\langle Y_{1}, Y\right\rangle_{D}=D$.

Lemma 6.2. With the above notation, we identify Y with a closed subspace of Y_{1} by the linear map ϕ. Then $C_{C_{1}}\left\langle Y_{1}, Y\right\rangle=C_{1}$ and $\left\langle Y_{1}, Y\right\rangle_{D_{1}}=D_{1}$.

Proof. Let $c \otimes x \otimes \widetilde{d} \in Y_{1}$ and $y \in Y$. Since $\phi(y)=\sum_{i, j} u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}$,

$$
\begin{aligned}
c_{1}\langle c \otimes x \otimes \widetilde{d}, \phi(y)\rangle & =\sum_{i, j} c_{1}\left\langle c \otimes x \otimes \widetilde{d}, u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}\right\rangle \\
& =\sum_{i, j} c_{1}\left\langle c \cdot{ }_{A}\left\langle x \otimes \widetilde{d}, E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}\right\rangle, u_{i}\right\rangle \\
& =\sum_{i, j} c_{1}\left\langle c \cdot{ }_{A}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right), E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right)\right\rangle, u_{i}\right\rangle \\
& =\sum_{i, j} c_{A}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right), E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right)\right\rangle e_{A} u_{i}^{*} \\
& =\sum_{i, j} c e_{A A}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right), E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right)\right\rangle u_{i}^{*} \\
& =\sum_{i, j} c e_{A C}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right), u_{i} \cdot E\left(u_{i}^{*} \cdot y \cdot v_{j}\right)\right\rangle \\
& =\sum_{j} c e_{A C}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right), y \cdot v_{j}\right\rangle \\
& =\sum_{j} c e_{A C}\left\langle x \cdot E^{B}\left(d^{*} v_{j}\right) v_{j}^{*}, y\right\rangle \\
& =c e_{A C}\left\langle x \cdot d^{*}, y\right\rangle=c e_{A C}\langle x, y \cdot d\rangle .
\end{aligned}
$$

Since ${ }_{C}\langle X, Y\rangle=C$, we obtain that ${ }_{C_{1}}\left\langle Y_{1}, Y\right\rangle=C_{1}$. Also, since $\langle X, Y\rangle_{D}=D$, we obtain that $\left\langle Y_{1}, Y\right\rangle_{D_{1}}=D_{1}$ in the same way as above.

By Lemmas 6.1 and 6.2, we obtain the following corollary.
Corollary 6.3. With the above notation, the inclusions $C \subset C_{1}$ and $D \subset D_{1}$ are strongly Morita equivalent with respect to the $C_{1}-D_{1}$-equivalence bimodule Y_{1} and its closed subspace Y.

Let E^{C} and E^{D} be the dual conditional expectations of E^{A} and E^{B}, respectively.
Lemma 6.4. With the above notation, E^{Y} is a conditional expectation from Y_{1} onto Y with respect to E^{C} and E^{D}.

Proof. We show that conditions (1)-(6) in Definition 2.4 hold. Note that we identify Y with $\phi(Y) \subset Y_{1}$.
(1) For any $c_{1}, c_{2} \in C, y \in Y$,

$$
\begin{aligned}
E^{Y}\left(c_{1} e_{A} c_{2} \cdot y\right) & =\sum_{i, j} E^{Y}\left(c_{1} e_{A} c_{2} \cdot u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}\right) \\
& =\sum_{i, j} E^{Y}\left(c_{1} E^{A}\left(c_{2} u_{i}\right) \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}}\right) \\
& =\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} E^{A}\left(c_{2} u_{i}\right) \cdot E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot v_{j}^{*} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} c_{2} \cdot y=E^{C}\left(c_{1} e_{A} c_{2}\right) \cdot y .
\end{aligned}
$$

(2) For any $c_{1}, c_{2} \in C, x \in X, d \in D$,

$$
\begin{aligned}
E^{Y}\left(c_{1} \cdot c_{2} \otimes x \otimes \widetilde{d}\right) & =E^{Y}\left(c_{1} c_{2} \otimes x \otimes \widetilde{d}\right)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} c_{2} \cdot x \cdot d^{*} \\
& =c_{1} \cdot E^{Y}\left(c_{2} \otimes x \otimes \widetilde{d}\right) .
\end{aligned}
$$

(3) By the proof of Lemma 6.2, for any $c \in C, d \in D, x \in X, y \in Y$,

$$
\begin{aligned}
E^{C}\left(c_{1}\langle c \otimes x \otimes \widetilde{d}, y\rangle\right) & =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{C}\left\langle x \cdot d^{*}, y\right\rangle \\
& =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1}{ }_{C}\left\langle c \cdot x \cdot d^{*}, y\right\rangle=c_{1}\left\langle E^{Y}(c \otimes x \otimes \widetilde{d}), y\right\rangle .
\end{aligned}
$$

(4) By Lemma 5.5, we can see that

$$
E^{Y}\left(y \cdot d_{1} e_{B} d_{2}\right)=y \cdot E^{D}\left(d_{1} e_{B} d_{2}\right)
$$

for any $d_{1}, d_{2} \in D, y \in Y$ in the same way as in the proof of condition (1).
(5) In the same way as in the proof of condition (2), we can see that

$$
E^{Y}\left(c \otimes x \otimes \widetilde{d_{1}} \cdot d_{2}\right)=E^{Y}\left(c \otimes x \otimes \widetilde{d_{1}}\right) \cdot d_{2}
$$

for any $c \in C, d_{1}, d_{2} \in D, x \in X$.
(6) By Lemma 5.5 we can see that

$$
E^{B}\left(\langle c \otimes x \otimes \widetilde{d}, y\rangle_{D_{1}}=\left\langle E^{Y} c \otimes x \otimes \widetilde{d}\right), y\right\rangle_{D_{1}}
$$

for any $c \in C, d \in D, x \in X, y \in Y$. Therefore we obtain the conclusion.
Definition 6.5. In the above situation, Y_{1} is called the upward basic construction of Y for E^{X}. Also, E^{Y} is called the dual conditional expectation of E^{X}.
Remark 6.6. The linear map ϕ from Y to Y_{1} defined in the above is independent of the choice of quasi-bases $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}$ and $\left\{\left(v_{j}, v_{j}^{*}\right)\right\}$ for E^{A} and E^{B}, respectively. Indeed, let $\left\{\left(w_{i}, w_{i}^{*}\right)\right\}$ and $\left\{\left(z_{j}, z_{j}^{*}\right)\right\}$ be another pair of quasi-bases for E^{A} and E^{B}, respectively. Then for any $y \in Y$,

$$
\begin{aligned}
\sum_{i, j} w_{i} \otimes E^{X}\left(w_{i}^{*} \cdot y \cdot z_{j}\right) \otimes \widetilde{z_{j}} & =\sum_{i, j, k, l} u_{k} E^{A}\left(u_{k}^{*} w_{i}\right) \otimes E^{X}\left(w_{i}^{*} \cdot y \cdot z_{j}\right) \otimes\left[v_{l} E^{B}\left(v_{l}^{*} z_{j}\right) \tilde{}\right. \\
& =\sum_{i, j, k, l} u_{k} \otimes E^{X}\left(E^{A}\left(u_{k}^{*} w_{i}\right) w_{i}^{*} \cdot y \cdot z_{j}\right) \otimes E^{B}\left(z_{j}^{*} v_{l}\right) \cdot \widetilde{v_{l}}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{j, k, l} u_{k} \otimes E^{X}\left(u_{k}^{*} \cdot y \cdot z_{j} E^{B}\left(z_{j}^{*} v_{l}\right)\right) \otimes \widetilde{v_{l}} \\
& =\sum_{k . l} u_{k} \otimes E^{X}\left(u_{k}^{*} \cdot y \cdot v_{l}\right) \otimes \widetilde{v_{l}}=\phi(y) .
\end{aligned}
$$

Next, we shall show that the upward basic construction for equivalence bimodules is unique in a certain sense.

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras as above. Also, let E^{A}, E^{B}, E^{X} and C_{1}, D_{1} be as above.

Lemma 6.7. With the above notation, $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$ if and only if $\operatorname{Ind}_{W}\left(E^{B}\right) \in B$.
Proof. We assume that $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$. By the discussions before Lemma 2.8, we may assume that

$$
B=p M_{k}(A) p, \quad D=p M_{k}(C) p,\left.\quad E^{B}\left(E^{A} \otimes \mathrm{id}_{M_{k}(\mathbb{C})}\right)\right|_{p M_{k}(C) p}
$$

where $k \in \mathbb{N}$ and p is a projection in $M_{k}(A)$ satisfying $M_{k}(A) p M_{k}(A)=M_{k}(A)$ and $M_{k}(C) p M_{k}(C)=M_{k}(C)$. Then by the discussions before Lemma 2.8,

$$
\operatorname{Ind}_{W}\left(E^{B}\right)=\left(\operatorname{Ind}_{W}\left(E^{A}\right) \otimes I_{k}\right) p
$$

Since $\operatorname{Ind}_{W}\left(E^{A}\right) \in A, \operatorname{Ind}_{W}\left(E^{B}\right) \in p M_{k}(A) p=B$. Thus, we obtain the conclusion.
Let W be a $C_{1}-D_{1}$-equivalence bimodule. We suppose that $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$. Then $\operatorname{Ind}_{W}\left(E^{B}\right) \in B$ by Lemma 6.7. Also, we suppose that Y is included in W as its closed subspace and that the inclusions $C \subset C_{1}$ and $D \subset D_{1}$ are strongly Morita equivalent with respect to W and its closed subspace Y. Furthermore, we suppose that there is a conditional expectation F^{Y} from W onto Y with respect to E^{C} and E^{D} satisfying

$$
\begin{equation*}
F^{Y}\left(e_{A} \cdot y \cdot e_{B}\right)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot E^{X}(y) \tag{*}
\end{equation*}
$$

for any $y \in Y$, where e_{A} and e_{B} are the Jones projections for E^{A} and E^{B}, respectively. Note that in Lemma 6.10, we shall show that the conditional expectation E^{Y} from Y_{1} onto Y with respect to E^{C} and E^{D} satisfies

$$
E^{Y}\left(e_{A} \cdot y \cdot e_{B}\right)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot E^{X}(y)
$$

for any $y \in Y$. We show that there is a $C_{1}-D_{1}$-equivalence bimodule isomorphism θ from W onto Y_{1} such that

$$
F^{Y}=E^{Y} \circ \theta
$$

Let $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}_{i=1}^{n}$ and $\left\{\left(v_{j}, v_{j}^{*}\right)\right\}_{j=1}^{m}$ be quasi-bases for E^{A} and E^{B}, respectively and let $\left\{\left(w_{i}, w_{i}^{*}\right)\right\}_{i=1}^{n}$ and $\left\{\left(z_{j}, z_{j}^{*}\right)\right\}_{j=1}^{m}$ be their dual quasi-bases for E^{C} and E^{D} defined by

$$
\begin{aligned}
w_{i} & =u_{i} e_{A} \operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2},(i=1,2, \ldots, n) \\
z_{j} & =v_{j} e_{B} \operatorname{Ind}_{W}\left(E^{B}\right)^{1 / 2},(j=1,2, \ldots, m)
\end{aligned}
$$

respectively. Let θ be the map from W to Y_{1} defined by

$$
\begin{aligned}
\theta(y) & =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} u_{i} \otimes E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \\
& =\sum_{i, j} u_{i} \otimes E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \cdot \operatorname{Ind}_{W}\left(E^{B}\right)
\end{aligned}
$$

for any $y \in W$. Clearly θ is a linear map from W to Y_{1}.
Lemma 6.8. With the above notation, for any $c_{1}, c_{2} \in C, d_{1}, d_{2} \in D$ and $y \in W$,

$$
\theta\left(c_{1} e_{A} c_{2} \cdot y\right)=c_{1} e_{A} c_{2} \cdot \theta(y), \quad \theta\left(y \cdot d_{1} e_{B} d_{2}\right)=\theta(y) \cdot d_{1} e_{B} d_{2}
$$

Proof. For any $c_{1}, c_{2} \in C$ and $y \in W$,

$$
\begin{aligned}
\theta\left(c_{1} e_{A} c_{2} \cdot y\right) & =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} u_{i} \otimes E^{X}\left(F^{Y}\left(E^{A}\left(u_{i}^{*} c_{1}\right) e_{A} c_{2} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} u_{i} E^{A}\left(u_{i}^{*} c_{1}\right) \otimes E^{X}\left(F^{Y}\left(e_{A} c_{2} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} c_{1} \otimes E^{X}\left(F^{Y}\left(e_{A} E^{A}\left(c_{2} u_{i}\right) u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} c_{1} e_{A} c_{2} \cdot u_{i} \otimes E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right)\right) \otimes \widetilde{v_{j}} \\
& =c_{1} e_{A} c_{2} \cdot \theta(y)
\end{aligned}
$$

Similarly, we can see that $\theta\left(y \cdot d_{1} e_{B} d_{2}\right)=\theta(y) \cdot d_{1} e_{B} d_{2}$ for any $d_{1}, d_{2} \in D$ and $y \in W$. Therefore, we obtain the conclusion.

Lemma 6.9. With the above notation, θ is surjective.
Proof. By Lemma 6.8 and condition (*), for any $c \in C, d \in D$ and $x \in X$,

$$
\begin{aligned}
\theta\left(c e_{A} \cdot x \cdot e_{B} d^{*}\right) & =c e_{A} \cdot \theta(x) \cdot e_{B} d^{*} \\
& =\sum_{i, j} c e_{A} \cdot u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot x \cdot v_{j}\right) \otimes \widetilde{v_{j}} \cdot e_{B} d^{*} \\
& =\sum_{i, j} c \otimes E^{X}\left(E^{A}\left(u_{i}\right) u_{i}^{*} \cdot x \cdot v_{j} E^{B}\left(v_{j}^{*}\right)\right) \otimes \widetilde{d}=c \otimes x \otimes \widetilde{d} .
\end{aligned}
$$

Hence θ is surjective.
Next, we show that θ preserves both inner products.
Lemma 6.10. For any $y \in Y$,

$$
\begin{aligned}
& e_{A} \cdot y \cdot e_{B}=e_{A} \cdot \phi(y) \cdot e_{B}=e_{A} \cdot E^{X}(y)=E^{X}(y) \cdot e_{B} \\
& E^{Y}\left(e_{A} \cdot y \cdot e_{B}\right)=\operatorname{Ind}_{W}(A)^{-1} \cdot E^{X}(y)=E^{X}(y) \cdot \operatorname{Ind}_{W}(B)^{-1}
\end{aligned}
$$

Proof. For any $y \in Y$,

$$
\begin{aligned}
e_{A} \cdot y \cdot e_{B} & =e_{A} \cdot \sum_{i, j} u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}} \cdot e_{B} \\
& =\sum_{i, j} 1 \otimes E^{X}\left(E^{A}\left(u_{i}\right) u_{i}^{*} \cdot y \cdot v_{j} E^{B}\left(v_{j}^{*}\right)\right) \otimes \widetilde{1}=1 \otimes E^{X}(y) \otimes \widetilde{1} .
\end{aligned}
$$

Also, by similar computations to the above, for any $y \in Y$,

$$
e_{A} \cdot E^{X}(y)=e_{A} \cdot \phi\left(E^{X}(y)\right)=E^{X}(y) \cdot e_{B}=1 \otimes E^{X}(y) \otimes \widetilde{1} .
$$

Furthermore,

$$
\begin{aligned}
E^{Y}\left(e_{A} \cdot y \cdot e_{B}\right) & =E^{Y}\left(e_{A} \cdot E^{X}(y)\right)=E^{C}\left(e_{A}\right) \cdot E^{X}(y) \\
& =\operatorname{Ind}_{W}(A)^{-1} \cdot E^{X}(y)=E^{X}(y) \cdot \operatorname{Ind}_{W}(B)^{-1}
\end{aligned}
$$

by Lemma 5.5. Thus, we obtain the conclusion.
Lemma 6.11. With the above notation, θ preserves both inner products.
Proof. Let $y_{1}, y_{2} \in W$. Then

$$
\theta\left(y_{1}\right)=\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} u_{i} \otimes x_{1} \otimes \widetilde{v_{j}}, \quad \theta\left(y_{2}\right)=\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i_{1}, j_{1}} u_{i_{1}} \otimes x_{2} \otimes \widetilde{v_{j_{1}}},
$$

where

$$
x_{1}=E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y_{1} \cdot v_{j} e_{B}\right)\right), \quad x_{2}=E^{X}\left(F^{Y}\left(e_{A} u_{i_{1}}^{*} \cdot y_{2} \cdot v_{j_{1}} e_{B}\right)\right) .
$$

Hence by Lemma 6.10,

$$
\begin{aligned}
C_{1} & \left\langle\theta\left(y_{1}\right), \theta\left(y_{2}\right)\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} c_{1}\left\langle u_{i} \otimes x_{1} \otimes \widetilde{v_{j}}, u_{i_{1}} \otimes x_{2} \otimes \widetilde{v_{j_{1}}}\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} c_{1}\left\langle u_{i A}\left\langle x_{1} \otimes \widetilde{v_{j}}, x_{2} \otimes \widetilde{v_{j_{1}}}\right\rangle, u_{i_{1}}\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} C_{1}\left\langle u_{i A}\left\langle x_{1} \cdot{ }_{B}\left\langle\widetilde{v_{j}}, \widetilde{v_{j_{1}}}\right\rangle, x_{2}\right\rangle, u_{i_{1}}\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} c_{1}\left\langle u_{i A}\left\langle x_{1} \cdot\left\langle v_{j}, v_{j_{1}}\right\rangle{ }_{B}, x_{2}\right\rangle, u_{i_{1}}\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} c_{1}\left\langle u_{i A}\left\langle x_{1} \cdot E^{B}\left(v_{j}^{*} v_{j_{1}}\right), x_{2}\right\rangle, u_{i_{1}}\right\rangle \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \sum_{i, j, i_{1}, j_{1}} u_{i} e_{A A}\left\langle x_{1} \cdot E^{B}\left(v_{j}^{*} v_{j_{1}}\right), x_{2}\right\rangle u_{i_{1}}^{*} \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \\
& \times \sum_{i, i_{1}, j_{1}} u_{i} e_{A A}\left\langle E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y_{1} \cdot v_{j_{1}} e_{B}\right)\right), E^{X}\left(F^{Y}\left(e_{A} u_{i_{1}}^{*} \cdot y_{2} \cdot v_{j_{1}} e_{B}\right)\right)\right\rangle u_{i_{1}}^{*}
\end{aligned}
$$

$$
\begin{aligned}
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \\
& \times \sum_{i, i_{1}, j_{1}} u_{i C_{1}}\left\langle e_{A} \cdot F^{Y}\left(e_{A} u_{i}^{*} \cdot y_{1} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}, e_{A} \cdot F^{Y}\left(e_{A} u_{i_{1}}^{*} \cdot y_{2} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}\right\rangle u_{i_{1}}^{*} \\
= & \operatorname{Ind}_{W}\left(E^{A}\right)^{2} \\
& \times \sum_{i, i_{1}, j_{1}} c_{1}\left\langle u_{i} e_{A} \cdot F^{Y}\left(e_{A} u_{i}^{*} \cdot y_{1} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}, u_{i_{1}} e_{A} \cdot F^{Y}\left(e_{A} u_{i_{1}}^{*} \cdot y_{2} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}\right\rangle \\
= & \sum_{i, i_{1}, j_{1}} c_{1}\left\langle w_{i} \cdot F^{Y}\left(w_{i}^{*} \cdot y_{1} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}, w_{i_{1}} \cdot F^{Y}\left(w_{i_{1}}^{*} \cdot y_{2} \cdot v_{j_{1}} e_{B}\right) \cdot e_{B}\right\rangle \\
= & \sum_{j_{1}} c_{1}\left\langle y_{1} \cdot v_{j_{1}} e_{B}, y_{2} \cdot v_{j_{1}} e_{B}\right\rangle=\sum_{j_{1}} c_{1}\left\langle y_{1} \cdot v_{j_{1}} e_{B} v_{j_{1}}^{*}, y_{2}\right\rangle=c_{1}\left\langle y_{1}, y_{2}\right\rangle .
\end{aligned}
$$

Also, by Lemma 6.10, we can see that $\left\langle\theta\left(y_{1}\right), \theta\left(y_{2}\right)\right\rangle_{D_{1}}=\left\langle y_{1}, y_{2}\right\rangle_{D_{1}}$ in the same way as in the above. Therefore, we obtain the conclusion.

Proposition 6.12. With the above notation, θ is a $C_{1}-D_{1}$-equivalence bimodule isomorphism from W onto Y_{1} such that $F^{Y}=E^{Y} \circ \theta$.

Proof. By Lemmas 6.8, 6.9 and 6.11, we have only to show that $F^{Y}=E^{Y} \circ \theta$. For any $y \in W$,

$$
\begin{aligned}
\left(E^{Y} \circ \theta\right)(y) & =\sum_{i, j} u_{i} \cdot E^{X}\left(F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right)\right) \cdot v_{j}^{*} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} u_{i} \cdot F^{Y}\left(e_{A} \cdot F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right) \cdot e_{B}\right) \cdot v_{j}^{*} \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \sum_{i, j} F^{Y}\left(u_{i} e_{A} \cdot F^{Y}\left(e_{A} u_{i}^{*} \cdot y \cdot v_{j} e_{B}\right) \cdot e_{B} v_{j}^{*}\right) \\
& =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \sum_{i, j} F^{Y}\left(w_{i} \cdot F^{Y}\left(w_{i}^{*} \cdot y \cdot z_{j}\right) \cdot z_{j}^{*}\right) \\
& =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \sum_{j} F^{Y}\left(y \cdot z_{j} z_{j}^{*}\right) \\
& =F^{Y}(y)
\end{aligned}
$$

by condition (*) and Lemma 5.5. Therefore, we obtain the conclusion.
Summing up the above discussions, we obtain the following theorem.
Theorem 6.13. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras. Let E^{A} and E^{B} be conditional expectations from C and D onto A and B of Watatani indexfinite type, respectively. Let E^{X} be a conditional expectation from Y onto X with respect to E^{A} and E^{B}. Let C_{1} and D_{1} be the C^{*}-basic constructions and e_{A} and e_{B} the Jones projections for E^{A} and E_{B}, respectively. We suppose that the Watatani index, $\operatorname{Ind}_{W}\left(E^{A}\right)$ is in A. Let W be a $C_{1}-D_{1}$-equivalence bimodule satisfying that Y is included in W as its closed subspace and that the inclusions $C \subset C_{1}$ and $D \subset D_{1}$ are strongly Morita
equivalent to with respect to W and its closed subspace Y. Also we suppose that there is a conditional expectation F^{Y} from W onto Y with respect to E^{C} and E^{D} satisfying

$$
F^{Y}\left(e_{A} \cdot y \cdot e_{B}\right)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot E^{X}(y)
$$

for any $y \in Y$, where E^{C} and E^{D} are the dual conditional expectations from C_{1} and D_{1} onto C and D for E^{A} and E^{B}, respectively. Then there is a $C_{1}-D_{1}$-equivalence bimodule isomorphism θ from W onto Y_{1} such that $F^{Y}=E^{Y} \circ \theta$, where Y_{1} is the upward basic construction of Y for E^{X} and E^{Y} is the dual conditional expectation of E^{X}.

7. Duality

In this section, we shall present a certain duality theorem for inclusions of equivalence bimodules.

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Let E^{A} and E^{B} be conditional expectations of Watatani index-finite type from C and D onto A and B, respectively. Let E^{X} be a conditional expectation from Y onto X with respect to E^{A} and E^{B}. Let C_{1} and D_{1} be the C^{*}-basic constructions for E^{A} and E^{B} and e_{A} and e_{B} the Jones projections for E^{A} and E^{B}, respectively. Let Y_{1} be the upward basic construction for E^{X} and let E^{C}, E^{D} and E^{Y} be the dual conditional expectations from C_{1}, D_{1} and Y_{1} onto C, D and Y, respectively. Furthermore, let C_{2} and D_{2} be the C^{*}-basic constructions for E^{C} and E^{D}, respectively, and e_{C} and e_{D} the Jones projections for E^{C} and E^{D}, respectively. Let Y_{2} be the upward basic construction for E^{Y} and let $E^{C_{1}}, E^{D_{1}}$ and $E^{Y_{1}}$ be the dual conditional expectations from C_{2}, D_{2} and Y_{2} onto C_{1}, D_{1} and Y_{1}, respectively. Let $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}_{i=1}^{k}$ and $\left\{\left(v_{i}, v_{i}^{*}\right)\right\}_{i=1}^{k_{1}}$ be quasi-bases for E^{A} and E^{B}, respectively. We note that we can assume that $k=k_{1}$.

We suppose that $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$. Then $\operatorname{Ind}_{W}\left(E^{B}\right) \in B$ by Lemma 5.5. By Proposition 4.3, the inclusions $C_{1} \subset C_{2}$ and $A \subset C$ are strongly Morita equivalent with respect to the $C_{2}-C$-equivalence bimodule C_{1} and its closed subspace C. Also, there is a conditional expectation G from C_{1} onto C with respect to E^{C} and E^{A}. Let $p=\left[E^{A}\left(u_{i}^{*} u_{j}\right)\right]_{i, j=1}^{k}$. Then by the discussions in Section 2, p is a full projection in $M_{k}(A)$. Let $\Psi_{C_{1}}$ be the map from C_{1} to $M_{k}(A)$ defined by

$$
\Psi_{C_{1}}\left(c_{1} e_{A} c_{1}\right)=\left[E^{A}\left(u_{i}^{*} c_{1}\right) E^{A}\left(c_{2} u_{j}\right)\right]_{i, j=1}^{k}
$$

for any $c_{1}, c_{2} \in C$. Then by the discussions in Section 2, $\Psi_{C_{1}}$ is an isomorphism of C_{1} onto $p M_{k}(A) p$. Let $\Psi_{C_{2}}$ be the map from C_{2} to $M_{k}(C)$ defined by

$$
\begin{aligned}
\Psi_{C_{2}}\left(c_{1} e_{C} c_{2}\right) & =\left[E^{C}\left(w_{i}^{*} c_{1}\right) E^{C}\left(c_{2} w_{j}\right)\right]_{i, j=1}^{k} \\
& =\left[E^{C}\left(\operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2} e_{A} u_{i}^{*} c_{1}\right) E^{C}\left(\operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2} c_{2} u_{j} e_{A}\right)\right] \\
& =\left[\operatorname{Ind}_{W}\left(E^{A}\right) E^{C}\left(e_{A} u_{i}^{*} c_{1}\right) E^{C}\left(c_{2} u_{j} e_{A}\right)\right]
\end{aligned}
$$

for any $c_{1}, c_{2} \in C_{1}$, where $\left\{\left(w_{i}, w_{i}^{*}\right)\right\}_{i=1}^{k}$ is the quasi-basis for E^{C} defined by $w_{i}=$ $\operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2} u_{i} e_{A}$ for $i=1,2, \ldots, k$. Then $\Psi_{C_{2}}$ is also an isomorphism of C_{2} onto
$p M_{k}(C) p$. Furthermore, let Φ_{C} be the map from C to $M_{k}(A)$ defined by

$$
\Phi_{C}(c)=\left[\begin{array}{c}
E^{A}\left(u_{1}^{*} c\right) \\
\vdots \\
E^{A}\left(u_{k}^{*} c\right)
\end{array}\right]
$$

for any $c \in C$, By the discussions in Section 2, Φ_{C} is a $C_{1}-A$-equivalence bimodule isomorphism of the $C_{1}-A$-equivalence bimodule C onto the $p M_{k}(A) p-A$-equivalence bimodule $p M_{k}(A)(1 \otimes f)$, where

$$
f=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right] \in M_{k}(\mathbb{C})
$$

and we identify A and C_{1} with $A \otimes f$ and $p M_{k}(A) p$, respectively. Let $\Phi_{C_{1}}$ be the map from C_{1} to $M_{k}(C)$ defined by

$$
\Phi_{C_{1}}(c)=\left[\begin{array}{c}
E^{C}\left(w_{1}^{*} c\right) \\
\vdots \\
E^{C}\left(w_{k}^{*} c\right)
\end{array}\right]
$$

for any $c \in C$. Then by the discussions in Section 2, $\Phi_{C_{1}}$ is a $C_{2}-C$-equivalence bimodule isomorphism of the $C_{2}-C$-equivalence bimodule C_{1} onto the $p M_{k}(C) p-C$ equivalence bimodule $p M_{k}(C)(1 \otimes f)$, where

$$
f=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right] \in M_{k}(\mathbb{C})
$$

and we identify C and C_{2} with $C \otimes f$ and $p M_{k}(C) p$, respectively. Thus, the inclusion $C_{1} \subset C_{2}$ can be identified with the inclusion $p M_{k}(A) p \subset p M_{k}(C) p$, the $C_{1}-A$-equivalence bimodule C can be identified with the $p M_{k}(A) p-A$-equivalence bimodule $p M_{k}(A)(1 \otimes f)$ and E^{C} can be identified with $\left.\left(E^{A} \otimes \mathrm{id}\right)\right|_{p M_{k}(A) p}$ by the above isomorphisms. Results similar to the above hold. Let $q=\left[E^{B}\left(v_{i}^{*} v_{j}\right)\right]_{i, j=1}^{k}$. Then q is a full projection in $M_{k}(B)$. Then the inclusion $D_{1} \subset D_{2}$ is identified with the inclusion $q M_{k}(B) q \subset q M_{k}(D) q$, the $D_{1}-B$-equivalence bimodule D is identified with the $q M_{k}(B) q-B$-equivalence bimodule $q M_{k}(B)(1 \otimes f)$, and E^{D} is identified with $\left.\left(E^{D} \otimes \mathrm{id}\right)\right|_{q M_{k}(B) q}$ by the following isomorphisms. Let $\Psi_{D_{1}}$ be the isomorphism of D_{1} onto $q M_{k}(B) q$ defined by

$$
\Psi_{D_{1}}\left(d_{1} e_{B} d_{2}\right)=\left[E^{B}\left(v_{i}^{*} d_{1}\right) E^{B}\left(d_{2} v_{j}\right)\right]_{i, j=1}^{k},
$$

for any $d_{1}, d_{2} \in D$. Let $\Psi_{D_{2}}$ be the isomorphism of D_{2} onto $q M_{k}(D) q$ defined by

$$
\Psi_{D_{2}}\left(d_{1} e_{D} d_{2}\right)=\left[E^{D}\left(z_{i}^{*} d_{1}\right) E^{D}\left(d_{2} z_{j}\right)\right]_{i, j=1}^{k}
$$

for any $d_{1}, d_{2} \in D_{1}$, where $\left\{\left(z_{i}, z_{i}^{*}\right)\right\}_{i=1}^{k}$ is the quasi-basis for E^{D} defined by $z_{i}=$ $\operatorname{Ind}_{W}(B)^{1 / 2} v_{i} e_{B}$ for $i=1,2, \ldots, k$. Furthermore, let Φ_{D} be the $D_{1}-B$-equivalence bimodule isomorphism of D onto $q M_{k}(B)(1 \otimes f)$ defined by

$$
\Phi_{D}(d)=\left[\begin{array}{c}
E^{B}\left(v_{1}^{*} d\right) \\
\vdots \\
E^{B}\left(v_{k}^{*} d\right)
\end{array}\right]
$$

for any $d \in D$, where we identify D_{1} with $q M_{k}(B) q$. Let $\Phi_{D_{1}}$ be the $D_{2}-D$-equivalence bimodule isomorphism of D_{1} onto $q M_{k}(D)(1 \otimes f)$ defined by

$$
\Phi_{D_{1}}(d)=\left[\begin{array}{c}
E^{D}\left(z_{1}^{*} d\right) \\
\vdots \\
E^{D}\left(z_{k}^{*} d\right)
\end{array}\right]
$$

for any $d \in D_{1}$, where we identify D_{2} with $q M_{k}(D) q$. Let Y_{1} and Y_{2} be the upward basic constructions for E^{X} and E^{Y}, respectively. By the definitions of Y_{1} and Y_{2},

$$
Y_{1}=C \otimes_{A} X \otimes_{B} \widetilde{D}, \quad Y_{2}=C_{1} \otimes_{C} Y \otimes_{D} \widetilde{D_{1}} .
$$

Then

$$
Y_{1} \cong p M_{k}(A)(1 \otimes f) \otimes_{A} X \otimes_{B}(1 \otimes f) M_{k}(B) q
$$

as $C_{1}-D_{1}$-equivalence bimodules where we identify $p M_{k}(A) p$ and $q M_{k}(B) q$ with C_{1} and D_{1}, respectively. We regard $p \cdot M_{k}(X) \cdot q$ as a $p M_{k}(A) p-q M_{k}(B) q$-equivalence bimodule in the usual way. Similarly,

$$
Y_{2} \cong p M_{k}(C)(1 \otimes f) \otimes_{C} Y \otimes_{D}(1 \otimes f) M_{k}(D) q
$$

as $C_{2}-D_{2}$-equivalence bimodules, where we identify $p M_{k}(C) p$ and $q M_{k}(D) q$ are identified with C_{2} and D_{2}, respectively.

Lemma 7.1. With the above notation,

$$
p M_{k}(A)(1 \otimes f) \otimes_{A} X \otimes_{B}(1 \otimes f) M_{k}(B) q \cong p \cdot M_{k}(X) \cdot q
$$

as $p M_{k}(A) p-q M_{k}(B) q$-equivalence bimodules. Hence $Y_{1} \cong p \cdot M_{k}(X) \cdot q$ as $C_{1}-D_{1-}$ equivalence bimodules, where we identify $p M_{k}(A) p$ and $q M_{k}(B) q$ with C_{1} and D_{1}, respectively.

Proof. We have only to show that

$$
p M_{k}(A)(1 \otimes f) \otimes_{A} X \otimes_{B}(1 \otimes f) M_{k}(B) q \cong p \cdot M_{k}(X) \cdot q
$$

as $p M_{k}(A) p-q M_{k}(B) q$-equivalence bimodules. Let Φ be the map from $p M_{k}(A)(1 \otimes$ $f) \otimes_{A} X \otimes_{B}(1 \otimes f) M_{k}(B) q$ to $p \cdot M_{k}(X) \cdot q$ defined by

$$
\Phi(p a(1 \otimes f) \otimes x \otimes(1 \otimes f) b q)=p a \cdot(x \otimes f) \cdot b q
$$

for any $a \in M_{k}(A), b \in M_{k}(B), x \in X$. Then it is clear that Φ is well defined and a $p M_{k}(A) p-q M_{k}(B) q$-bimodule. For any $a_{1}, a_{2} \in M_{k}(A), b_{1}, b_{2} \in M_{k}(B)$ and $x_{1}, x_{2} \in X$,

$$
\begin{aligned}
& p M_{k}(A) p\left\langle p a_{1}(1 \otimes f) \otimes x_{1} \otimes(1 \otimes f) b_{1} q, p a_{2}(1 \otimes f) \otimes x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle \\
& \quad={ }_{p M_{k}(A) p}\left\langle p a_{1}(1 \otimes f) \cdot{ }_{A}\left\langle x_{1} \otimes(1 \otimes f) b_{1} q, x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle, p a_{2}(1 \otimes f)\right\rangle \\
& \quad={ }_{p M_{k}(A) p}\left\langle p a_{1 A}\left\langle x_{1} \otimes(1 \otimes f) b_{1} q, x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle \otimes f, p a_{2}(1 \otimes f)\right\rangle \\
& \quad=p a_{1}\left[{ }_{A}\left\langle x_{1} \otimes(1 \otimes f) b_{1} q, x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle \otimes f\right] a_{2}^{*} p \\
& \quad=p a_{1}\left[{ }_{A}\left\langle x_{1} \cdot{ }_{B}\left\langle(1 \otimes f) b_{1} q,(1 \otimes f) b_{2} q\right\rangle, x_{2}\right\rangle \otimes f\right] a_{2}^{*} p \\
& \quad=p a_{1}\left[{ }_{A}\left\langle x_{1} \cdot(1 \otimes f) b_{1} q b_{2}^{*}(1 \otimes f), x_{2}\right\rangle \otimes f\right] a_{2}^{*} p .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& p M_{k}(A) p\left\langle p a_{1} \cdot\left(x_{1} \otimes f\right) \cdot b_{1} q, p a_{2} \cdot\left(x_{1} \otimes f\right) \cdot b_{2} q\right\rangle \\
& \quad=p a_{1}(1 \otimes f)_{M_{k}(A)}\left\langle\left(x_{1} \otimes f\right) \cdot b_{1} q,\left(x_{2} \otimes f\right) \cdot b_{2} q\right\rangle(1 \otimes f) a_{2}^{*} p \\
& \quad=p a_{1}\left[A\left\langle x_{1} \cdot(1 \otimes f) b_{1} q b_{2}^{*}(1 \otimes f), x_{2}\right\rangle \otimes f\right] a_{2}^{*} p .
\end{aligned}
$$

Hence Φ preserves the left $p M_{k}(A) p$-valued inner products. Also,

$$
\begin{aligned}
& \left\langle p a_{1}(1 \otimes f) \otimes x_{1} \otimes(1 \otimes f) b_{1} q, p a_{2}(1 \otimes f) \otimes x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle_{q M_{k}(B) q} \\
& \quad=\left\langle x_{1} \otimes(1 \otimes f) b_{1} q,\left\langle p a_{1}(1 \otimes f), p a_{2}(1 \otimes f)\right\rangle_{A} \cdot x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle_{q M_{k}(B) q} \\
& \quad=\left\langle x_{1} \otimes(1 \otimes f) b_{1} q,(1 \otimes f) a_{1}^{*} p a_{2}(1 \otimes f) \cdot x_{2} \otimes(1 \otimes f) b_{2} q\right\rangle_{q M_{k}(B) q} \\
& \quad=\left\langle(1 \otimes f) b_{1} q,\left[\left\langle x_{1},(1 \otimes f) a_{1}^{*} p a_{2}(1 \otimes f) \cdot x_{2}\right\rangle_{B} \otimes f\right] b_{2} q\right\rangle_{q M_{k}(B) q} \\
& \quad=q b_{1}^{*}(1 \otimes f)\left[\left\langle x_{1},(1 \otimes f) a_{1}^{*} p a_{2}(1 \otimes f) \cdot x_{2}\right\rangle_{B} \otimes f\right] b_{2} q \\
& \quad=q b_{1}^{*}\left[\left\langle x_{1},(1 \otimes f) a_{1}^{*} p a_{2}(1 \otimes f) \cdot x_{2}\right\rangle_{B} \otimes f\right] b_{2} q .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\langle p a_{1} \cdot\left(x_{1} \otimes f\right) \cdot b_{1} q, p a_{2} \cdot\left(x_{2} \otimes f\right) \cdot b_{2} q\right\rangle_{q M_{k}(B) q} \\
& \quad=q b_{1}^{*}(1 \otimes f)\left\langle p a_{1} \cdot\left(x_{1} \otimes f\right), p a_{2} \cdot\left(x_{2} \otimes f\right)\right\rangle_{M_{k}(B)}(1 \otimes f) b_{2} q \\
& \quad=q b_{1}^{*}\left[\left\langle x_{1},(1 \otimes f) a_{1}^{*} p a_{2}(1 \otimes f) \cdot x_{2}\right\rangle_{B} \otimes f\right] b_{2} q .
\end{aligned}
$$

Thus Φ preserves the right $q M_{k}(B) q$-valued inner products. Furthermore, let $\left\{f_{i j}\right\}_{i, j=1}^{k}$ be a system of matrix units of $M_{k}(\mathbb{C})$. Then since $f=f_{11}$, for any $x \in X$ and $i, j=1,2, \ldots, k$,

$$
\begin{aligned}
p\left(1 \otimes f_{i 1}\right) \otimes x \otimes\left(1 \otimes f_{1 j}\right) q & =p\left(1 \otimes f_{i 1}\right)(1 \otimes f) \otimes x \otimes(1 \otimes f)\left(1 \otimes f_{1 j}\right) q \\
& \in p M_{k}(A)(1 \otimes f) \otimes_{A} X \otimes_{B}(1 \otimes f) M_{k}(B) q .
\end{aligned}
$$

Then by the definition of $p \cdot M_{k}(X) \cdot q$, for $i, j=1,2, \ldots, k$,

$$
\Phi\left(p\left(1 \otimes f_{i 1}\right) \otimes x \otimes\left(1 \otimes f_{1 j}\right) q\right)=p\left(1 \otimes f_{i 1}\right) \cdot(x \otimes f) \cdot\left(1 \otimes f_{1 j}\right) q=p \cdot\left(x \otimes f_{i j}\right) \cdot q
$$

This means that Φ is surjective. Therefore, we obtain the conclusion.

Corollary 7.2. With the above notation,

$$
p M_{k}(C)(1 \otimes f) \otimes_{C} Y \otimes_{D}(1 \otimes f) M_{k}(D) q \cong p \cdot M_{k}(Y) \cdot q
$$

as $p M_{k}(C) p-q M_{k}(D) q$-equivalence bimodules. Hence $Y_{2} \cong p \cdot M_{k}(Y) \cdot q$ as $C_{2}-D_{2}-$ equivalence bimodules, where we identify $p M_{k}(C) p$ and $q M_{k}(D) q$ with C_{2} and D_{2}, respectively.
Proof. This is immediate by Lemma 6.1.
By the above discussions, we can obtain the $C_{1}-D_{1}$-equivalence bimodule isomorphism $\overline{\Phi_{1}}$ from Y_{2} onto $p \cdot M_{k}(Y) \cdot q$ defined by

$$
\overline{\Phi_{1}}\left(c_{1} \otimes y \otimes \widetilde{d_{1}}\right)=\left[E^{C}\left(w_{i}^{*} c_{1}\right) \cdot y \cdot E^{D}\left(d_{1}^{*} z_{j}\right)\right]_{i, j=1}^{k}
$$

for any $c_{1} \in C_{1}, d_{1} \in D_{1}, y \in Y$, where we identify C_{1} and D_{1} with $p M_{k}(C) p$ and $q M_{k}(D) q$ by the isomorphisms defined above, respectively. Also, we can obtain the C - D-equivalence bimodule isomorphism $\bar{\Phi}$ from Y_{1} onto $p \cdot M_{k}(X) \cdot q$ defined by

$$
\bar{\Phi}(c \otimes x \otimes d)=\left[E^{A}\left(u_{i}^{*} c\right) \cdot x \cdot E^{B}\left(d^{*} v_{j}\right)\right]_{i, j=1}^{k}
$$

for any $c \in C, d \in D, x \in X$, where we identify C and D with $p M_{k}(A) p$ and $q M_{k}(B) q$ by the isomorphisms defined above, respectively.

Let $E^{p \cdot M_{k}(X) \cdot q}$ be the conditional expectation from $p \cdot M_{k}(Y) \cdot q$ onto $p \cdot M_{k}(X) \cdot q$ defined by

$$
E^{p \cdot M_{k}(X) \cdot q}=\left.\left(E^{X} \otimes \operatorname{id}_{M_{k}(\mathbb{C})}\right)\right|_{p \cdot M_{k}(Y) \cdot q}
$$

with respect to conditional expectations induced by $E^{A} \otimes \mathrm{id}_{M_{k}(\mathbb{C})}$ and $E^{B} \otimes \mathrm{id}_{M_{k}(\mathbb{C})}$.
Lemma 7.3. With the above notation, we have

$$
E^{p \cdot M_{k}(X) \cdot q} \circ \overline{\Phi_{1}}=\bar{\Phi} \circ E^{Y_{1}} .
$$

Proof. We can prove this lemma by routine computations. Indeed, for any $c_{1} \in C_{1}$, $d_{1} \in D_{1}, y \in Y$,

$$
\begin{aligned}
\left(E^{p \cdot M_{k}(X) \cdot q} \circ \overline{\Phi_{1}}\right)\left(c_{1} \otimes y \otimes \widetilde{d_{1}}\right) & =E^{p \cdot M_{k}(X) \cdot q}\left(\left[E^{C}\left(w_{i}^{*} c_{1}\right) \cdot y \cdot E^{D}\left(d_{1}^{*} z_{j}\right)\right]_{i, j=1}^{k}\right) \\
& =\left[E^{X}\left(E^{C}\left(w_{i}^{*} c_{1}\right) \cdot y \cdot E^{D}\left(d_{1}^{*} z_{j}\right)\right)\right]_{i, j=1}^{k} .
\end{aligned}
$$

Let $c_{1}=c_{2} e_{A} c_{3}, c_{2}, c_{3} \in C$ and $d_{1}=d_{2} e_{B} d_{3}, d_{2}, d_{3} \in D$. We note that for any $i, j=$ $1,2, \ldots, k$,

$$
w_{i}=u_{i} e_{A} \operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2}, \quad z_{j}=v_{j} e_{B} \operatorname{Ind}_{W}\left(E^{B}\right)^{1 / 2}
$$

Hence

$$
\begin{aligned}
& {\left[E^{X}\left(E^{C}\left(w_{i}^{*} c_{1}\right) \cdot y \cdot E^{D}\left(d_{1}^{*} z_{j}\right)\right)\right]_{i, j=1}^{k}} \\
& \quad=\left[E^{X}\left(E^{C}\left(\operatorname{Ind}_{W}\left(E^{A}\right)^{1 / 2} e_{A} u_{i}^{*} c_{2} e_{A} c_{3}\right) \cdot y \cdot E^{D}\left(d_{3}^{*} e_{B} d_{2}^{*} v_{j} e_{B} \operatorname{Ind}_{W}\left(E^{B}\right)^{1 / 2}\right)\right)\right]_{i j}^{k} \\
& \quad=\left[E^{X}\left(\operatorname{Ind}_{W}\left(E^{A}\right)^{-1 / 2} E^{A}\left(u_{i}^{*} c_{2}\right) c_{3} \cdot y \cdot d_{3}^{*} E^{B}\left(d_{2}^{*} v_{j}\right) \operatorname{Ind}_{W}\left(E^{B}\right)^{-1 / 2}\right)\right]_{i j=1}^{k} \\
& \quad=\left[\operatorname{Ind}_{W}\left(E^{A}\right)^{-1 / 2} E^{A}\left(u_{i}^{*} c_{2}\right) \cdot E^{X}\left(c_{3} \cdot y \cdot d_{3}^{*}\right) \cdot E^{B}\left(d_{2}^{*} v_{j}\right) \operatorname{Ind}_{W}\left(E^{B}\right)^{-1 / 2}\right]_{i j=1}^{k} \\
& \quad=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1}\left[E^{A}\left(u_{i}^{*} c_{2}\right) \cdot E^{X}\left(c_{3} \cdot y \cdot d_{3}^{*}\right) \cdot E^{B}\left(d_{2}^{*} v_{j}\right)\right]_{i j=1}^{k}
\end{aligned}
$$

by Lemma 5.5. On the other hand,

$$
\begin{aligned}
E^{Y_{1}}\left(c_{1} \otimes y \otimes \widetilde{d_{1}}\right) & =\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} \cdot y \cdot d_{1}^{*}=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} \cdot \phi(y) \cdot d_{1}^{*} \\
& =\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{1} \cdot u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}} \cdot d_{1}^{*} .
\end{aligned}
$$

Since $c_{1}=c_{2} e_{A} c_{3}$ and $d_{1}=d_{2} e_{B} d_{3}$,

$$
E^{Y_{1}}\left(c_{1} \otimes y \otimes \widetilde{d}_{1}\right)=\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1} c_{2} E^{A}\left(c_{3} u_{i}\right) \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes\left[d_{2} E^{B}\left(d_{3} v_{j}\right) \tilde{]}\right.
$$

Hence

$$
\begin{aligned}
& \left(\bar{\Phi} \circ E^{Y_{1}}\right)\left(c_{1} \otimes y \otimes \widetilde{d_{1}}\right) \\
& \quad=\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1}\left[E^{A}\left(u_{l}^{*} c_{2} E^{A}\left(c_{3} u_{i}\right)\right) \cdot E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot E^{B}\left(E^{B}\left(v_{j}^{*} d_{3}^{*}\right) d_{2}^{*} v_{m}\right)\right]_{l, m=1}^{k} \\
& \quad=\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1}\left[E^{A}\left(u_{l}^{*} c_{2}\right) E^{A}\left(c_{3} u_{i}\right) \cdot E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \cdot E^{B}\left(v_{j}^{*} d_{3}^{*}\right) E^{B}\left(d_{2}^{*} v_{m}\right)\right]_{l, m=1}^{k} \\
& \quad=\sum_{i, j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1}\left[E^{A}\left(u_{l}^{*} c_{2}\right) \cdot E^{X}\left(E^{A}\left(c_{3} u_{i}\right) u_{i}^{*} \cdot y \cdot v_{j} E^{B}\left(v_{j}^{*} d_{3}^{*}\right)\right) \cdot E^{B}\left(d_{2}^{*} v_{m}\right)\right]_{l, m=1}^{k} \\
& \quad=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1}\left[E^{A}\left(u_{l}^{*} c_{2}\right) \cdot E^{X}\left(c_{3} \cdot y \cdot d_{3}^{*}\right) \cdot E^{B}\left(d_{2}^{*} v_{m}\right)\right]_{l, m=1}^{k} .
\end{aligned}
$$

Therefore, we obtain the conclusion.
Theorem 7.4. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Let E^{A} and E^{B} be conditional expectations of Watatani index-finite type from C and D onto A and B, respectively, and let E^{X} be a conditional expectation from Y onto X with respect to E^{A} and E^{B}. Let C_{1}, D_{1} and Y_{1} be the C^{*}-basic constructions and the upward basic construction for E^{A}, E^{B} and E^{X}, respectively. Also, let E^{C}, E^{D} and E^{Y} be the dual conditional expectations from C_{1}, D_{1} and Y_{1} onto C, D and Y, respectively. Furthermore, in the same way as above, we define the C^{*} basic constructions and the upward basic constructions C_{2}, D_{2} and Y_{2} for E^{C}, E^{D} and E^{Y}, respectively, and we define the second dual conditional expectations $E^{C_{1}}, E^{D_{1}}$ and $E^{Y_{1}}$, respectively. Then there are a positive integer k and full projections $p \in M_{k}(A)$ and $q \in M_{k}(B)$ with

$$
\begin{aligned}
& p M_{k}(A) p \cong C_{1}, \quad q M_{k}(B) q \cong D_{1}, \\
& p M_{k}(C) p \cong C_{2}, \quad q M_{k}(D) q \cong D_{2},
\end{aligned}
$$

such that there are a $C_{1}-D_{1}$-equivalence bimodule isomorphism $\bar{\Phi}$ of Y_{1} onto p. $M_{k}(X) \cdot q$ and a $C_{2}-D_{2}$-equivalence bimodule isomorphism $\overline{\Phi_{1}}$ of Y_{2} onto $p \cdot M_{k}(Y) \cdot q$ satisfying

$$
E^{p \cdot M_{k}(X) \cdot q} \circ \overline{\Phi_{1}}=\bar{\Phi} \circ E^{Y_{1}}
$$

where $E^{p \cdot M_{k}(X) \cdot q}$ is the conditional expectation from $p \cdot M_{k}(Y) \cdot q$ onto $p \cdot M_{k}(X) \cdot q$ defined by

$$
E^{p \cdot M_{k}(X) \cdot q}=\left.\left(E^{X} \otimes \mathrm{id}_{M_{k}(\mathbb{C})}\right)\right|_{p \cdot M_{k}(Y) \cdot q}
$$

Proof. This is immediate by Lemmas 6.1 and 7.3 and Corollary 7.2.

8. The downward basic construction

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Let E^{A} and E^{B} be conditional expectations of Watatani index-finite type from C and D onto A and B, respectively. Let E^{X} be a conditional expectation from Y onto X with respect to E^{A} and E^{B}. We suppose that $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$. Then by Lemma 6.7, $\operatorname{Ind}_{W}\left(E^{B}\right) \in B$. Also, we suppose that there are full projections p and q in C and D satisfying

$$
E^{A}(p)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1}, \quad E^{B}(q)=\operatorname{Ind}_{W}\left(E^{B}\right)^{-1}
$$

respectively. Then by [6, Proposition 2.6], we obtain the following. Let $P=\{p\}^{\prime} \cap A$ and let E^{P} be the conditional expectation from A onto P defined by

$$
E^{P}(a)=\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}(p a p)
$$

for any $a \in A$. Similarly, let $Q=\{q\}^{\prime} \cap B$ and let E^{Q} be the conditional expectation from B onto Q defined by

$$
E^{Q}(b)=\operatorname{Ind}_{W}\left(E^{B}\right) E^{B}(q b q)
$$

for any $b \in B$. Then $\operatorname{Ind}_{W}\left(E^{P}\right)=\operatorname{Ind}_{W}\left(E^{A}\right) \in P \cap C^{\prime}$ and $\operatorname{Ind}_{W}\left(E^{Q}\right)=\operatorname{Ind}_{W}\left(E^{B}\right) \in$ $Q \cap D^{\prime}$. Furthermore, we can see that

$$
\begin{aligned}
A p A & =C, \quad B q B=D, \\
\operatorname{pap} & =E^{P}(a), \quad q b q=E^{Q}(b),
\end{aligned}
$$

for any $a \in A$ and $b \in B$. Also, the unital inclusions $A \subset C$ and $B \subset D$ can be regarded as the C^{*}-basic constructions of the unital inclusions $P \subset A$ and $Q \subset B$, respectively. In this section, we shall show that the unital inclusions $P \subset A$ and $Q \subset B$ are strongly Morita equivalent and that there is a conditional expectation from X onto its closed subspace with respect to E^{P} and E^{Q}.

Let $Z=\{x \in X \mid p \cdot x=x \cdot q\}$. Then Z is a closed subspace of X.
Lemma 8.1. With the above notation, Z is a Hilbert P - Q-bimodule in the sense of Brown et al. [2].

Proof. This lemma can be proved by routine computations. Indeed, for any $a \in P$, $x \in Z$,

$$
p \cdot(a \cdot x)=p a \cdot x=a \cdot(p \cdot x)=a \cdot(x \cdot q)=(a \cdot x) \cdot q .
$$

Hence $a \cdot x \in Z$ for any $a \in P, x \in Z$. Similarly for any $b \in Q, x \in Z, x \cdot b \in Z$. For any $x, y \in Z$,

$$
p \cdot{ }_{A}\langle x, y\rangle={ }_{C}\langle p \cdot x, y\rangle={ }_{C}\langle x \cdot q, y\rangle={ }_{C}\langle x, p \cdot y\rangle={ }_{A}\langle x, y\rangle \cdot p .
$$

Hence ${ }_{A}\langle x, y\rangle \in P$ for any $x, y \in Z$. Similarly for any $x, y \in Z,\langle x, y\rangle_{A} \in Q$. Since Z is a closed subspace of the $A-B$-equivalence bimodule X, Z is a Hilbert $P-Q$-bimodule in the sense of Brown et al. [2].

Let E^{Z} be the linear map from X to Z defined by

$$
E^{Z}(x)=\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot x \cdot q)
$$

for any $x \in X$. We note that

$$
E^{Z}(x)=E^{X}(p \cdot x \cdot q) \cdot \operatorname{Ind}_{W}\left(E^{B}\right)
$$

for any $x \in X$ by Lemma 5.5.
Lemma 8.2. With the above notation, E^{Z} satisfies conditions (1)-(6) in Definition 2.4.
Proof. For any $a \in A, z \in Z$,

$$
\begin{aligned}
E^{Z}(a \cdot z) & =\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot(a \cdot z) \cdot q)=\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p a \cdot z \cdot q) \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p a p \cdot z)=\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}(p a p) \cdot z=E^{P}(a) \cdot z .
\end{aligned}
$$

Hence E^{Z} satisfies condition (1) in Definition 2.4. Similarly, E^{Z} satisfies condition (4) in Definition 2.4. For any $b \in Q, x \in X$,

$$
\begin{aligned}
E^{Z}(x \cdot b) & =\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot(x \cdot b) \cdot q)=\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot x \cdot q b) \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot x \cdot q) \cdot b=E^{Z}(x) \cdot b .
\end{aligned}
$$

Hence E^{Z} satisfies condition (5) in Definition 2.4. Similarly, E^{Z} satisfies condition (2) in Definition 2.4. For any $x \in X, z \in Z$,

$$
\begin{aligned}
{ }_{P}\left\langle E^{Z}(x), z\right\rangle & ={ }_{A}\left\langle\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot x \cdot q), z\right\rangle=\operatorname{Ind}_{W}\left(E^{A}\right)_{A}\left\langle E^{X}(p \cdot x \cdot q), z\right\rangle \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}\left({ }_{A}\langle p \cdot x \cdot q, z\rangle\right)=\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}\left(p_{A}\langle x, z \cdot q\rangle\right) \\
& =\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}\left(p_{A}\langle x, p \cdot z\rangle\right)=\operatorname{Ind}_{W}\left(E^{A}\right) E^{A}\left(p_{A}\langle x, z\rangle p\right) \\
& =E^{P}\left({ }_{A}\langle x, z\rangle\right) .
\end{aligned}
$$

Hence E^{Z} satisfies condition (3) in Definition 2.4. Also, in the same way as above, by Lemma 5.5, we can see that E^{Z} satisfies condition (6) in Definition 2.4.

Lemma 8.3. With the above notation, ${ }_{A}\langle X, Z\rangle=A,\langle X, Z\rangle_{B}=B$.
Proof. Since E^{Z} is surjective by Lemma 8.2,

$$
\begin{aligned}
{ }_{A}\langle X, Z\rangle & ={ }_{A}\left\langle X, E^{Z}(X)\right\rangle={ }_{A}\left\langle X, \operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot X \cdot q)\right\rangle \\
& ={ }_{A}\left\langle X, E^{X}(p \cdot X \cdot q)\right\rangle \operatorname{Ind}_{W}\left(E^{A}\right)=E^{A}\left({ }_{C}\langle X, p \cdot X \cdot q\rangle\right) \operatorname{Ind}_{W}\left(E^{A}\right) \\
& =E^{A}\left({ }_{C}\langle X, X \cdot q\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right) .
\end{aligned}
$$

Since $X \cdot B=X$ by [2, Proposition 1.7] and $B q B=D$,

$$
\begin{aligned}
{ }_{A}\langle X, Z\rangle & =E^{A}\left({ }_{C}\langle X \cdot B, X \cdot B q\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right)=E^{A}\left({ }_{C}\langle X, X \cdot B q B\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right) \\
& =E^{A}\left({ }_{C}\langle X, X \cdot D\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right) .
\end{aligned}
$$

Since $B \subset D, X=X \cdot B \subset X \cdot D$ by [2, Proposition 1.7]. Hence

$$
\begin{aligned}
{ }_{A}\langle X, Z\rangle & \supset E^{A}\left({ }_{C}\langle X, X\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right)=E^{A}\left({ }_{A}\langle X, X\rangle p\right) \operatorname{Ind}_{W}\left(E^{A}\right) \\
& =E^{A}(A p) \operatorname{Ind}_{W}\left(E^{A}\right)=A .
\end{aligned}
$$

Since ${ }_{A}\langle X, Z\rangle \subset A$, we obtain that ${ }_{A}\langle X, Z\rangle=A$. Similarly, we obtain that $\langle X, Z\rangle_{B}=B$. Therefore we obtain the conclusion.

Corollary 8.4. With the above notation, Z is a $P-Q$-equivalence bimodule and E^{Z} is a conditional expectation from X onto Z with respect to E^{P} and E^{Q}.

Proof. First, we show that Z is a $P-Q$-equivalence bimodule. By Lemma 8.1, we have only to show that Z is full with both inner products. Since E^{Z} is surjective by Lemma 8.2,

$$
\begin{aligned}
{ }_{P}\langle Z, Z\rangle & ={ }_{P}\left\langle E^{Z}(X), E^{Z}(X)\right\rangle=E^{P}\left({ }_{A}\left\langle X, E^{Z}(X)\right\rangle\right)=E^{P}\left({ }_{A}\langle X, Z\rangle\right) \\
& =E^{P}(A)=P
\end{aligned}
$$

by Lemma 8.3. Similarly, $\langle Z, Z\rangle_{Q}=Q$. Thus, Z is a $P-Q$-equivalence bimodule. Hence E^{Z} is a conditional expectation from X onto Z with respect to E^{P} and E^{Q}.

Proposition 8.5. With the above notation, unital inclusions $P \subset A$ and $Q \subset B$ are strongly Morita equivalent with respect to the $P-Q$-equivalence bimodule X and its closed subspace Z and there is a conditional expectation from X onto Z with respect to E^{P} and E^{Q}.

Proof. This is immediate by Lemmas 8.1 and 8.2 and Corollary 8.4.
Definition 8.6. In the above situation, Z is called the downward basic construction of X for E^{X}. Also, E^{Z} is called the pre-dual conditional expectation of E^{X}.

9. Relation between the upward basic construction and the downward basic construction

Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Let E^{A} and E^{B} be conditional expectations of Watatani index-finite type from C and D onto A and B, respectively. Let E^{X} be a conditional expectation from Y onto X with respect to E^{A} and E^{B}. We suppose that $\operatorname{Ind}_{W}\left(E^{A}\right) \in A$ and $\operatorname{Ind}_{W}\left(E^{B}\right) \in B$. Let e_{A} and e_{B} be the Jones projections for E^{A} and E^{B}, respectively. Then by [10, Lemma 2.1.1],

$$
A=\left\{a \in C \mid e_{A} a=a e_{A}\right\}, \quad B=\left\{b \in D \mid e_{B} b=b e_{B}\right\}
$$

respectively. Let C_{1} and D_{1} be the C^{*}-basic constructions for E^{A} and E^{B}, respectively, and let E^{C} and E^{D} be the dual conditional expectations from C_{1} and D_{1} onto C and
D, respectively. Then e_{A} and e_{B} are full projections in C_{1} and D_{1}, respectively, by [10, Lemma 2.1.6], and

$$
\operatorname{Ind}_{W}\left(E^{C}\right)=\operatorname{Ind}_{W}\left(E^{A}\right) \in A, \quad \operatorname{Ind}_{W}\left(E^{D}\right)=\operatorname{Ind}_{W}\left(E^{B}\right) \in B,
$$

respectively. Furthermore,

$$
\begin{array}{ll}
E^{A}(x)=\operatorname{Ind}_{W}\left(E^{C}\right) E^{C}\left(e_{A} x e_{A}\right) & \text { for any } x \in C, \\
E^{B}(x)=\operatorname{Ind}_{W}\left(E^{D}\right) E^{D}\left(e_{B} x e_{B}\right) & \text { for any } x \in D,
\end{array}
$$

respectively. Let Y_{1} be the upward basic construction for E^{X}, and E^{Y} the dual conditional expectation of E^{X} from Y_{1} onto Y. We recall that Y can be regarded as a closed subspace of Y_{1} by the linear map ϕ from Y to Y_{1} defined by

$$
\phi(y)=\sum_{i, j} u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot y \cdot v_{j}\right) \otimes \widetilde{v_{j}},
$$

for any $y \in Y$, where $\left\{\left(u_{i}, u_{i}^{*}\right)\right\}$ and $\left\{\left(v_{j}, v_{j}^{*}\right)\right\}$ are quasi-bases for E^{A} and E^{B}, respectively, and

$$
Y_{1}=C \otimes_{A} X \otimes_{B} \widetilde{D} .
$$

Let

$$
Z=\left\{y \in Y \mid e_{A} \cdot \phi(y)=\phi(y) \cdot e_{B}\right\} .
$$

By the discussions in Section 8, Z is a closed subspace of Y and Z is an $A-B$ equivalence bimodule.

Lemma 9.1. With the above notation, $Z=X$.
Proof. For any $x \in X$,

$$
\begin{aligned}
e_{A} \cdot \phi(x) & =\sum_{i, j} e_{A} \cdot u_{i} \otimes E^{X}\left(u_{i}^{*} \cdot x \cdot v_{j}\right) \otimes \widetilde{v_{j}} \\
& =\sum_{i, j} 1 \otimes E^{X}\left(E^{A}\left(u_{i}\right) u_{i}^{*} \cdot x \cdot v_{j}\right) \otimes \widetilde{v_{j}} \\
& =\sum_{j} 1 \otimes E^{X}\left(x \cdot v_{j}\right) \otimes \widetilde{v_{j}}=\sum_{j} 1 \otimes x \cdot E^{B}\left(v_{j}\right) \otimes \widetilde{v_{j}} \\
& =\sum_{j} 1 \otimes x \otimes\left[v_{j} E^{B}\left(v_{j}^{*}\right) \widetilde{ }=1 \otimes x \otimes \widetilde{1} .\right.
\end{aligned}
$$

Similarly, $\phi(x) \cdot e_{B}=1 \otimes x \otimes \widetilde{1}$. Hence $x \in Z$. Thus $X \subset Z$. Also, let $y \in Z$. Since $e_{A} \cdot \phi(y)=\phi(y) \cdot e_{B}$,

$$
e_{A} \cdot \phi(y)=e_{A}^{2} \cdot \phi(y)=e_{A} \cdot \phi(y) \cdot e_{B} .
$$

Also, since

$$
e_{A} \cdot \phi(y)=\sum_{j} 1 \otimes E^{X}\left(y \cdot v_{j}\right) \otimes \widetilde{v_{j}} \quad \text { and } \quad e_{A} \cdot \phi(y) \cdot e_{B}=1 \otimes E^{X}(y) \otimes \widetilde{1},
$$

we see that

$$
\sum_{j} 1 \otimes E^{X}\left(y \cdot v_{j}\right) \otimes \widetilde{v_{j}}=1 \otimes E^{X}(y) \otimes \widetilde{1}
$$

Using the conditional expectation E^{Y},

$$
\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot E^{X}(y)=\sum_{j} \operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot E^{X}\left(y \cdot v_{j}\right) \cdot v_{j}^{*}=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1} \cdot y
$$

by Lemma 5.4. Thus $E^{X}(y)=y$, that is, $y \in X$. Therefore, we obtain the conclusion.
By Lemmas 6.10 and 9.1, we obtain the following:
Proposition 9.2. With the above notation, X can be regarded as the downward basic construction for E^{Y}, and E^{X} can be regarded as the pre-dual conditional expectation of E^{Y}.

Next, let p and q be full projections in C and D satisfying

$$
E^{A}(p)=\operatorname{Ind}_{W}\left(E^{A}\right)^{-1}, \quad E^{B}(q)=\operatorname{Ind}_{W}\left(E^{B}\right)^{-1}
$$

respectively. Let P, Q, E^{P}, E^{Q} and Z, E^{Z} be as in Section 8 . We shall show that Y is the upward basic construction for E^{Z}, and that E^{X} is the dual conditional expectation of E^{Z}. By Section 8, we can see that

$$
\operatorname{Ind}_{W}\left(E^{P}\right)=\operatorname{Ind}_{W}\left(E^{A}\right) \in P \cap C^{\prime}, \quad \operatorname{Ind}_{W}\left(E^{Q}\right)=\operatorname{Ind}_{W}\left(E^{B}\right) \in Q \cap D^{\prime}
$$

Also, we can see that

$$
E^{Z}(x)=\operatorname{Ind}_{W}\left(E^{A}\right) \cdot E^{X}(p \cdot x \cdot q)
$$

Furthermore, we can regard C and D as the C^{*}-basic constructions for E^{P} and E^{Q}, respectively by [6, Proposition 2.6]. We can also regard p and q as the Jones projections in C and D, respectively. Hence by Proposition 6.12, we obtain the following proposition.

Proposition 9.3. With the above notation, Y can be regarded as the upward basic construction for E^{Z}, and E^{X} can be regarded as the dual conditional expectation of E^{Z}.

10. The strong Morita equivalence and the paragroups

In this section we show that the strong Morita equivalence for unital inclusions of unital C^{*}-algebras preserves their paragroups. We begin this section with the following easy lemmas.

Lemma 10.1. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Then $C \cdot X=X \cdot D=Y$.

Proof. Since X is an $A-B$-equivalence bimodule and $A \subset C$ is a unital inclusion, there are elements $x_{1}, x_{2}, \ldots, x_{n} \in X$ such that $\sum_{i=1}^{n}\left\langle x_{i}, x_{i}\right\rangle_{B}=1_{D}$. Then for any $y \in Y$,

$$
y=y \cdot 1_{D}=\sum_{i=1}^{n} y \cdot\left\langle x_{i}, x_{i}\right\rangle_{B}=\sum_{i=1}^{n}{ }_{c}\left\langle y, x_{i}\right\rangle \cdot x_{i} .
$$

Hence we can see that $C \cdot X=Y$. Similarly, we obtain that $X \cdot D=Y$.
Let $A \subset C$ and $B \subset D$ be as above. Let $C \subset C_{1}$ and $D \subset D_{1}$ be unital inclusion of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C_{1}-D_{1-}$ equivalence bimodule Y_{1} and its closed subspace Y. We note that $X \subset Y \subset Y_{1}$.

Lemma 10.2. With the above notation, the inclusions $A \subset C_{1}$ and $B \subset D_{1}$ are strongly Morita equivalent with respect to the $C_{1}-D_{1}$-equivalence bimodule Y_{1} and its closed subspace X.

Proof. It suffices to show that

$$
C_{1}\left\langle Y_{1}, X\right\rangle=C_{1}, \quad\left\langle Y_{1}, X\right\rangle_{D_{1}}=D_{1} .
$$

Indeed, by [2, Proposition 1.7] and Lemma 10.1,

$$
\begin{aligned}
C_{1}\left\langle Y_{1}, X\right\rangle & =c_{1}\left\langle Y_{1} \cdot D_{1}, X\right\rangle=c_{1}\left\langle Y_{1}, X \cdot D_{1}\right\rangle=c_{1}\left\langle Y_{1}, X \cdot D D_{1}\right\rangle \\
& =C_{1}\left\langle Y_{1}, Y \cdot D_{1}\right\rangle=c_{1}\left\langle Y_{1}, Y_{1}\right\rangle=C_{1} .
\end{aligned}
$$

Similarly, we can prove that $\left\langle Y_{1}, X\right\rangle_{D_{1}}=D_{1}$.
Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent with respect to a $C-D$-equivalence bimodule Y and its closed subspace X. Then by Lemmas 2.5 and 2.6 and Corollary 2.7, we may assume that

$$
B=p M_{n}(A) p, \quad D=p M_{n}(C) p, \quad Y=(1 \otimes f) M_{n}(C) p, \quad X=(1 \otimes f) M_{n}(A) p
$$

where p is a full projection in $M_{n}(A)$ and n is a positive integer. We regard X and Y as an $A-p M_{n}(A) p$-equivalence bimodule and a $C-p M_{n}(C) p$-equivalence bimodule in the usual way.
Lemma 10.3. With the above notation, we suppose that unital inclusions of unital C^{*}-algebras $A \subset C$ and $B \subset D$ are strongly Morita equivalent. Then the relative commutants $A^{\prime} \cap C$ and $B^{\prime} \cap D$ are isomorphic.

Proof. By the above discussions, we have only to show that

$$
A^{\prime} \cap C \cong\left(p M_{n}(A) p\right)^{\prime} \cap p M_{n}(C) p
$$

where p is a projection in $M_{n}(A)$ satisfying the above. By routine computations, we can see that

$$
M_{n}(A)^{\prime} \cap M_{n}(C)=\left\{c \otimes I_{n} \mid c \in A^{\prime} \cap C\right\} .
$$

Hence we can see that $A^{\prime} \cap C \cong M_{n}(A)^{\prime} \cap M_{n}(C)$. Next, we claim that $M_{n}(A)^{\prime} \cap$ $M_{n}(C) \cong\left(M_{n}(A) \cap M_{n}(C)\right) p$. Indeed, let π be the map from $M_{n}(A)^{\prime} \cap M_{n}(C)$ onto
$\left(M_{n}(A)^{\prime} \cap M_{n}(C)\right) p$ defined by $\pi(x)=p x$ for any $x \in M_{n}(A)^{\prime} \cap M_{n}(C)$. Since p is a projection in $M_{n}(A), \pi$ is a homomorphism of $M_{n}(A)^{\prime} \cap M_{n}(C)$ onto $\left(M_{n}(A)^{\prime} \cap\right.$ $\left.M_{n}(C)\right) p$. We suppose that $x p=0$ for an element $x \in M_{n}(A)^{\prime} \cap M_{n}(C)$. Since p is full in $M_{n}(A)$, there are elements $z_{1}, \ldots, z_{m} \in M_{n}(A)$ such that

$$
\sum_{i=1}^{m} z_{i} p z_{i}^{*}=1_{M_{n}(A)}
$$

Then

$$
0=\sum_{i=1}^{m} z_{i} x p z_{i}^{*}=\sum_{i=1}^{m} x z_{i} p z_{i}^{*}=x .
$$

Hence π is injective. Thus π is an isomorphism of $M_{n}(A)^{\prime} \cap M_{n}(C)$ onto $\left(M_{n}(A)^{\prime} \cap\right.$ $\left.M_{n}(C)\right) p$. Finally, we show that

$$
\left(p M_{n}(A) p\right)^{\prime} \cap p M_{n}(C) p=\left(M_{n}(A)^{\prime} \cap M_{n}(C)\right) p .
$$

Indeed, by easy computations, we can see that

$$
\left(p M_{n}(A) p\right) \cap p M_{n}(C) p \supset\left(M_{n}(A)^{\prime} \cap M_{n}(C)\right) p
$$

We prove the inverse inclusion. Let $y \in\left(p M_{n}(A) p\right)^{\prime} \cap p M_{n}(C) p$. Let $w=\sum_{i=1}^{m} z_{i} y z_{i}^{*}$. Then for any $x \in M_{n}(A)$,

$$
\begin{aligned}
w x & =\sum_{i, j=1}^{m} z_{i} y z_{i}^{*} x z_{j} p z_{j}^{*}=\sum_{i, j=1}^{m} z_{i} y p z_{i}^{*} x z_{j} p z_{j}^{*}=\sum_{i, j}^{m} z_{i} p z_{i}^{*} x z_{j} p y z_{j}^{*} \\
& =\sum_{j=1}^{m} x z_{j} p y z_{j}^{*}=\sum_{j=1}^{m} x z_{j} y z_{j}^{*}=x w .
\end{aligned}
$$

Hence $w \in M_{n}(A)^{\prime} \cap M_{n}(C)$. On the other hand,

$$
w p=p w=\sum_{i=1}^{m} p z_{i} y z_{i}^{*}=\sum_{i=1}^{m} p z_{i} p y z_{i}^{*}=\sum_{i=1}^{m} y p z_{i} p z_{i}^{*}=y p=y .
$$

Thus $y \in\left(M_{n}(A)^{\prime} \cap M_{n}(C)\right) p$. Hence

$$
\left(p M_{n}(A) p\right)^{\prime} \cap p M_{n}(C) p=\left(M_{n}(A)^{\prime} \cap M_{n}(C)\right) p .
$$

Therefore, we obtain the conclusion.
Let $A \subset C$ and $B \subset D$ be as above. We suppose that there is a conditional expectation E^{A} of Watatani index-finite type from C onto A. Then by Section 2, there are a conditional expectation of Watatani index-finite type from D onto B and a conditional expectation E^{X} from Y onto X with respect to E^{A} and E^{B}. For any $n \in \mathbb{N}$, let C_{n} and D_{n} be the nth C^{*}-basic constructions for conditional expectations E^{A} and E^{B}, respectively. Then by Corollary 6.3, the inclusions $C_{n-1} \subset C_{n}$ and $D_{n-1} \subset D_{n}$ are strongly Morita equivalent for any $n \in \mathbb{N}$, where $C_{0}=C$ and $D_{0}=D$. Thus, by Lemma 10.2, $A \subset C_{n}$ and $B \subset D_{n}$ are strongly Morita equivalent for any $n \in \mathbb{N}$.

Theorem 10.4. Let $A \subset C$ and $B \subset D$ be unital inclusions of unital C^{*}-algebras, which are strongly Morita equivalent. We suppose that there is a conditional expectation of Watatani index-finite type from C onto A. Then the paragroups of $A \subset C$ and $B \subset D$ are isomorphic.

Proof. This is immediate by the above discussions and Lemma 10.3.

References

[1] L. G. Brown, P. Green and M. A. Rieffel, 'Stable isomorphism and strong Morita equivalence of C^{*}-algebras', Pacific J. Math. 71 (1977), 349-363.
[2] L. G. Brown, J. Mingo and N.-T. Shen, 'Quasi-multipliers and embeddings of Hilbert C^{*} bimodules', Canad. J. Math. 46 (1994), 1150-1174.
[3] S. Jansen and S. Waldmann, 'The H-covariant strong Picard groupoid', J. Pure Appl. Algebra 205 (2006), 542-598.
[4] T. Kajiwara and Y. Watatani, 'Jones index theory by Hilbert C^{*}-bimodules and K-theory’, Trans. Amer. Math. Soc. 352 (2000), 3429-3472.
[5] K. Kodaka and T. Teruya, 'The strong Morita equivalence for coactions of a finite dimensional C^{*}-Hopf algebra on unital C^{*}-algebras', Studia Math. 228 (2015), 259-294.
[6] H. Osaka, K. Kodaka and T. Teruya, 'The Rohlin property for inclusions of C^{*}-algebras with a finite Watatani index’, in: Operator Structures and Dynamical Systems, Contemporary Mathematics, 503 (American Mathematical Society, Providence, RI, 2009), 177-195.
[7] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C*-Algebras, Mathematical Surveys and Monographs, 60 (American Mathematical Society, Providence, RI, 1998).
[8] M. A. Rieffel, ' C^{*}-algebras associated with irrational rotations', Pacific J. Math. 93 (1981), 415-429.
[9] J. Tomiyama, 'On the projection of norm one in W^{*}-algebras', Proc. Japan Acad. Ser. A Math. Sci. 33 (1957), 608-612.
[10] Y. Watatani, 'Index for C^{*}-subalgebras', Mem. Amer. Math. Soc. 424 (1990).

KAZUNORI KODAKA, Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213, Japan
e-mail: kodaka@math.u-ryukyu.ac.jp
TAMOTSU TERUYA, Faculty of Education, Gunma University, 4-2 Aramaki-machi, Maebashi City, Gunma, 371-8510, Japan

[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 1446-7887/2017 \$16.00

