A NOTE ON A CONJECTURE OF BRAUER

PAUL FONG

To RicHArRD BrAuEr on the occasion of his 60th Birthday

§ 1. Introduction

In [1] R. Brauer asked the following question: Let & be a finite group,
p a rational prime number, and B a p-block of & with defect d and defect
group ®. Is it true that ® is abelian if and only if every irreducible character
in B has height 0? The present results on this problem are quite incomplete.
If d=0, 1, 2 the conjecture was proved by Brauer and Feit, [4] Theorem 2.
They also showed that if ® is cyclic, then no characters of positive height
appear in B. If D is normal in &, the conjecture was proved by W. Reynolds
and M. Suzuki, [12]. In this paper we shall show that for a solvable group
@, the conjecture is true for the largest prime divisor p of the order of ©.
Actually, one half of this has already been proved in [7]. There it was shown
that if @ is a p-solvable group, where p is any prime, and if © is abelian, then
the condition on the irreducible characters in B is satisfied.

The proof of the converse presented here is somewhat difficult. A series
of reductions gives rise to the following situation: @ is a finite solvable group
of order pg', where (p, g') =1, such that & has no proper normal subgroups
of p'-index. Moreover & acts faithfully and irreducibly on a vector space 7
over a finite field, such that each vector » in % is fixed by some Sylow »-
subgroup of &. Using methods similar to those used by Huppert in [10], [11],
we shall see that g’ =1 if p is the largest prime divisor of the order of &.

The author was a participant in the Special Year Program in the Theory
of Groups at the University of Chicago 1960-1961. Many of the ideas in this
paper had their origin in the discussions I had with my colleagues there. In
particular, I should like to thank G. Higman and J. G. Thompson for their
helpful advice.
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§ 2. Proofs of the Theorems

Notation will be explained when used; for the most part, it will be that
of [7]. Let & be a finite group of order |@| = p?g’, where p is a fixed prime
number, a is an integer >0, and (p, g') =1. Since the only characters of @&
which will concern us are those of complex-valued representations, the word
“character” will refer only to such characters. The basic results of modular
representation theory can be found in [3]. If B is a block of & of defect d,
and 7 is an irreducible character in B, then the height of ¥ is the integer >0

such that " %*¢ is the exact power of p dividing the degree of 1.

TuEOREM 1. Let & be a finite solvable group, p the largest prime divisor
of |8|. Let B be a p-block of & with defect d and defect group B. If every
character in B has height 0, then B is abelian.

Proof. The proof is by double induction on a and g=|®|. We assume
that the theorem is true for all solvable groups of order divisible by at most
p°' and for all solvable groups of order p®m, where (p, m) =1 and p°m<g.

a) The reduction in [7] §3 permits us to assume B has defect a. The
defect group P is hence a Sylow p-subgroup of & and the condition on the
heights means that the characters in B all have degree prime to p.

b) Let & be a maximal normal subgroup of &. By [7] (3]), (1 F), there
is a block B of & such that ¥N® is a defect group of B, and such that every
character in B has height 0. The induction hypothesis implies that BN G is
abelian. If |@:®|xp, then PN E =P and we are done. We may therefore
assume that & has no nontrivial normal subgroups of p'-index (a number # is
P if p+ n).

c) Let  be the maximal normal p'-subgroup of §; we may assume that
$>1; otherwise B contains all the irreducible characters of @ and the theorem
follows from [7] (3 A), (3D). By [7] (2D) there is then a group M and a
block B’ of M such that (i) B and B’ have isomorphic defect groups, (ii) there
is a 1-1 height preserving correspondence between the characters of B and B/,
(iii) there is cyclic normal p’-subgroup € in the center of M such that
M/E=G/9, (iv) the characters of M in B’ are all the irreducible characters

of M which induce a given linear character of €.

The characters in B' all have height 0, and we therefore need prove
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Theorem 1 only for the group M. We note p* is the exact power of p dividing
|M|; moreover, p is the largest prime divisor of |M| by the construction of
M in [7]. Let M be a maximal normal subgroup of M containing €; by b)
and the isomorphism M/E=@/9, M : M| =p. Denote by P a Sylow p-subgroup
of M (since the rest of the proof concerns M, this should cause no confusion).
As in b) the subgroup ®=PNM is abelian. DE/E is the maximal normal
p-subgroup in M/E by [9] Lemma 1.2.3, and since D& = D x €, the characteristic
subgroup ® of M is therefore normal in M.

d) Suppose ¢(D) =1, where ¢(D) is the Frattini subgroup of ®. Since
the p-blocks of M/¢(D) may be regarded as subsets of the p-blocks of I by
means of the lifting mapping of characters [3] (9 B), it follows by induction
that PB/¢(D) is abelian. But M/DE acts faithfully on D/¢(D) by [9] Lemma
1.2.5. This is impossible, and hence ¢(®) =1. We may assume then D is an
elementary abelian p-group.

e) Let D be any element in ®. The condition on the heights of the
characters in B' implies that D is centralized by a Sylow p-subgroup of M (see
[7]1 (1 A), (3 D)). Suppose ®; is a normal subgroup of M (written ®; IM)
such that 1<®;<®. By d) D=D;XxD,, where D, is any complement to D,
in ®. However, ®. can be selected so that ®, M. For represent /D on D
by transformation. Since /D is a p'-group, this representation is completely
reducible by Maschke’s Theorem. Hence there exists a complement ®. such
that D, 4. Let A be a fixed element of p-power order, A not in ®. If D is
any element in ®, then A™'DA = X"'DX for some X in M, and D* is in Ds,
that is, > <IM. Induction applies to M/D, and to M/D,; therefore M/D; and
M/D, have abelian Sylow p-subgroups. Since M can be embedded in M/D,
XM/De, P is abelian. We may therefore assume ® is a minimal normal
subgroup of M.

f) Let B be the representation of M in the vector space ® over GF(p).
The group M/DE with the representation B satisfies the hypothesis of the
following theorem. Applying that theorem, we conclude that M/DC is a p-
group, and hence M =P x €. From this it follows that B must be abelian.

TueoreM 2. Let @ be a finite solvable group of order pg', where (p, g')
=1. Let 7 be a vector space of dimension d over the finite field K on which
® acts irreducibly and faithfully. Suppose
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(i) ® has no proper normal subgroups of p'-index.
(ii) Each vector v in % is fixed by some Sylow p-subgroup of ®.
(iii) p is the largest prime divisor of | |.

Then g' =1, that is, ® is a group of order p.

Proof. We proceed by double induction on g’ and d. We assume that
the theorem is true for all groups of order pm with m<g', and for all groups
of order pg' acting on vector spaces of dimension less than d. Groups of order
p satisfying the conditions of Theorem 2 trivially have the required structure.
On the other hand, if d =1, ® must be a group of order p, and again Theorem
2 is true.

a) Denote the representation of § on ¥ by 8. Suppose P is not abso-
lutely irreducible. If B decomposes into s> 1 absolutely irreducible constituents,
then there exists an extension field L of K of degree s such that in L® %",

2B 0 0

0%W. 0
(1) B .

00 Xy

The B; are distinct absolutely irreducible representations of &, and they are
all algebraically conjugate to a fixed one with respect to the automorphisms
o1, 02, - ..,0s0f L/K. Let LQx?¥ = #1® #,®D -+ ® #5 be the decomposi-
tion of L ® x# corresponding to (1). If ey, €, ..., eim is a basis for #;,
then the vectors of 7 can be identified with the vectors in L& x#? of the form

s m

20 (@) % «; in L.

i=17=1

It follows that each vector in #, is fixed by some Sylow p-subgroup of @.
Hence by induction on the degree of 2B;, @ has the required structure. We
may assume then B is absolutely irreducible.

b) Let & be a maximal normal subgroup of &; by condition (i) & must
have index p in @, and indeed & =[®, ®J, where [, G] is the commutator
subgroup of ®. Suppose the restriction B|® of B to & is reducible. If # is
any G-invariant subspace of #, and if w is any vector in #, then there exists
a Sylow p-subgroup P of ® which fixes w. But B& =6, and thus w® < #.

In other words, # is also @-invariant. Hence we may assume B is ir-

https://doi.org/10.1017/50027763000010990 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000010990

A NOTE ON A CONJECTURE OF BRAUER 5

reducible (We shall show later that we may even assume B|® is absolutely
irreducible.).

c) Suppose that B is induced by some representation 11 over K from some
subgroup M<@. By b) it follows that M contains a Sylow p-subgroup of &,
say #={A}). We may assume M is a maximal subgroup of & by replacing
M with a maximal subgroup containing it and by replacing U by the cor-
responding induced representation. Let € be the maximal normal subgroup
of & contained in 9%, and let /€ be a minimal normal subgroup of &/E.
It is well-known that @ =MT and MNIT =E. We may thus take for coset
representatives of M in @, elements 1 =Ty, Ty, ..., T, of T which are coset
representatives of € in .

Let % be the subspace of # on which U is defined. As a &-module ¥
is isomorphic to the &-module

V=#Q1+#Z QT+ - +# QT

the action being defined as follows: If G is in @, let 7iG = M;T;,, where M;
is in M and ¢4 is a permutation of 0, 1, ..., r. If v=>0;® T; is a vector
in ¢, where the »; are in #, then

vG =W M:® T

Let j be a fixed index, 1<j<7 and « a fixed non-zero vector in #. The

vector

v=u@To+uQTj+ gﬂ] 0T
70, J

by hypothesis is fixed by some conjugate A; of A. Now we may assume
»=3; otherwise @ is a cyclic group of order 2. p>3 implies that A; leaves
the subspaces # ® Ty, # ® T; fixed, and since M is the subgroup of @ leaving
#Z ®T, fixed, the element A; must be in M. On the other hand # ® T74;
=# @ T; implies that T;A;T;' is in M, and hence T;A;Ti'A;' belongs to M.
Since TjA,;T;'A;' belongs to I as well, T54,;T7'A;' is in ©. In other words,
we have shown that given any element of ¥/& there exists a p-element in M
centralizing it.

Let X be the representation of & induced on /& by transformation, and
let & be the kernel of X¥. If ® contains A, then the permutation representation
of @ on the cosets of M would contain A in its kernel, which is impossible.
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We may therefore assume f<@&. In this case, the induction hypothesis
applies to the group ®/f and the representation ¥. & must then be &; by
the irreducibility of ¥, A can fix only the zero vector in the space ¥/&. This
property is shared by the conjugates of A as well. But this is impossible,
since we have just seen that given any T in /&, there is a conjugate of A
which transforms T onto itself. We may therefore assume 9B is not an induced
representation over K.

d) Let $ be the maximal abelian normal subgroup of 8. By c¢) and
Clifford’s Theorem [5], the restriction 8|9 must be a direct sum of equivalent

representations
(2) BIH=WDWD --- OW

where 28 is an irreducible representation of § over K. Since 28($) is a cyclic
group and D represents $ faithfully by (2), it follows that § is cyclic. Let
€(9) be the centralizer of  in . G/C(H) is isomorphic to a subgroup of
the automorphism group of §, and hence is abelian. By b) it follows that
€(9)2® (We shall show later that 9 is even in the center of &).

e) We may assume ® is non-abelian. For if not, then ® =9 would be
cyclic, and in particular, A would act trivially on the Frattini factor group
H/¢(9), since p is the largest prime divisor of |&|. This would contradict
condition (i) of the theorem. Let M be a minimal non-abelian normal subgroup
of ; M is contained in & and in particular, M is centralized by . The
results of Huppert [10] §2 therefore apply to this situation. Let » be the
characteristic of K. N then has the following structure: i) M is a g-group
for some prime g=7. ii) The center 3(M) of N is cyclic and N/3(MN) is a
minimal normal subgroup of &/3(M). iii) The order of N/3(N) is of the

""" or ¢*"*? the latter possibility occurring only in the

form ¢*”, and |N|=
case ¢=2. iv) The exponent of M is ¢ or ¢°, the latter occurring only for
g=2. V) Transformation by elements of & on M/B(N) induces sympletic
linear transformations over GF(q). (For q odd, M is an extra-special ¢-group
in the terminology of Hall-Higman [9].)

f) Suppose B|MN is reducible, say
BIN=USUD---DU;

the irreducible constituents Il of B[N are all equivalent by c¢). Let #Z be an
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irreducible subspace of ¥ for . If u is any non-zero vector in #/, there
exists a conjugate B of A which fixes . Now #Z' B is also an irreducible
subspace of # for B ™MB=%0, and since » is in & N # B, it follows that
Z =7/B. In other words every vector # in #Z is fixed by a conjugate of A
belonging to the normalizer (%) of # in &. Let { be the group N(#)/€(#),
where €(%/) is the centralizer of # in 8. Since M is faithfully represented
on Z, MNEG(#)=1. We may assume A is in N(#’) be replacing # by a
suitable conjugate subspace. If A is in €(Z’), then A centralizes N, since N
and €(#’) are normal subgroups of (%) with trivial intersection. This is
impossible, for it would imply that €(M)=® or that Nc 3(G). We may
therefore assume A is not in €(#/). Let & be the normal subgroup of ¢
generated by the Sylow p-subgroups of Q. g; has p'-index in &, and moreover
¢ contains no proper normal subgroups of p'-index. Let € be the normal p-

complement of ¢;. 1| may no longer be irreducible. Suppose that

2,
8,

2B,

where the 28; are irreducible representations of {; conjugate to one another in
Q Fori=1,2,...,¢let & be the kernel of W;. No & can contain A, for
otherwise &; would be i, and the representations 28;, %8, ... , I would be
trivial. Let #; be the subspace of # corresponding to ;. The group /8
acting on the subspace #; satisfies the conditions of Theorem 2. The induction
hypothesis therefore implies that @ =8;. In other words, ¢; is in the kernel
of each B;, and hence in the kernel of 1]¢,. It follows that {A}€(%) is
normal in M(#). But {A}C(#) NN =1, and again we conclude that A centra-
lizes M, which we have already seen to be impossible. We may therefore
assume B|N is irreducible.

g) Let K have »° elements, where 7 is the characteristic of K. Let s be
the order of 7 modulo q if q is odd, modulo 4 if ¢ =2. In particular s divides
g -1 if g is odd, s divides 2 if g is 2. The degree of B must be sq” by [9], 2.4.
Since p > g, p does not divide sg”. In particular we conclude that B|® is absolutely

irreducible, Moreover, since $ < 3(8), the matrices of B(H) can be represented
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as scalar multiples of the identity matrix in some extension field of X, and
we conclude that § is even in 3(®).

h) Let # be the sympletic space 9/3(MN), and let #, be the subspace
of all vectors in # fixed by A. Since A acts as a sympletic transformation
on #, there exists a complement #, to #, in # which is invariant under
A and on which A acts sympletically. A has no fixed vectors in #; besides
the zero vector. Let 2m be the dimension of #; over GF(q). m=>1, for
otherwise A would not only centralize M/3(N), but even N by [8] §1.3. Let
H1=M/B3(N), and let the index of #, in # be ¢*’. Choose a basis in 7
over K such that the restriction of B to {4, M} has the form

A 0 0 )
* Uy 0
* & ‘)Iqt

Here each ¥; is an irreducible representation of {A, M} of degree sq™
i) We now calculate the number of vectors in ¥ fixed by A. Let L be an
extension field of degree s over K such that over L, the representation ;

decomposes into s absolutely irreducible representations
‘2[:‘:581®\32® c e @583

If the vectors in the subspace corresponding to B; which are fixed by .4 span
a subspace of dimension NV over L, then the vectors in the space corresponding
to Ui which are fixed by A span a subspace of dimension sN over K. Since
there are ¢‘ such representations %;, the vectors of ¥ which are fixed by A
span at most a subspace of dimension sNg‘ over K.

If =5, N can be computed by the theorems of Hall-Higman [9], 2.5.1-
2.5.3. Indeed, ¢"=kp+1 or ¢"=kp+(p—1), and N=£L+1. If rxp, we
must use a different method. Since » does not divide |M|, IV is precisely the
number of characteristic values of B;(A) which are 1. Now there exist an
algebraic number field £, a prime ideal divisor t of  in 2, and an absolutely
irreducible representation X of M written in the ring of t-local integers of 2,
such that the representation ¥ modulo r is equivalent to B;. In particular, V
is also the number of characteristic values of X(A) which are 1. Let ¥ be

the character of ¥; we then have
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1 L - 1
N = -217(A")
(=1

Since M is a group whose order contains p only to the first power, N can be
computed by the results of Brauer [2] Theorem 4. Indeed, for i%=0 (mod p),

A7) = {:t j: i.f / i.s non—ex.ceptional
tef if 7 is exceptional

where ¢ is a primitive p-th root of unity and f is the degree of an irreducible
character of the p'-part of the centralizer of A in M. The structure of M
implies that f must be 1. As for the case r =p, we find that ¢"=kp+1 or
q"=kp+(p—1), but now we have only N<k+1. In any case, we can
conclude that the total number of vectors in # fixed by A is less than or
equal to 7%,

j) Let B be a Sylow p-subgroup of &, and let N(P) be the normalizer of
P in @ Since the total number of vectors in 7 is 7", the conditions of
Theorem 2 imply that

(3) |G : m(m)lzrbswnﬁvqt)

Represent & on N/3(N), and let § be the kernel of this representation. By
[10] Hilfssatz II

G/R<Sp(2n, q)
KIDS3MN) X B(N) x - -+ x3(N) (2 n times),

where Sp(2 n, q) is the sympletic group of dimension 2 n over GF(q). Now

lSP(Zn, q)]=(qzn___1) (q2n—2_1)_ . .(q2_1)q2n—1q2n-3. . 'q

< q2n2+n

" if g2
4

9 Is{
/o " if g =2

It then follows that

I@qunh—nqzn if q#z

bs(@"—Ngt) | g
7 [P < { .
Hblqzn-rnq:tn ifq=2.

H<B3(®) implies that HDSN(P) and thus we have finally
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q2n2+3n if (I#z

bs(g"~nNgt
(4) rsq 4’S{q2n2+5n ifq=2.

The inequality (4) holds only for small values of n, 7, p, and q. The proof
will then be complete once we show no groups & correspond to these exceptional
values.

k) To obtain an estimate on n, we use the inequality

24"
"—Ng'=q" - 29
q qa =q P

Putting this in (4) we obtain the inequality

(2#°+3n) log q if g=2
(27%°+5n) log ¢ if g=2,

p—2 4

5 q logr£§

and this can hold only for the following values of » and q.

7 2 ;
6 2 i
5 2 s
4 2 |
3 2,3 ‘
2 2,3,5,7

1 g<3 }

We treat the case p=3 separately. For p=3, the 3-complement in &
must be a 2-group. Hence |@: &1=3, [MN:3(N)|=4, and |@| =48 or 24. Since
the representation B of & is absolutely irreducible, B must have degree 2.
Let B be a Sylow 3-subgroup of &; N(B) has index 1, 2, or 4 in . P can
fix at most #” vectors in #, so that (3) for this case becomes 4 #°>7?. This
is possible only for 7’ =3. But then s would be 2 and the degree of B would
be 4, which is a contradiction. We may therefore assume that p=>5.

If =1, plg=1 implies that p<q or p=3. Thus no groups & can occur
for this case. The same argument allows us to assume 7 >2 in the remaining
cases. The following argument will be used frequently. For given n, m, ¢, »
we know that |® : ®] divides the order of Sp(2#%, q). The conditions (i) and
(iii) of the theorem further restrict the possible divisors of |® : ®|. Using

the bounds for |® : & obtained in this way in (3), we can eliminate most of
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the remaining cases.

If n=2, there are three cases,

| m a ? |
- |

2 2 5 |
2 3 5 |
2 5 13

The case m=2, ¢=2, p=5. The group Sp(4, 2) has order 2°.3.5, and hence
I@: 8 =5. If |3(N)| =2, then (3) for this case becomes 2*. #* = 1% or F#P<2!,
This cannot hold for any possible value of 7. If [3(N)| =4, then |&: N(P)| <2".
(8) for this case becomes 7** < 2* and again this is impossible.

The case m=2, g=3, p=5. The group Sp(4, 3) has order 2".3.5. The
subgroups of Sp(4, 3) have been studied by Dickson in [6]; in particular &/8
must have order dividing 2°.5, and thus |@: N(PB)| divides 2".3°.  Since
|G :N(P)|=1(mod 5), we can even assert that |G : N(P)| divides 2'. 3 =6
(3) for this case becomes '* <6'. If =2, then bs>2 and the inequality is
false. No other values for » are possible.

The case m=2, g=5, p=13. The group Sp(4, 5) has order 2'.3% 5% 13,
and hence |®: 8| =13. (3) for this case becomes »**® < 5% which is impossible.

If n =3, there are five cases,

m q b
2 2 5
2 3 5
3 2 7
3 3 13
3 3 7

The case m=2, g=2, p=5. The group Sp(6, 2) has order 2°.3".5.7, and
hence |® : &| divides 2°.3'.5. The representation ¥ of &/®& on N/3(N) is
irreducible, and has dimension 6 over GF(2). A degree consideration shows
that ¥|® is still irreducible. Now if 3' does not divide |®: ®|, then |6 : &] =5,
and (3) for this case becomes 7** <2 If =3, then s>2 and the inequality
is impossible. No other values for r are possible. If 3* divides |&: &, then
®/% must have a normal Sylow 3-subgroup of type (3,3,3,3). But such a
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group cannot have an irreducible representation of degree 6 over GF(2).

The case m=2, g=3, p=5. The group Sp(6, 3) has order 2".3°.5.7.13,
and hence |® : &| divides 2'°.3° 5. (3) for this case becomes 7*% <2V 3% If
7 =2, then bs>2 and the inequality is impossible. = The inequality cannot hold
for =5. The last three cases are very similar to this one. Indeed (3) for
these cases becomes 7% <212 /5% < 3% ;%5 <21 35 regpectively, and these are
impossible.

If n =4, there are four cases,

|

'ma b
; |
2 2 5 |
|3 2 7 |
4 2 5 |
‘14 2 17

The group Sp(8, 2) has order 2'.3°.5% 7.17. (3) for the cases p =7, 17 becomes
P20 < 218 4140 < 91 regpectively, and both are impossible.  Suppose then that
=5, so that |® : ] divides 2°.3%.5. If /& has no principal factor of type
(3,3, 3 3), then | : & =5, and (3) becomes 7% < 2% which is impossible.
Let &/ be the maximal normal 3-subgroup of &/&; the order of Q/f is either
3' or 3*. If ¥ is the representation of &/& on N/3(M), then the restriction
¥|Q/® must decompose into four distinct irreducible representations; otherwise
X would not represent /& faithfully. But this would imply that & has a
subgroup of index 4, and hence a homomorphic image in the symmetric group
on 4 letters This is a contradiction, since 5 does not divide 4 !

If n =5, there are six cases,

m q »

2 2 5

3 2 7

4 2 5

4 2 17 |
5 2 31

5 2

1

The group Sp(10, 2) has order 2%.8°.5%7.11.17.31. All six cases can be

eliminated by the same sort of argument. For p=5, 7, (3) becomes 7*% <
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25,3%; for p=17, 31, (3) becomes r®%*<2®; and for p=11, (3) becomes
7% <2% 3% In all six cases, these inequalities cannot hold for the possible
values of 7 and bs.

Finally, for # =6, 7 the inequality (4) cannot hold for »>5. Indeed, for
n=6, we find that 7@ %" =88 ang for n=7, P9 % =, Then (4)
becomes #%% <2 %% <918 regpectively, both of which cannot hold for

the possible values of 7 and bs.
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