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Chiral magnets in the B20 crystal structure host a peculiar spin texture in the form of a topologically stable
skyrmion lattice. However, the helical transition temperature (TC) of these compounds is below room
temperature, which limits their potential in spintronics applications. Here, a data-driven approach is
demonstrated, which integrates density functional theory (DFT) calculations with machine learning (ML) in
search of alloying elements that will enhance the TC of known B20 compounds. Initial DFT screening led to the
identification of chromium (Cr) and tin (Sn) as potential substituents for alloy design. Then, trained ML models
predict Sn substitution to be more promising than Cr-substitution for tuning the TC of FeGe. The magnetic
exchange energy calculated from DFT validates the promise of Sn as an effective alloying element for
enhancing the TC in Fe(Ge,Sn) compounds. New B20 chiral magnets are recommended for experimental
investigation.

Introduction
Transition metal compounds that crystallize in the cubic B20-

type structure belong to the space group P213 (# 198). One of

the intriguing characteristics of a P213 space group is that it

lacks the spatial parity operation of inversion (i.e., non-

centrosymmetric). Many interesting properties emerge due to

the inversion asymmetry, such as magnetoelectricity, second

harmonic generation, pyroelectricity, ferroelectricity, and op-

tical activity [1]. The main focus of this article is on chiral

magnets in the bulk B20 crystal structure, which have been

shown to host a peculiar spin texture in the form of a topo-

logically stable skyrmion lattice. In this materials class, the

skyrmion phase appears in a small pocket of the temperature–

field phase diagram [2]. The origin of chiral spin modulation in

noncentrosymmetric crystals is attributed to the energetic

competition between the stronger magnetic exchange (J)

interactions and the relatively weaker Dzyaloshinskii–Moriya

(DM) interactions. An additional contributing factor to DM
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interaction is induced by the relativistic spin–orbit coupling

that scales roughly with Z2, where Z is the atomic number of

the chemical element [3].

Skyrmions are regarded as promising for spintronics

applications for at least three reasons [4]: (i) nanometer size,

(ii) topological protection, and (iii) appearance of spin transfer

torque, where magnetic structures and textures are manipu-

lated by electric currents. Typical length of a magnetic domain

wall that is used for hard disk recording is of the order of

30 nm [5]; however, sub-30 nm size skyrmions are experimen-

tally observed [6, 7], thus showing the exciting potential for

encoding vast amount of information relative to the magnetic

domain wall technologies [4]. The topological protection

contributes to superior thermal stability [8, 9]. The spin

transfer torque appears when the current density exceeds

;106 A/m2, which is 4–5 orders of magnitude smaller than

the current density required to move the ferroelectric domain

walls [10]. However, not all chiral magnets that form stable

skyrmions satisfy the stringent property requirements for use

in spintronics applications.

In Fig. 1, a plot is shown that summarizes the experimen-

tally measured helical period (denoting skyrmion size) and

helical transition temperature (TC) of several bulk B20 alloys

[11]. It is interesting to note that none of the known B20 alloys

satisfy the combined requirement of smaller helical period

(,50 nm) and higher TC (.300 K) for practical spintronics

applications. The best-known material in the B20 family is

FeGe, which has a helical period and TC of 70 nm and 278 K,

respectively. To date, only ;20 compositions have been

experimentally explored in the B20 alloy family. This indicates

the challenge and the low-throughput nature of the synthesis

and characterization efforts in the materials discovery cycle.

The low-throughput nature of data generation from experi-

ments is justified by the need for performing expensive and

time-consuming synthesis (sometimes requiring nonequilib-

rium processing routes [12, 13]). Moreover, nontrivial charac-

terization studies are also needed to reliably report the crystal

structure and magnetic properties of these alloys, adding to the

challenge. However, the periodic table and the principles of

alloy theory offer more avenues for composition design than

what has been explored so far in the literature. We ask the

following question—Are there novel B20 alloy compositions in

the unexplored search space with TC better than that of known

materials? Alloy design using computational methods have not

attracted a lot of attention. Most of the computational efforts

that involve density functional theory (DFT) calculations have

focused on either providing an explanation of the observed

properties from the viewpoint of the band theory or extracting

properties such as the strength of the DM term as a function of

alloy substitutions and epitaxial strain [14, 15, 16, 17, 18, 19, 20,

21, 22]. In this work, a novel computational approach, built on

the foundations of machine learning (ML) and DFT, is

developed to accelerate the design of B20-based chiral mag-

nets with improved TC. Although ML methods have been used

in the past to predict the ferromagnetic Curie temperature of

alloys [23, 24], properties of hard permanent magnets [25],

two-dimensional materials [26] and magnetic properties of

single-molecule magnets [27, 28], no a priori rules exist that

link alloy compositions to TC for the B20 alloys.

The objectives are accomplished by developing a data-

driven approach that synergistically integrates insights from

DFT calculations and published experimental literature with

regression-based ML methods. The role of DFT is 2-fold. (i)

To perform initial screening and identify promising alloying

elements for ML. (ii) To validate the predictions from ML

and provide a physical basis for meaningful interpretation of

the ML outcome. The task of ML methods is to establish

a quantitative relationship between the alloy compositions

and the experimentally measured TC of known B20 alloys.

The trained ML models are then used to rapidly predict

promising new alloy compositions. The final outcome is the

recommendation of new B20 chiral magnets for experimental

validation.

Results and discussion
The overarching data-driven strategy is schematically shown in

Fig. 2. The data-driven search was initiated by identifying

a total of 36 binary compounds in the AB stoichiometry, where

A is a transition metal atom and B 5 Si, Ge, or Sn. All

compounds were constrained in the B20 bulk crystal structure

(although B20 is not the lowest energy crystal structure for

many of the AB compounds explored in this work). Spin-

polarized DFT calculations were performed to screen for AB

compounds, such that the converged structure is ferromagnetic

Figure 1: A summary of experimentally determined helical period in nano-
meter (x-axis) and helical transition temperature in K (TC, y-axis) of bulk B20
alloys taken from the published literature [11]. None of the known B20 alloys
satisfy the combined requirement of smaller helical period (,50 nm) and
higher TC (.300 K) for practical spintronics applications, which is denoted as
“Target” in the figure. In this study, the focus is on the computational design of
new B20 alloys that have TC . 300 K.

Invited Feature Paper

ª Materials Research Society 2020 cambridge.org/JMR 891

j
Jo
ur
na
lo

f
M
at
er
ia
ls
Re
se
ar
ch

j
Vo
lu
m
e
35

j
Is
su
e
8
j

Ap
r
28
,2

02
0
j

w
w
w
.m
rs
.o
rg
/jm

r

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/jm

r.
20

20
.3

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://www.cambridge.org/JMR
http://www.mrs.org/jmr
https://doi.org/10.1557/jmr.2020.38


(see “Methods” for more details), which is a necessary condi-

tion for stabilizing a skyrmion phase in the temperature–field

phase diagram. The purpose of these initial DFT calculations is

not to accurately calculate the atomic magnetic moment of the

transition metals in the B20 structure, because DFT is

known to overestimate the magnetic moment for some of

the B20 compounds (e.g., MnSi [18]). Instead, this step

serves as an accelerated screening criterion to downselect

promising alloy substituents. The key parameter of interest

is the atomic magnetic moment and only those B20 com-

pounds with total magnetization .0.1 Bohr magneton per

cell were downselected as candidates from DFT. Out of the

36 compounds that were explored during this initial screen-

ing stage, only seven compounds (MnSi, MnGe, MnSn,

FeGe, FeSn, CrGe, and CrSn) satisfied this criterion. Three

of the seven screened compounds correspond to MnSi,

MnGe, and FeGe, which represent the most widely studied

chiral magnets in the B20 materials class that also host

a skyrmion phase. This gives confidence in the initial

screening step. The DFT optimized lattice constant and

atomic magnetic moment data of the A-site that contains the

transition metal atoms are given in Table I. One of the

important outcomes from the initial DFT screening step is

the identification of Cr and Sn as potential substituents for

tuning the magnetic properties of B20 alloys. The impact of

Cr and Sn alloying elements on the TC of B20 alloys have not

been explored in the literature. The next key question is then

the following: Can we rapidly assess the potential of Cr and

Sn when added as a substitutional impurity to known B20

alloys in impacting the TC of the alloy? We choose ML

methods to address this question.

Starting from a training dataset of 18 alloy compositions,

we built descriptors based on orbital radius [29], effective

principal quantum number [30], ratio of orbital radius to

effective principal quantum number, and valence electron

number [31], which are known to capture the chemical trends

of solid compounds [29, 30, 31, 32, 33, 34, 35, 36]. The full list

of input descriptors is given in Table II. The alloy compositions

used for training and testing the ML models are given in

Table III. Each B20 chemical composition is represented in

terms of the linear combination of the weighted contribution of

these elemental descriptors. For example, the A-site valence

electron number for Fe0.2Mn0.8Ge is described as 0.2 � VENFe

1 0.8 � VENMn. Separate sets of descriptors were constructed

to independently represent A- and B-sites (see Table II).

Pairwise statistical correlation analysis indicated a strong

Figure 2: The overarching strategy for accelerating the search for new B20 alloy compositions with improved TC is shown. The initial screening step involves
running spin-polarized DFT calculations on the chosen chemical space of 36 AB compounds in the constrained bulk B20 crystal structure, where A is the transition
metal atom and B is Si, Ge, or Sn. Out of 36 AB compounds, only 7 converged in the magnetic structure, which is a necessary condition for stabilizing a skyrmion
phase in B20 compounds. From the seven downselected compounds, two promising alloying elements were identified, namely Cr and Sn, which had not been
explored in the literature. ML models were used to establish a relationship between descriptors that represent the compositions of experimentally known B20 and
their measured TC values. The trained models were, in turn, used to predict the potential of Cr- and Sn-substituted B20 alloys in the affecting the TC property. ML
models identified Sn as a candidate to improve the TC of B20 alloys. The data-driven predictions were validated using DFT calculations, where the magnetic
exchange energy was calculated using a supercell approach. Promising and previously unexplored B20 alloy compositions were identified and are recommended
for experimental validation.

TABLE I: List of seven AB compounds in the B20 crystal structure with non-
zero A-site atomic magnetic moment. The DFT optimized lattice constant (in Å)
and the atomic magnetic moment of the transition metal site (in lB) data are
also given.

AB compound Lattice constant (Å) A-site magnetic moment (lB)

MnSi 4.4684 0.92
MnGe 4.6769 1.88
MnSn 5.0934 2.42
FeGe 4.5999 1.16
FeSn 4.9991 1.45
CrGe 4.7031 0.68
CrSn 5.1337 1.79
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positive correlation between the following descriptors: the

effective principal quantum number (ePQN), A-site d-orbital

radii WCd, and their ratio (ePQN/WCd. On the other hand, the

valence electron number showed only weak correlation with

the d-orbital radii. Therefore, both valence electron number

and ratio of atomic orbital radius to the effective principal

quantum number were retained to represent the A-site. In

contrast, only the ratio of s, p-orbital radii sum to the effective

principal quantum number was used to represent the B-site.

The valence electron number of all group IV elements is 4 and

show no variation with respect to Si, Ge, or Sn. Therefore, this

descriptor was not considered for ML. The finalized list of

input descriptors for building ML-based regression models is

highlighted in bold in Table II. It is important to note that we did

not include either J or DM interactions as input descriptors for

building the MLmodels. This is mainly because calculation of J and

DM interactions from DFT requires supercells and non-collinear

spins, which are computationally challenging even for a simple

compound. Furthermore, our composition space also includes solid

solutions of B20 alloys (see Table III), and DFT calculation of J and

DM interactions for solid solutions is a nontrivial task.

An ensemble of 100 ML models was trained based on the

support vector regression (SVR) method for predicting the TC

as a function of three input descriptors (see "Methods" for more

details). Balachandran and co-workers have demonstrated the

potential of ensemble-based SVR methods for building reliable

ML models from small data [27, 38, 39, 40, 41, 42]. The trained

models were validated using Mn0.75Rh0.25Ge B20 alloy com-

position as a test case [37], which was recently synthesized by

Sidorov et al. using a nonequilibrium high-pressure synthesis

method. In the family of Mn1�xRhxGe alloys prepared by

Sidorov et al., Mn0.75Rh0.25Ge had the highest TC (125 K). The

trained ML models predicted the TC value for Mn0.75Rh0.25Ge

compound as 105.66 40.2 K. As shown in Fig. 3, the measured

TC falls within the error bar of the predicted values, which is

encouraging. Note that Mn0.75Rh0.25Ge was not part of the

dataset, that was used for training the ML models. This simple,

yet powerful, exercise showed that the trained ML models have

predictive capabilities and can be used to rapidly predict the TC

for previously unexplored B20 alloy compositions.

We specifically focused on the effect of Cr and Sn

substitutions on some of the experimentally known B20 alloys,

namely MnSi, MnGe and FeGe, to maximize the impact of our

predictions and motivate new experiments. On the basis of

chemical similarity, we assumed that Cr randomly substitutes

the Mn- and Fe-site, whereas Sn randomly substitutes the Si- or

Ge-sites. The trained ML models consistently predicted Cr to

decrease the TC of FeGe (best in the training set) at a rapid rate,

i.e., the ML predicted TC values for Fe0.9Cr0.1Ge and

Fe0.8Cr0.2Ge with increasing Cr content were 220 6 14.4 and

178.4 6 19.9 K, respectively. On comparing this result with the

ML predicted TC for unsubstituted FeGe (261.1 6 13.2 K), it

can be inferred that Cr substitution is unfavorable for improv-

ing the TC of FeGe compound. However, Cr substitution

increased the TC of MnSi, i.e., the ML predicted TC values

for Mn0.9Cr0.1Si and Mn0.8Cr0.2Si were 32.9 6 9.1 and 44.9 6

16.4 K, respectively. Furthermore, Cr substitution only had

a marginal or no effect on the TC of MnGe (the ML predicted

TC values for Mn0.9Cr0.1Ge and Mn0.8Cr0.2Ge were 141.5 6

36.6 and 141.54.9 6 45.3 K, respectively). Large ML prediction

uncertainties indicate lack of knowledge on the (Mn,Cr)Ge

material system.

In contrast, Sn-substituted FeGe alloys showed promise.

The ML predicted TC values for FeGe0.9Sn0.1, FeGe0.8Sn0.2, and

FeGe0.75Sn0.25 were 259 6 13.2, 257 6 13.2, and 255 6 13.3 K,

respectively. Intriguingly, Sn substitution did not have any

discernible impact on the TC of FeGe alloys. Unlike the Cr

substitution of FeGe that resulted in a sharp TC decrease, the

addition of Sn is predicted to only marginally decrease the TC

TABLE II: List of descriptors that were considered for the ML work to establish
a relationship between TC and chemical compositions of B20 alloys. Descriptors
highlighted in bold were used for building the final ensemble of ML models.

Site Descriptors

A-site (transition metals)

Valence electron number
Waber–Cromer (WCd) d-orbital radius
Effective principal quantum number (ePQN)
Ratio of WCd to ePQN

B-site (Si, Ge, or Sn)

Valence electron number
Waber–Cromer (WCs,p) s, p-orbital radii sum
Effective principal quantum number (ePQN)
Ratio of WCs,p to ePQN

TABLE III: Compositions used for training and testing the SVR models. The
experimental and ML predicted TC’s, along with the uncertainties (r), are also
given. The chemical space includes both line compounds and solid solutions.

B20 composition Experimental TC (K) ML predicted TC 6 r (K)

Training data (from experimental literature)
MnSi 30 15.02 6 8.86
MnGe 170 143.20 6 28.75
FeGe 278 261.15 6 13.17
Fe0.5Co0.5Si 36 32.41 6 10.73
Mn0.985Ir0.015Si 23 22.64 6 6.11
Mn0.979Ir0.021Si 19 21.88 6 5.51
Mn0.965Ir0.035Si 15 20.61 6 5.41
Mn0.945Ir0.055Si 6 20.10 6 7.20
Fe0.9Co0.1Si 11 38.60 6 31.76
Fe0.4Co0.6Si 24 28.87 6 12.86
Fe0.3Co0.7Si 7 25.49 6 20.11
Mn0.65Fe0.35Ge 150 159.71 6 14.14
Mn0.5Fe0.5Ge 185 177.25 6 14.75
Mn0.3Fe0.7Ge 210 209.67 6 13.27
Mn0.16Fe0.84Ge 220 235.45 6 11.56
Fe0.95Co0.05Ge 277 266.33 6 13.84
Fe0.9Co0.1Ge 275 270.24 6 14.78
Fe0.8Co0.2Ge 265 273.93 6 19.21
Test data (from experimental literature)
Mn0.75Rh0.25Ge 125 105.65 6 40.22
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of FeGe compound. This outcome warrants an explanation. It

is important to recognize that extrapolation is considered

a challenging problem for ML methods, especially when these

methods are used without an adaptive learning scheme or

iterative feedback loop [43]. Balfer and Bajorath [44] showed

that when SVR methods are used for building quantitative

structure–activity relationships, these methods systematically

underestimate the true value of high-potency compounds due

to the regularization term in the loss function that balances the

trade-off between model complexity and its ability to generalize

to an unseen data point. Therefore, our ML prediction for Sn-

substituted FeGe needs further attention and cannot be

discarded solely on the basis of ML predictions. Similar to Cr

substitution, the addition of Sn increased and only had

a marginal effect on the TC for MnSi and MnGe, respectively.

The ML predicted TC values for MnSi0.9Sn0.1, MnSi0.8Sn0.2,

MnGe0.9Sn0.1, and MnGe0.8Sn0.2 were 32.5 6 8.7, 41.6 6 9.9,

141.9 6 28.6, and 140.6 6 28.4, respectively. The next step

involved validating the data-driven predictions of Sn-

substituted B20 alloys using DFT calculations.

A new set of DFT calculations were then performed to

further understand the predictions from the data-driven ML

models (see “Methods” for more details). A Heisenberg

Hamiltonian was used to describe the magnetic exchange

energy difference in the ferromagnetic ground state at T 5

0 K, which can be written as follows [45]:

DE ‘ S2Jz ; ð1Þ

where DE is the total energy difference between ferromagnetic

and antiferromagnetic spin states, z is the coordination number

for (oppositely) ordered moments, S is the local magnetic

moment at the atomic sites, and J is the exchange interaction

energy between two spins. Thus, Eq. (1) relates DE and J. When

the value of J is known, one can use the well-known mean field

approximation formula to estimate the paramagnetic Curie

temperature [45, 46]:

TH
C ‘

S2J

kB
; ð2Þ

where kB is the Boltzmann’s constant. From Eqs. (1) and (2),

we can also use DE to indirectly infer about TC
H or TC. The

calculated values of DE for MnSi, MnSi0.75Sn0.25, FeGe, and

FeGe0.75Sn0.25 using the supercell approach are given in

Table IV. The substitution of Sn increases the DE for MnSi

relative to the pure MnSi compound. Similarly, the DE for

FeGe0.75Sn0.25 is greater than that for pure FeGe. Thus, the DE

data from DFT indicate that the substitution of Sn will increase

the TC of MnSi and FeGe. This result agrees well with the ML

predictions for Sn-substituted MnSi. However, there is a dis-

agreement between ML predicted TC and DFT calculated DE

for Sn-substituted FeGe. It is unclear if the SVR method likely

suffered from the known pitfall of systematic underestimation

due to its poor extrapolative capabilities [44]. On the other

hand, the promising prediction of Sn-substituted FeGe from

DFT indicates that the FeGe0.75Sn0.25 composition is worthy of

experimental investigation.

In the literature, Seow and Ziegler [47] suggested a remedial

measure to overcome the SVR underprediction problem. This

involves synthetically increasing the proportion of the high

value points using bootstrapping or oversampling, so that the

relative proportion of the high value data points becomes large.

Seow and Ziegler demonstrated the efficacy of this approach on

an environmental engineering problem. However, this method

was not considered for the current study because of the smaller

size of the training dataset. The skyrmion dataset is at least

thirty times smaller than the environmental engineering

problem, which had 638 data points to train the SVR models.

Therefore, experimental validation remains one of the prom-

ising avenues to test the underprediction problem and provide

feedback for ML model improvement.

In addition to the known B20 compounds, Table IV also

lists a prediction for one more compound, namely FeSn, in the

hypothetical B20 crystal structure. The novelty of this result

stems from the fact that this compound has never been

synthesized in the B20 crystal structures. Its ML predicted TC

of 234.8 6 14.2 is greater than that of MnGe (which has an

experimentally determined TC of 170 K), but is lower than that

for FeGe0.75Sn0.25. Another encouraging aspect of bulk FeSn

compound is that it has been experimentally synthesized,

although in a centrosymmetric B35 crystal structure (space group,

P6/mmm). To determine if the B20 structure is energetically close

Figure 3: The performance of trained ML models on the dataset where the
measured and ML predicted TC values are shown in x- and y-axis, respectively.
The in-sample points are shown as black circles and the test compound
(Mn0.75Rh0.25Ge [37]) is depicted as magenta diamond. The dashed red line
indicates the x 5 y line, where the measured and predicted values are exactly
the same. The error bars indicate the standard deviation from the prediction of
an ensemble of 100 ML models.
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to B35, the total energies for FeSn in both B20 and B35 crystal

structures were calculated. The B20 structure was found to be

1211.8 meV/atom higher in energy than the B35 crystal

structure. Thus, FeSn in B20 structure is predicted to be highly

metastable. Similar to FeSn, FeGe has also been synthesized in the

B35 crystal structure [48]. Nevertheless, the B20 FeGe is only

117.6 meV/atom higher in energy than the B35 crystal structure.

As discussed earlier, nonequilibrium synthesis routes [12] were

able to surmount the energy barrier and stabilize FeGe in the B20

crystal structure.

Conclusions
A data-driven computational approach is demonstrated to

accelerate the design of novel chiral magnets in the B20 crystal

structure with targeted TC property. This work highlights how

ML methods can be used to efficiently guide the more

computationally intensive physics-based DFT calculations to-

ward promising directions in the composition space. This is

especially beneficial when the costs of running the high-fidelity

calculations are high. New alloy compositions are identified as

promising with likely improved TC values, namely (Cr, Mn)Si,

Mn(Si, Sn), and Fe(Ge, Sn), relative to the parent compounds,

MnSi and FeGe. These results motivate new experiments to

validate the computational predictions and provide feedback

for model improvement. One of the major outcomes of this

work is the prediction of Fe(Ge, Sn) with improved TC values,

which can have key implications in the design of skyrmions for

room temperature spintronics applications.

Methods
Density functional theory

DFT calculations were performed within the generalized gradi-

ent approximation, as implemented in Quantum ESPRESSO

[49]. The PBEsol exchange–correlation functional [50] was used

and the core and valence electrons were treated with ultrasoft

pseudopotentials [51]. The Brillouin zone integration used

Marzari–Vanderbilt smearing [52], with a smearing width of

0.27 eV and a 12� 12� 12 Monkhorst–Pack [53] k-point mesh

centered at C. We used 60 Ry plane-wave cutoff for wave

functions and 600 Ry kinetic energy cutoff for charge density

and potential. The scalar relativistic pseudopotentials were taken

from the PSLibrary [54]. The atomic positions and the cell

volume were allowed to relax until an energy convergence

threshold of 10�8 eV and Hellmann–Feynman forces less than

2 meV/Å were achieved. For the initial accelerated screening

step, collinear ferromagnetic spin configurations were imposed

on the A-site transition metal atoms, where all spins are

constrained to point in the same direction.

The magnetic exchange energy difference (DE) was calcu-

lated as the total energy difference between the ferromagnetic

and the lowest energy antiferromagnetic spin states. Several

antiferromagnetic spin configurations were explored and the

one with the lowest energy was taken as the most favorable

antiferromagnetic spin configuration for the calculation of DE.

A 2 � 2 � 1 supercell with 32 atoms was considered for the DE

calculation. In the case of calculations that involved Sn

substitution, four Si or Ge atoms were substituted by the Sn

atoms. The Sn–Sn bond distances were maintained at 4.639

and 4.715 Å in the supercells of MnSi0.75Sn0.25 and

FeGe0.75Sn0.25, respectively.

Machine learning

All ML analyses were formed using the R statistical environ-

ment [55]. The SVR was performed using the method

implemented in the e1071 package [56]. More details about

the SVR method can be found in the literature [57, 58]. We

used the nonlinear radial basis function (RBF) kernel to

establish a quantitative relationship between the input descrip-

tors (see Table II) and experimentally determined TC. Error

bars for each prediction were estimated using the bootstrap

resampling method [59, 60]. The hyperparameters for the SVR

were optimized using leave-one-out cross-validation method

for each bootstrap sample. The trained SVR models are used to

predict the TC for unexplored alloy compositions. From 100

SVR models, we get 100 predicted TC values for each

composition. The mean (l) and standard deviations (error

bar, r) are estimated from the 100 SVRRBF models.
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TABLE IV: The predictions of TC (in K) from trained ML models and the
magnetic exchange energy, DE (in meV), from DFT, as described by the
Heisenberg Hamiltonian for the promising new alloys. Positive values of DE
suggest that the ferromagnetic spin states are lower in energy than the
antiferromagnetic spin states. The experimentally measured TC values for MnSi
and FeGe are 30 and 278 K, respectively.

B20 composition ML predicted TC (K) DE (meV)

FeGe 261.1 6 13.2 14.9
FeGe0.75Sn0.25 255.4 6 13.3 17.0
MnSi 25 6 8.86 9.62
MnSi0.75Sn0.25 46 6 10.9 12.69
FeSn 234.8 6 14.2 10.6
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