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SOME GEOMETRIES ASSOCIATED WITH PARABOLIC 
REPRESENTATIONS OF GROUPS OF LIE TYPE 

BRUCE N. COOPERSTEIN 

I n t r o d u c t i o n . Suppose ( P , A) is an undirected graph without loops or 
multiple edges. We will denote by A(x) the vertices adjacent to x and 
x 1 = jx) U A(x). Let (G, P) be a transit ive permutat ion representation of a 
group G in a, set P, and A be a non-trivial self-paired (i.e. symmetr ic) orbit for 
the action of G on P X P. We identify A with the set of all two subsets {x, y) 
with (x, y) in A. Then we have a graph (P, A) with G ^ A u t ( P , A), transit ive 
on both P and A. For x, y an adjacent pair of points we define the (singular) 
line xy on x ar\à y by 

xy = n . 2 1 . 

I t is well known (c.f. [4]) tha t G is transitive on lines, a line is a clique (i.e. 
complete subgraph) and if u 7e v are on xy, then xy = uv. As a result all lines 
have the same cardinality and also satisfy: 

If z is a point not on xy and z is adjacent to a t least two points of xy, then z 
is adjacent to every point of xy. 
If we let L be the set of all such lines we get an incidence structure (P, L) 

(by this we mean a set of points and a collection of distinguished subsets called 
lines) with G S Aut ( P , L ) , transitive on both P and L. 

Generally, (P, L) is trivial in the sense tha t lines only carry two points. This 
will certainly be the case if GX

A{X) is primitive on A(x) since xy — {x} is a block 
of imprimitivity for the action of GX

A(X) on A(x). Thus the representations of 
McL and HiS as rank three groups are examples of representations where the 
associated incidence s t ructures are trivial. The representation of M22 as a rank 
three group acting on the seventy seven blocks of the Steiner system S(3 , 6, 22) 
also affords trivial structures. However, in this representation a point stabilizer 
is isomorphic to a semi-direct product Z 2 M 6 , it is faithful on both suborbits, 
and has a set of imprimivity on one of the suborbits. Therefore the imprimi­
t ivity of GX

A(X) on A(x) is not sufficient for the existence of thick (i.e. with more 
than two points) lines. 

We give some non-trivial examples: 

(1) Let G c^. 23£, the symmetric group on 3k letters, with k a t least two. Let 
P be the set of all ^-subsets of the 3k letters and A the set of pairs of non-
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intersecting fe-subsets. The line on such a pair consists of the pair together with 
the complement of their union. 

Remark. When k = 2 this is jus t the generalized quadrangle associated with 

S £ 4 ( 2 ) ~ 2 6 . 

(2) Let G ~ M2A, the Mathieu group on 24 letters. Let P be the set of 
blocks of the Steiner system 5 ( 5 , 8, 24) and A the set of pairs of non-intersecting 
blocks. G is rank four in this representation and the line on such a pair consists 
of the trio containing the pair. 

(3) Let F be a finite dimensional vector space equipped with a nondegenerate 
orthogonal, a l ternate or hermitian f o r m / s u c h t ha t the index of / i s a t least two. 
Let G = 0(f)y the group of invariants of/, so t ha t G is an orthogonal, symplec-
tic or uni tary group. Let P be the set of singular points (i.e. isotropic one-
dimensional subspaces of V), and A the pairs of orthogonal points in P. Then G 
is transit ive on P and A, and the line on a pair from A consists of the points in 
the two space spanned by the pair. These incidence s tructures are examples of 
prepolar spaces which are classified in [1]. 

(4) Let PSLn(q) ^ G g PTLn(q), n a t least four. Let Pk be the collection of 
all ^-subspaces of PG(n — 1, q) with k a t least one and not greater than 
(n — l ) / 2 , and let A be the set of pairs of ^-subspaces intersecting in a k — 1-
subspace. Then the line on such a pair (x, y) consists of the q + 1 ^-subspaces 
incident with the flag x C\ y C (x, y). 

In Examples (3) and (4) the groups considered are groups of Lie type, and 
the permuta t ion representations are parabolic representat ions, t ha t is, equi­
valent to the action of the group on the coset space of G modulo some parabolic 
subgroup. If we consider other parabolic representations of these groups or of 
other groups of Lie type wre can give many more examples of thick incidence 
structures afforded by groups. This suggests t ha t their existence is a " L i e " 
property, t ha t every parabolic representation of a group of Lie type affords 
thick incidence s t ruc ture(s ) . This is so. I t is our objective to prove. 

T H E O R E M 1. Let G be a group of Lie type, $ the associated root system, II a 
fundamental base for $ , <5 C n , K = GÔ the parabolic subgroup corresponding to 
8, P = G/K the coset space of G modulo K. Then there is a set {Aa : a £ II — 8\ 
of distinguished, non-trivial, self-paired orbitals such that lines with respect to Aa 

carry greater than two points for each a in U — 8. Moreover the stabilizer of any 
line is another parabolic subgroup. 

T h e existence of these suborbits is proved in Section 1. In Section 2 we deter­
mine the actual lines and their stabilizers, then in Section 3 we determine some 
properties of these Lie Incidence s tructures . 

1. Proof of T h e o r e m 1. We begin with some notat ion. Let G be a group of 
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Lie type and let ( 5 , N) be a (B, iV)-pair for G. Then G = (B, N), H = B C\ 
N <] N and W = N/H is a finite group generated by a distinguished set of 
involutions {r{ : 1 ^ i ^ /} . These and other properties are well known. For 
more details refer to [2, 5]. Elements of W are cosets of H, and so for w in W, 
wB, BwB are unambiguous. We remark tha t w is a distinguished generator if 
and only if B VJ BwB is a group. 

Associated with G and W is a root system $ and for each rt a fundamental 
root at. Set II = {at : 1 ^ i ^ /} . Then we may consider $ Q El with II as 
base and the rt act on E as reflections by 

rt(v) = v — 2(v,ai)/(ai,ai) • a t = v - (v,at)at. 

There is a unique element w0 in M^such tha t w0 takes $ + to 3>-. For «j in II, let 
Xai = B C\ riw0Bwo~1ri. For any a in II there is a w in W and at in II with 
wcti — a. Then set X = Xai

w. These are well-defined. For \p C $, let ^ + = 
K ^ : ^ > 0 } , i A ~ = ^ - ^ + . F o r o C n , l e t i ? « = {a: sp t (a ) £ 0}, Sô = $ - Rs. 
We also set PFÔ = (r t : o^ £ 5) and then the parabolic subgroup GO correspon­
ding to W is BWBB. We also have G5 = F 5 Z 5 # where V5 = (Xa : a £ i?a+), 
L 5 = (X a : « G 5s) . 

We will prove Theorem 1 by showing for each at in II — 5 tha t the orbital A< 
defined by yK £ At(xK) if and only if x - 1 ^ £ KrtK is self-paired and yields 
(singular) lines with greater than two points. For convenience we drop the 
subscript and write A in place of A*. 

LEMMA 1.1. A is self-paired. 

Proof. We may appeal to the correspondence between Ge — GT double 
cosets and We — Wy double cosets for 0, y C n . I t then suffices to show the 
orbital of the representation (W, W/W&) given by wWs £ A' (vWs) if and only 
\iv~lw G WtfiWd is self-paired. But since f a i san involution this is immediate. 

We must now show tha t (singular) lines with respect to A have greater than 
two points. By transit ivity on lines it suffices to show the line through K and 
rtK contains greater than two points. Let t = [K] \J {xriK : x £ Xai}. We 
show tha t the line on K and rtK contains t. 

Notation. F o r a Ç II, a (a) = {/3 G II - {a} : (a, /3) ^ 0}. Let A = Ge C\ G7 

where 6 = U — a(at) and y = ô U {a^. I t is not difficult to see tha t A stabilizes 
t and is transit ive (in fact two-transitive) on it. 

Remark. BWô(rt)WôB = KAK = BW,{WeC\ Wy)W8B. 

LEMMA 1.2. Let x 6 Xai and y £ BW8(ri)WdB H xrtBWr
ô(rt)W\B. If we 

express y as bxwb2 with b\, b2 in B and w in W, then w is in r^Wi^r^Wi C\ 
Wb{rt)Wh. 

Proof. Since y £ BW&(ri)WsB, clearly w is in W&(ri)W&. Also y in 
BrfBW^r^WsB implies we can express y as b\'rib2w

fb%', with &/, b2, b/ in B 
and «/ in Ws{ri)W&. Then 3/ is in Br{w'B \J Bw'B and y is in Br{uo'B unless 
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KjiW1) < l(w'). If y is in Br^B then w = r{w
} is in W\(rx)Wi C\ riWs(ri)W&. 

So we may assume KfiW') < l(wf), and so in part icular wf is not in Ws. If we 
consider an expression for w' of the form W\ . . . wkriWk+i . . . wn with Wj in Wg, 
fundamental reflections for 1 S j ^ n, and of minimal length, then l(w') = 
n + 1. Now since l(r {w') < / (« / ) one of the following must occur: 

(a) there is a j ^ fe such tha t 
w/ = rtwi . . . Wj-ïWj+i . . . ^ r i ^ + i . . . wn\ 

(b) there is a j ^ k + 1 such tha t 
«/ = r ^ i . . . ^ r ^ ^ i . . . Wj-xWj+i . . . wn\ or 

(c) w' = riWi . . . w^fc+i . . . wn. 
In each case we have tha t w' is in rJWi(y^)WiC\ Wsir^Ws, and so is w. 

Let 5 = rtWiftWi r\ WiTiWs. We have tha t B W ^ r , ) ^ H xr ,W 8<r, )W«£ 
C £ S £ VJ B{rt)WsB for each x in Z a i . We next show 

(1.1) S= U W P l T ^ V / i ^ . 
a;'Go(aj) Pi 5 

Denote the left hand side expression by U. We have t ha t wWi 6 à!(W&) C\ 
à!{fiWh) if and only if w is in S. Moreover We C\ Wy fixes and is transit ive on 
{ W&, rtW\. Therefore, S is a union of We r\ Wy — Ws double cosets. We first 
show the inclusion U Ç^ S. By the above we must show the double coset 
representat ives r f i with aj in a(at) Pi ô, \<Xj\ = |c^|, are in 5 . Bu t r f i — r p x\ is 
in WsfiWs. Since |o^-| = \ai\, (V/*)3 = 1. So r / * = r # p # $ G riW^riWi and r / < 
is in 5 . We now show the opposite inclusion. 

Let (*) be the relation 

(*) w is in 5 , /(w) ^ / ( V ) for every w' in ( ^ C\ Wy)wW&. 

If w satisfies (*), then l(w) ^ / (« / ) for all w' in wl/F^ and so w is a distinguished 
coset representat ive for (W, W/Ws) and therefore Q(w) Ç i?ô+, where in 
general for an element v of PF, Q(v) is the set of positive roots made negative 
by v. 

LEMMA 1.3. l(w) ^ 2 if w satisfies (*). 

Proof. Since w is in WtirJWi, if /(w) = 1, then w mus t be a fundamental 
reflection for a root in 8VJ {at}. Bu t then 7X> is in (We H W7) Wa, bu t 1 is in 
(We r\ Wy)Wt and so l(w) is not minimal among elements of (We ^ Wy)wWs. 
Therefore if l(w) ^ 2, and w satisfies (*) then w = 1. Bu t 1 is not in W^^Ws, 
so 1 is not in 5 and the lemma is complete. 

LEMMA 1.4. For w in W^iW^ \R5+ H w-1(Rô-)\ = 1. 

Proof. Wri te w = W\rtw2 with Wi, w2 in W&. Then W2~lat is in Rd
+ and 

ww2~1ai = — WiOLi is in Rô~, so |i?5+ H w _ 1( i? 5~) | ^ 1. If /3 is in Rô
+ and 

WirtW2pÇ. R6~, then riW2l3 £ wr^Rr) = RÔ~ and ^2/3 G i?ô+. Then w2^ G Q(rt) 
— {at\ and so fi = w<rla.i. Therefore the lemma will be t rue when wre show: if 
also w = wtf {uo± with w3, w4 in W, then w4

_ 1aj = w2~
loci. But if W\Y{w2 = wtf {W\ 
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then w<rlWiriW2W±~l = rt. Now at is in Q(rt) = Q(w^~1WiYiw2wf1)- Also rtat is 
in Rf~. Hence riw2w<r1ai is in R5~ since Ws~leWi is in W. But w2W4~1ai is in R8

+, 
so w2wf1ai = at and we are done. 

Now assume w satisfies (*). Since rtw is in (WQ C\ Wy)wWs and rt is a funda­
mental reflection, l(r$0) = l(w) + 1. Then r ^ is also a distinguished coset 
representative for (W, W/Wi) and Q(rtw) = <2(w) ^ {^_1«z} Q R+. L e t 0 i b e 
in Q(w)f 02 be in Q(riW) such tha t w0i and r ^ 0 2 are in i?8~. If 0 is in Q(w) — 
{0i, 02}, then 0 is in R+ and so by Lemma 1.4 and the choice of 0, w/3 and r ^ 0 
are not in Rd~- But r ^ 0 = w/3 — (w0, «*)«* is in <ï>~ and so (w/3, a*) = 0. 

LEMMA 1.5. If w satisfies (*), /Aew l(w) ^ 2. 

Proof. Assume on the contrary tha t l(w) = n > 2. Write w = W\ . . . wn, a 
product of fundamental reflections. Since w is in WsYtW& we may assume each 
Wj is a reflection for a root in 8 U {«j}. First suppose Wi ^ f̂  for some root ctj 
in a (a*) P\ 5, then Wi is in We H WT and hence wxw is in (W^ C\ Wy)wWt and 
l(wiiv) = /(w2 • • . ww) — n — \ < l(w), a contradiction. So W\ = rjy some ĉ -
in a(ai) C\ <5. Now Q(w) = Q(w2 . . . wn) U {(w2 . . . w J ' ^ J and Ytw(w2 . . . 
^n ) _ 1 « ; = —riCtj = —(ay — (aj} «*)«*) G i?5_. Hence w/32 = —c^. We next 
claim w2 = r{ and w/3i = —rp.i. Let w2 = r0, 0 G 5 U {«<}. We have w(w3 . . . 
w»)_1/3 = rjwtf = r?$ = -rfi = - (0 » (0, <*,>,) ^ - a , - = w(32. If - r ; 0 ^ 
w0i, then (0 — (0, af)ah a{) = 0. But then (0, a{) — (0, aj)(aj, at) = 0. Since 
(aj, at) 9* 0, (0, at) = 0 if and only if (0, a , ) = 0. If {0, at) = (0, a , ) = 0, 
then w2 G W^ P\ W7 and r ^ = ze^r, and hence w2w G (We ^ Wy)wWs and 
l(w2w) = l(w2WiW2 . . . w j = l(wxw^ . . . wn) = w — 1 < / ( ^ ) , a contradiction. 
If — r^0 F^ w0i and (0, a*)(0, a ; ) ^ 0, then 0 ^ a f and we have a loop in the 
Dynkin diagram (i.e. three pairwise non-orthogonal fundamental roots) . This 
cannot be. Hence we can conclude tha t —r$ = — (0 — (0, a^af) G Rf. Since 
0 G 5 U {«<} and 0 — (0, a ;)a ;- G Rs, also 0 G II — 5, and therefore 0 = at and 
the claim is proved. Therefore w = r f tWz . . . wn. Assume w3 = r$ with 
0 G 5 U {«<}. Then (w 4 . . . w»)"1/? G ()(W0 and w(w 4 . . . wn)-

lf3 = -rpfi ^ 
wf}u wf32. So (r/z-0, at) = 0, and r/ ,-0 g i?5+. But r / ^ = 0 - (0, «,)«< + 
((0, ai)(au (Xj) — (0, <Xj))aj. Therefore we must have (0, a*) = 0, and so 
r / * 0 = 0 — (t3,aj)oLj. But since ( r / ^0 , a t ) = 0, also (0, a y ) = 0. Then rp{Uûz = 
WzYfi. Wz G W* n W7, and hence w3w G (Wa H Wy)wWs. Also l(w%w) = 
l(rjY{uu± . . . ww) = n — l(l(w), a contradiction and this completes the lemma. 

The next lemma will show \<Xj\ = \at\ if r / < G 5 with «^ G a(at). 

LEMMA 1.6. If w £ r^W^fH WsrtWsy then wa{ $ R5~. 

Proof. Suppose on the contrary tha t wat G RÔ~. Let wif w2, w3 G Ws with 
w = w1riw2 = r{Uû%Yi. Wirtw2ai G i^5~, so r^w^t G W _ 1 ( ^ Ô ~ ) = ^a~- ^2«i G i?ô+, 
s o ^ i G Ç ( ^ Ï ) = {a*}. Then r ^ 2 = w2r^. This yields r{uozri = W\Ytw2 = WiW2Yt 

and cancelling we get Yt = WiW2wf~l f f j , a contradiction. 

Nowifa ;- G #(«<) H 5 and |a^| ^ la^l then (aj,ai)(auaj) > 1 (not necessarily 
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an integer-2F4) . We h a v e r / * G 5 if and only if r / / * G S. Clearly r / / * G riW&rt. 
Since r / / * » * = (1 — (aitaj). (aj} «*))«* + (a^a^aj G i?ô - by Lemma 1.6, 
r / / * $ W&r iWt&viàsor f iQ. S and the equali ty between 5 and £/is established. 

We collect what we have shown thus far: Lemma 1.2 implies if 3>i£ G i^-1 P\ 
O ^ ) - 1 for x in Xai, then y is in BWô(rt)WôB H BftWuir^WsB = B(rt)WsB 
U £ S £ . Also y G B<r,>W a5 if and only if ^ G *. So if y X G K^ixr^)1- - t, 
for x G Xai, then y 6 £ S £ = BUB. We now show t h a t HyK^t à(yK) 3 
I 2 I : 2 ^ Z>,5J3}. Since clearly / is itself a clique this will imply the line on K 
and xrtK contains t for any x G Xa-. 

Since / is invariant under A = GeC\Gy (where 6 = II — a (a *), 7 = <5 U {a *} ), 
so is Hyxet &(yK) and Y = {z : zK C\yK^t (yK)}. Therefore F is a union of 
A — K double cosets. We already know 

F C BSB = BUB = U ArftK. 
aj£a(cti) O 5 

| a ; | = |«;l 

To get equali ty it suffices to show rp JL C F where a ; G a(a^ C\h with 
|a:;| = |Q^|. And hence we must show rfiK C BW^iW^B C\ xriBWtfiW&B for 
each x G Xa-. Clearly r -r XK C BW^riWsB. But by taking suitable representa­
tive for r* and r^ we can show r / / / ; - J 5 C xr^BW^iW^B and so r xr p xr ̂ K C 
xriBWsriWsB. But r%rptr^K = r^r^K and we are done. 

2. L ine s tabi l i zers . Now t h a t we have shown t h a t the line on i£ and r ^ 
carries greater than two points and in fact contains t, we determine the actual 
line on K and rtK and its stabilizer. Denote the line on K and rtK by T. As we 
shall see, except under very special circumstances, t = T and the stabilizer of 
the line is A = Ge C\ Gyi where 6 = II — a(a{), and 7 = 5 U {a*}. 

Since 4̂ takes any two points of t to another pair on /, A preserves T. Hence 
{y : yK G t) is a union of ^4_X-double cosets and is contained in 

AK U f U ^ r / , x l . 
ctjÇaiai) H ô 

L |a / |= |«» l J 

There are three cases to be considered, depending on \{ctj G a(ai) (^ 8 : \at\ = 

kill. 
Case (i). {aj G a (a*) H 5 : |a, | = |a,|} = 0. Then {y : yK G T} = AK and 

/ - T. 

Case (ii). |{a:;- G a (a*) H ô : |a*| = | a ; | } | ^ 2. I t suffices to show for any ajf 

oi/ G a(at) H 5 with \at\ = |a:;| = \a/\ t h a t r / * W g A ' ^ / r ^ P F ) , or equivalently 
rf/rft Q WdrtWt>. But r ^ / r / * G ^ W V ^ a n d ^ r / r / ^ = -(ûf< + a* + a / ) G 
i?8~ and so by Lemma 1.6, r^/r^i Q W&riW&. 

Case (iii). There is a unique a^ with (au OLJ) 9^ 0, c^ 9^ at and |a ; | = \a{\. 

Notation: For a set x of fundamental roots, and a G x> Cx(«) w i h denote the 
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connected component of x containing a where the relation is generated by non-
orthogonality. 

Claim: Unless C&(<Xj) forms an An-system of roots for some n, with 

\a(<Xj) C\ Cs(aj)\ = 1, then t = T. 

Note. We H Wy = (r,) X (rk : ak G C«(a,) - {<xj}) X Z with [Z, r,] = 1. 
So (W, r\ Wy)rfiWi = «r<> X <r* : a* G C a(a,) - {aj}))rjriWô. 

To prove the claim it suffices to show, by our correspondence between para­
bolic double cosets in W and G tha t {Ws, r^W^) is the line on Ws and rtWs. 
This amounts to showing tha t the cosets of Ws in (We H Wy)r jr {Ws do not 
form a clique with respect to A'. Therefore it is enough to find w G (rk :ak£Cs (aj) — 
{<*j}) X (rt) such tha t rtr{wrf t g I F ^ r ^ l F ô . Since r # juor # p %r xr juor p JN h, 
must in fact find ze; in (rk : o^ G Cs(ctj) — {aj} ). By our assumption on Cs(ctj) it 
must be the case tha t a(at) C\ 8 = {aj}. Set V = (rk : ak G Cs(<*j) U {a*}), 
F* = ( r ^ «yt 6 C«(ay)) and F = (r* : a* Ç 5 - C« (ay)). Then fl^r,)^ = 
Vi(ri)ViV and from this it suffices to find w G (^ • ctk G CS(OLJ) — {&j} ) with 
r^jivrfi G Vi(ri)Vi. But this assertion is the same as the assertion t ha t V is 
not doubly transit ive on the cosets of Vi} which is obvious from our assumption 
on Cs(aj) and the parabolic representations of Weyl groups. 

I t now remains to consider the case where Cs (aj) is an ^ - s y s t e m of roots with 
aj an end-node (i.e. when \a(<Xj) O C(ctj)\ = 1). We claim tha t in this case 
T D t, tha t in fact T = {yK : y G AK \J ArjrtK} = tAf where A' = Ge> C\ Gyj 

6' = [II — a(at)) U {aj}. By reductions similar to the above and the corre­
spondence between double cosets in the Weyl group W and in G for parabolics, 
it suffices to show the line on Ws and rtWs is { Ws, rtWs} We r\ Wy. For this we 
must show tha t the cosets of Ws in ((rt) X (rk : ak G Cs(otj) — {a;-} ))r ;r*lFô 
form a clique with respect to A'. Let t ing V, Vu be as above, then 
since V^iVi CI W^r^Ws it suffices to show rtrjWrf t G V\(rt)V\ for any 
w G (rk : ak £ CS(OLJ) — {aj}). But from our assumption on Cg(ay), ( F , V/Vi) 
is doubly transit ive and hence F = V^r^Vi and so clearly for any 
w G (rk : ak £ C&(aj) — {aj}), rtrjivr/z- G F = Vi(rt)Vt and T is as asserted. 

Remark. In Case (i) and in Case (iii) where Cj(a;-) is an ^ - s y s t e m of roots 
with \a(af) C\ Cs(af)\ = 1 we see tha t the line T is a maximal clique with 
respect to A. Otherwise the number of orbits on points adjacent to each point 
of T is \{<Xj G a(cti) C\ ô : \a3\ = |a<|}|. I t is also clear t ha t except in Case (iii) 
when T 3 t, t ha t GT = Gt = A, and in Case (iii) when T Z) t, GT = A' = 
G*' H G7 where B' = ( n - a ( a f ) ) U {a,}, 7 = ô U {a,}. 

3. Propert ies of Lie i n c i d e n c e s t r u c t u r e s . Now tha t we have proved the 
existence of non-trivial incidence structures for all of the parabolic representa­
tions of groups of Lie type and found the stabilizers of the various lines t ha t 
arise we investigate some properties of these structures. First we must define 

https://doi.org/10.4153/CJM-1976-100-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-100-9


1028 BRUCE N. COOPERSTEIN 

the notion of subspace and singular subspace, which are applicable for any 
incidence structure. We will show for the Lie incidence structures many of the 
subspaces and all the singular subspaces are parabolic in the sense that their 
stabilizers are parabolic subgroups. 

Definition. If (P, L) is an incidence structure, then a subspace is a subset 
X C P with the property that if a line I intersects X in at least two points, then 
/ Ç X. A subspace is singular if it is a clique with respect to the point graph 
(the point graph is the graph (P, A) where A consists of the pairs of collinear 
points. 

LEMMA 3.1. If {Xt : i G /} is a collection of subspaces, then f~^i€IXi is a 
subspace. 

Proof. Let / G £ with \l H n*€/ Xi\ ^ 2- T h e n f o r e a c h i ^ I, |/ H Xt\ è 2 
and so / C Xt for every i in I and / C f) iei Xt. 

Definition. For I Ç P , the subspace spanned by X is denoted by (X) and 

(x> = n y. 
F a subspace 

This is meaningful since P 2 X and P is a subspace. 

LEMMA 3.2. Le/ (P, Z.) &e an incidence structure with the property that if 
l G L, z G P — /, aw<i z is adjacent to two points of I then z is adjacent to every 
point of I. Then maximal cliques with respect to the point graph (P, A) of (P, L) 
are subspaces and hence singular. 

Proof. Let AT be a maximal clique. Then M = C\X^M ^_L- Let / G L with 
\l H M| è 2, and x G If. If x G M - /, then |/ H A(x)| ^ |/ H M| ^ 2, and 
so by our hypothesis I C A(x) C x-1. If x G /, then / Ç x1- by definition of the 
point graph. Hence / Ç C\xeM xL = M. 

An immediate consequence is 

COROLLARY. If (P, L) satisfies the hypothesis of Lemma 3.2 and X is a clique, 
then (X) is a singular subspace. 

Proof. By Zorn's Lemma there is a maximal clique, and hence a singular 
subspace, containing X. 

LEMMA 3.3. Suppose (G, P) is a parabolic representation of a group of Lie type, 
A = Af a self-paired orbit corresponding to some deleted root of the fundamental 
system, M a singular subspace of the associated incidence structure and assume M 
properly contains a line. Then M is a projective space. 

Proof. By the axioms of Veblen and Young it suffices to prove for each line 
/ C M and point x G M — I that (/, x) is a projective plane and so we may 
assume M = (I, x). By transitivity on lines we may assume / is the line on 
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K = G h and rtK where 8 is the set of roots corresponding to this representation. 
Since M is singular x G KL C\ (riK)1- — I. Then x = yK for some y in 
Ua,-ea(at),i<*yi=|ati Ar p JH. Since Gen? = A is transitive on the cosets of K in 

ArfiK we may assume x = r / ^ X for some a^ 6 a (a*) H <5 with |a ; | = |a*|. For 
X <= n , let a ( x ) = {/3 6 n - x : <0, a ) 5* 0 for some a G x}. Let ^ 2 = 
Ge2 H C7T, 7 as before and 02 = n — a(au af). Then A2 fixes Z = {2 : s is on a 
line from r p JH to a point of /} , and induces a PSL% on Z in one of its doubly 
transit ive representations. Thus Z is a projective plane and hence a singular 
subspace. As {x} U / Ç Z , (#, Z) £ Z. But clearly we must have (x, I) 3 Z 
so we get equality. Note tha t A stabilizes Z = M and so the stabilizer of M 
contains a Borel subgroup and hence is a parabolic subgroup (cf. Theorem 8.3.2 
of [2]). By considering fundamental reflections for roots not in We2 ^ Wy, we 
see t h a t in fact GM = A2 in this case. 

L E M M A 3.4. Let 8 C n , at G n — 8, A' = A / . Assume {aj G a(at) : |a<| = 

\a.j\) 9^ 0 awd z/" there is a unique aj in this set then C^aj) is not an A-system of 
roots with aj an end-node. Let at = 0i, 02, . . . , &n be a sequence of roots in 
8 \J {ax] with {0i, . . . , (3n} a naturally ordered A-system of roots. Set v0 = 1, 
vk+1 = rpk+1vk. Then M = {VQWS, ViWsj • • , vnWt\ is a clique with respect to A'. 
WM, the stabilizer in W of M, is equal to We H Wy where dn = II — a ({0i,. . . , /3n} ) 
and y — 8 VJ { a j . Also 

n 

O A'(wkW) = /wT7,:w G U W V ^ n t ^ a l • 

V 10 1=10» I / 

Proof. Clearly ^ n H W7 stabilizes il? and induces a S n + i on it. As W^ 
rtWt = ViWs are adjacent and in if, ¥ is a clique. Suppose w G Wyj then 
clearly w G WM and also wW?, G OïLo A ' ^ I F ) . As everything can be calcu­
lated inside IF7, we may assume Wy = W and 5 U {a*} = 7 = II. Therefore 
the representation is a maximal parabolic representation of W (but not 
necessarily primit ive) . Wen induces the full symmetric group on M, so if w 
is in W-M — Wen we may assume w acts as the identi ty on M} and so is in 
Cw(W{fo pn)). But Cw(WWl,...M) = Wn-ipi /5„j-o({/Si,..../9»j) £ Won. So in 
fact WJJ C H/0n and we have equality. The last par t of the lemma we prove by 
considering the different Weyl groups and representations separately. As they 
are all similar we only give the details for a couple. 

(a). W = W(AS). Then at = fii must be an interior root from our hypothe­
ses. Assume tha t at is the zth node in a natural ordering of the roots with 
i ^ s/2. Then the graph may be described as follows: the vertices are the 
i-subsets of a set of cardinality s + 1. Two are adjacent if they meet in a n i - 1 
subset. Cliques come of two types—some set of z-subsets contained in an 
(i + 1)-subset, or some set of ^-subsets containing a given (i — 1)-subset. In 
either case under the action of the stabilizer of the subset there is a single orbi t 
of vertices adjacent to each one in the clique and this suffices. 
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(b). W = W(Bs). Then ai = fii is either an end-node or an interior node, bu t 
is not adjacent to a node of different length. Let us consider the case t ha t at is 
an end node. Then the graph may be described as follows: there are 2s vertices 
Xi, #2, . . . , X2s-i, x2s. X2k-i is adjacent to all vertices except itself and x2A:, and 
similarly x2k is adjacent to all other nodes except itself and x2k-i- Then under 
the action of W there is a single class of cliques of size n, and under the stabilizer 
of such a clique there is a single orbit of vertices adjacent to every point of the 
clique, and this suffices. If at is an interior node say the i th node in a natura l 
ordering of the roots then the graph can be described as follows: the vertices 
are the i-subsets of Xi, x2, . . . , x2s which are cliques. Two are adjacent if they 
meet in an i — 1 subset and join to a clique. Then a clique for this graph is 
either of the following type—a set of i-subsets contained in some clique of 
Xi, . . . , x2s of size i + 1, or some set of i-subsets of Xi, . . . , x2s contained in 
some clique of Xi, . . . , x2s and containing a given (i — 1)-subset. In either case 
the stabilizer of such a clique has a single orbit on vertices adjacent to every 
point of the clique and this suffices. 

(c). W is exceptional. Then some identifications similar to the above can be 
made or the result can be proved by direct calculation using distinguished coset 
representatives. 

With Lemma 3.4 we can prove 

LEMMA 3.5. Assume the hypotheses of Lemma 3.3. Then GM, the stabilizer of M, 
is a parabolic subgroup. 

Proof. The proof is by induction on the projective dimension of M = n. We 
first show tha t under the action of G, M has an image M' = (VjK : 0 ^ j ;g n) 
where there is an A -system of roots at = /3i, /32, . . . , /3n in 8 U {at} and 
v0 = 1, vj+i = r$j+lVj. Suppose we have shown this. Then we may assume 
M = M'. By looking a t generators we see t ha t Gen ^ Gy is contained in GM, 
where 6n = U — a({fii, . . . , /3n}). Then GM contains a Borel subgroup and so is 
parabolic (cf. Theorem 8.3.2 of [2]). By considering reflections not in Wenf^\ Wy 

it is then easy to see t ha t in fact GM
 = Gen C\ G7. 

For dimension of M equal to two this was shown in L e m m a 3.3. So assume 
dimension of M = n > 2. Let MH be a hyperplane of M. By induction the l emma 
applies to MH, so in fact we may assume MH = (VjK : 0 ^ j S n — 1) and 
GMH = Gen-i H Gy where 0n_i = II - a({/3i, . . . , 0w_i}). Let xK 6 M - MH. 
Then since GMHWG = GMHWK = G we may assume x is in W. But then 

n-l 

xW £ D A'(vjW) = U (WVx n Wy)revn^Wô 
;=0 ^ a ( ^ - i ) n H ^ - 2 ) 

I0l=l0»-il 
and so we may assume x = r^vn-\. Set t ing /3n = ft completes the lemma. 

Definition. By the diagram of the incidence s t ructure (P , Lt) with point 

graph (P , Ai), Af = Aai, arising from G, II, <5, at G II — 5 we mean the triple 

(11,5 ,* , ) . 
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We have shown that the classes (under the action of G) of singular subspaces 
of (P, Li) are in one-to-one correspondence with the subsets x £ 5 U ( « j ) such 
that ai £ x a n d x is a fundamental base for an A -system of roots. 

In another paper we will consider the structures associated with certain 
maximal parabolic representations of groups of type An, Bn, Cn, Dn, and E6 and 
characterize them when the underlying field is finite. 
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