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SOME GEOMETRIES ASSOCIATED WITH PARABOLIC
REPRESENTATIONS OF GROUPS OF LIE TYPE

BRUCE N. COOPERSTEIN

Introduction. Suppose (P, A) is an undirected graph without loops or
multiple edges. We will denote by A(x) the vertices adjacent to x and
xt = {x} U A(x). Let (G, P) be a transitive permutation representation of a
group G in a set P, and A be a non-trivial self-paired (i.e. symmetric) orbit for
the action of G on P X P. We identify A with the set of all two subsets {x, y}
with (x, ¥) in A. Then we have a graph (P, A) with G < Aut(P, A), transitive
on both P and A. For x, ¥y an adjacent pair of points we define the (singular)
line xy on x and y by

= L
xy zezlpy s
It is well known (c.f. [4]) that G is transitive on lines, a line is a clique (i.e.
complete subgraph) and if u £ v are on xy, then xy = uv. As a result all lines
have the same cardinality and also satisfy:

If z is a point not on xy and z is adjacent to at least two points of xy, then z

is adjacent to every point of xy.

If we let L be the set of all such lines we get an incidence structure (P, L)
(by this we mean a set of points and a collection of distinguished subsets called
lines) with G £ Aut(P, L), transitive on both P and L.

Generally, (P, L) is trivial in the sense that lines only carry two points. This
will certainly be the case if G,2® is primitive on A (x) since xy — {x} is a block
of imprimitivity for the action of G,2® on A(x). Thus the representations of
McL and HiS as rank three groups are examples of representations where the
associated incidence structures are trivial. The representation of Ms; as a rank
three group acting on the seventy seven blocks of the Steiner system S(3, 6, 22)
also affords trivial structures. However, in this representation a point stabilizer
is isomorphic to a semi-direct product Z,*4s, it is faithful on both suborbits,
and has a set of imprimivity on one of the suborbits. Therefore the imprimi-
tivity of G,2® on A(x) is not sufficient for the existence of thick (i.e. with more
than two points) lines.

We give some non-trivial examples:

(1) Let G ~ Z3, the symmetric group on 3k letters, with & at least two. Let
P be the set of all k-subsets of the 3k letters and A the set of pairs of non-
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intersecting k-subsets. The line on such a pair consists of the pair together with
the complement of their union.

Remark. When k = 2 this is just the generalized quadrangle associated with
Sp4(2) ~ .

(2) Let G >~ My, the Mathieu group on 24 letters. Let P be the set of
blocks of the Steiner system S(5, 8, 24) and A the set of pairs of non-intersecting
blocks. G is rank four in this representation and the line on such a pair consists
of the trio containing the pair.

(3) Let V be a finite dimensional vector space equipped with a nondegenerate
orthogonal, alternate or hermitian form f such that the index of f is at least two.
Let G = O(f), the group of invariants of f, so that G is an orthogonal, symplec-
tic or unitary group. Let P be the set of singular points (i.e. isotropic one-
dimensional subspaces of V), and A the pairs of orthogonal points in P. Then G
is transitive on P and A, and the line on a pair from A consists of the points in
the two space spanned by the pair. These incidence structures are examples of
prepolar spaces which are classified in [1].

(4) Let PSL,(q) = G = PTL,(q), n at least four. Let P, be the collection of
all k-subspaces of PG(n — 1, q) with k at least one and not greater than
(n — 1)/2, and let A be the set of pairs of k-subspaces intersecting ina k — 1-
subspace. Then the line on such a pair (x, y) consists of the ¢ 4+ 1 k-subspaces
incident with the flag x Ny C (x, ).

In Examples (3) and (4) the groups considered are groups of Lie type, and
the permutation representations are parabolic representations, that is, equi-
valent to the action of the group on the coset space of G modulo some parabolic
subgroup. If we consider other parabolic representations of these groups or of
other groups of Lie type we can give many more examples of thick incidence
structures afforded by groups. This suggests that their existence is a ‘‘Lie"”
property, that every parabolic representation of a group of Lie type affords
thick incidence structure(s). This is so. It is our objective to prove.

THEOREM 1. Let G be a group of Lie type, ® the associated root system, 11 a
fundamental base for ®, 6 C I, K = G; the parabolic subgroup corresponding to
8, P = G/K the coset space of G modulo K. Then there is a set {Aq: @ € 11 — 8}
of distinguished, non-trivial, self-paired orbitals such that lines with respect to A,
carry greater than two points for each a in I — 5. Moreover the stabilizer of any
line 1s another parabolic subgroup.

The existence of these suborbits is proved in Section 1. In Section 2 we deter-
mine the actual lines and their stabilizers, then in Section 3 we determine some
properties of these Lie Incidence structures.

1. Proof of Theorem 1. We begin with some notation. Let G be a group of
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Lie type and let (B, N) be a (B, N)-pair for G. Then G = (B, N), H = BN
N Q N and W = N/H is a finite group generated by a distinguished set of
involutions {r;: 1 <4 =< l}. These and other properties are well known. For
more details refer to [2, 5]. Elements of W are cosets of H, and so for w in W,
wB, BwB are unambiguous. We remark that w is a distinguished generator if
and only if B\U BwB is a group.

Associated with G and W is a root system & and for each r,a fundamental
root ;. Set II = {a;: 1 <1 < I}. Then we may consider ® C E! with II as
base and the 7; act on E as reflections by

ri@) =0 — 2(v, ;) /(@ o) ~a; =0 — @, ay)ay

There is a unique element w, in W such that w, takes ®* to ®—. For «; in II, let
X., = BN rawBwy'r,. For any « in II there is a w in W and «; in II with
wa,; = a. Then set X = X,,%. These are well-defined. For ¢y C &, let y*+ =
{a€y:a>0}, ¢y =y —y*+.Fors CI,letR; = {a: spt(e) & 8}, S;= & — Rs.
We also set W5 = (r;: a; € ) and then the parabolic subgroup G; correspon-
ding to W is BW;B. We also have Gs = V;L;H where V; = (X, : a € Rs*),
L5 = (Xa ta € Sa)

We will prove Theorem 1 by showing for each «; in II — § that the orbital A,
defined by yK € A;(xK) if and only if x~'y € Kr ;K is self-paired and yields
(singular) lines with greater than two points. For convenience we drop the
subscript and write A in place of A,.

LemMMA 1.1. A s self-paired.

Proof. We may appeal to the correspondence between Gy — G, double
cosets and Wy — W, double cosets for 8, v C II. It then suffices to show the
orbital of the representation (W, W/W;) given by wW; € A’ (vW5) if and only
ifv~lw € Wer W is self-paired. But since r;is an involution this is immediate.

We must now show that (singular) lines with respect to A have greater than
two points. By transitivity on lines it suffices to show the line through K and
7;K contains greater than two points. Let ¢t = {K} U {xr,K : x € X,;}. We
show that the line on K and r,K contains ¢.

Notation. Fora € M, a(a) = {8 € II — {a} : (a,B) # 0}. Let 4 = Gy N G,
where § = I — a(a;) and vy = 6 \U {a,}. [tis not difficult to see that 4 stabilizes
¢t and is transitive (in fact two-transitive) on it.

Remark. BWs(r YW;B = KAK = BW;(Ws M W,)W;B.

LEMMA 1.2. Let x € Xo; and y € BWs{ri)WsB M xr BW;(r)WsB. If we
express y as bywbe with by, by in B and w in W, then w is in r;W{r )Ws M
W.s(f’i)W,s.

Proof. Since y € BW;({r,)WsB, clearly w is in W;({r;)W;. Also y in
Br BW{r;)W,;B implies we can express y as bi'7by’w'by’, with by, by, by’ in B
and w' in W;{r;)W5. Then y is in Braw'B\JU Bw'B and y is in Brw'B unless
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Ira') < 1(w). If yisin Braw'B then w = ra’ isin Ws{r)Ws M\ v, Ws(r ) Ws.
So we may assume [(rw') < [(w'), and so in particular @’ is not in Ws. If we
consider an expression for @’ of the form w; . .. w7 w1 . . . w, with w; in W,
fundamental reflections for 1 < j < #, and of minimal length, then /(') =
n 4 1. Now since [(r w’') < L(w") one of the following must occur:

(a) thereisaj = ksuch that
/

W o= W W Wit e e W Whpt - . W
(b) thereisaj = k + 1 such that

W =YWy W Wit - e Wi W1 . . . Wy OF
(©) @ =rw ... wWe1 ... W,

In each case we have that w' is in 7, Ws{r )Ws M W;(r;) W5, and so is w.

Let .S = r,Wsr;Ws M Wisr;W;. We have that BWs{r YWsB (M xr ;Ws(r ) W;DB
C BSB\J B{r;)WsB for each x in X,,. We next show

(11) S = U (Wﬂ m W»y)?’j?'iW.
aj€alaq) (N 8

lej |=lay

Denote the left hand side expression by U. We have that wlV; € A" (W;) N
A’ (r,Ws) if and only if w is in S. Moreover W, M W, fixes and is transitive on
{W5s, r W}, Therefore, S is a union of Wy M W, — W; double cosets. We first
show the inclusion U C S. By the above we must show the double coset
representatives 77, with a; in @ (a;) M 6, ety = |ey|, arein S. But vy, = ryrilis
in Wer;Ws. Since |a,| = |ay|, (rjr)® = 1.Sory, = rape; € rWer Wisand rr,
is in .S. We now show the opposite inclusion.
Let (*) be the relation

™) wis in S, I(w) < I(w') for every @' in (Ws M W,)wW,.

If w satisfies (*), then [(w) < I(w’) for all @’ in wWW; and so w is a distinguished
coset representative for (W, W/W;) and therefore Q(w) C R,+, where in
general for an element v of W, Q(v) is the set of positive roots made negative
by v.

LemmaA 1.3. I(w) = 2 if w satisfies (*).

Proof. Since w is in Wy ; W5, if [(w) = 1, then w must be a fundamental
reflection for a root in § \U {a,;}. But then w is in (Wy M\ W,)W;, but 1 is in
(We M W,)Ws and so I(w) is not minimal among elements of (Wy M W.)wWs.
Therefore if I(w) < 2, and w satisfies (*¥) then w = 1. But 1 is not in Wer W,
so 1 is not in .S and the lemma is complete.

LeMMA 1.4, For w in War,Ws, |[Ryt M w1(R,7)| = 1.

Proof. Write w = wyrw, with w,, ws in W;. Then wyla; is in R,* and
wwy"la; = —we; is in Ry, so [R,t M w ' (R;™)| = 1. If B is in Ryt and
wir o € Ry, then rwef € w1 (Rs™) = Ry~ and wo € RsT. Then w8 € Q(ry)
= {a, and so 8 = wyla,. Therefore the lemma will be true when we show: if
also w = wyr,wy with ws, wy in W, then wyla; = wyla;. But if wyrw, = war aw,
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then wy™lw,rwew, ™ = 7. Nowa,isin Q(r;) = Q(ws lwir wews™). Also 7, is
in R;~. Hence 7 wyw,s 1o, is in R~ since w3 'w; 1s in W. But w,w,a; is in Rt
50 weWsla; = a; and we are done.

Now assume w satisfies (*). Since rw is in (W, N W,)wW; and 7, is a funda-
mental reflection, I(r;w) = I(w) + 1. Then rw is also a distinguished coset
representative for (W, W/W;) and Q(rw) = Q(w) U {w~la;} C R+ LetB; be
in Q(w), B2 be in Q(rw) such that wB; and r,wB; are in R;~. If Bis in Q(w) —
{B1, B2}, then Bis in R+ and so by Lemma 1.4 and the choice of 8, w8 and r wg
are not in R;~. But r, w8 = w8 — (wph, a;)a; is in & and so (wB, a;) = 0.

Lemma 1.5. If w satisfies (*), then [(w) < 2.

Proof. Assume on the contrary that I[(w) = n > 2. Write w = w,...w,, a
product of fundamental reflections. Since w is in W;r; W5 we may assume each
w; is a reflection for a root in § \U {«;}. First suppose w; # r; for some root a;
in a(a;) M §, then w; is in Wy M W, and hence wyw is in (W M W,)wW,; and

Hww) = l(w;y...w,) =n— 1 < I(w), a contradiction. So w; = r;, some «;
in a(ay) M8 Now Q(w) = Q(ws...w,) \J{(ws...w,) la;} and rw(w,...
w,)la; = —ro; = —(a; — {a;, ay)a;) € Ry, Hence wBy = —a;. We next
claim w, = r;and wB; = —rjo;. Letws = 74,8 € § U {a;}. We have w(w; . . .

W) B = == —rf=—(B~ B a)a;) # —a; = why. If —1,85
wPi, then (8 — (B, a;)a;, a;) = 0. But then (B8, a;) — (B, @;){a;, @;) = 0. Since
{aj, a3) £ 0, {8, a;) = 0if and only if (B, a;) = 0. If {8, a;) = (B, a;) =0,
then w, € Wy M W, and 7w, = wyr; and hence wow € (W N W,)wWs and
Hwaw) = l{wawyws . .. w,) = (wyw; ... w, =n — 1 < [(w),acontradiction.
If —r;8 # wB: and (B, @:){B, a;) # 0, then 8 = «; and we have a loop in the
Dynkin diagram (i.e. three pairwise non-orthogonal fundamental roots). This

cannot be. Hence we can conclude that —7,8 = — (8 — {8, a;)a;) € R;~. Since
B€sUlatand B — (B, a;)a; € R; also € II — §, and therefore 8 = a; and
the claim is proved. Therefore w = rrw;...w, Assume w; = rg with

B€o6\U{ad. Then (wy...w,) 18 € QW) and w(w,...w,) 8= —r;yrpB +#
wB1, wBs. So (rrfb, a;) = 0,and rrB ¢ Ryt Butrpr8 = B8 — (8, ay)a; +
(B, ai){a;, a;) — (B, a;))a;. Therefore we must have (8, a;) = 0, and so
riri8B = B — (B, a;)a; Butsince {r;7,8,a;) = 0, also (8, ;) = 0. Then rrw; =
wyr 7. wy € We M W, and hence wyw € (Wy M W, )wWs. Also [(ww) =
lryraws...w,) = n — 1{(w), a contradiction and this completes the lemma.

The next lemma will show |a;| = |a;| if r7; € S with a; € a(e;).
LeMMA 1.6. If w € v Wir, (N Wer W, then wa; ¢ Ry~

Proof. Suppose on the contrary that wa; € R;~. Let wi, ws, w3 € W, with
W= Wiy Wy = 7 Wsr . W17 Wty € Ry, 507 wea; € w1 (Ry™) = Ry~ wea; € Rs™,
so weay € Q(ry) = {a. Then rw, = wyr,. This yields 7 wsr; = wirws = w,war;
and cancelling we get r; = wywaw,™! € W, a contradiction.

Nowifa; € ala;) M éand |a;] # |a,] then {a;, a;){asy a;) > 1 (not necessarily
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an integer-2F,). We haver 7, € Sifand only if r 77, € S. Clearly 7 ;r; € v Wor,.
Since r# ;s = (1 — {ay, a;). {@j, ai))a; + {aya;)a; € Ry~ by Lemma 1.6,
riare @ WsrWsandsor,r; ¢ Sand the equality between Sand U is established.

We collect what we have shown thus far: Lemma 1.2 implies if yK € K+ M
(xrK)+ for x in Xg;, then y is in BW,(r;)WsB (M Br ;W;(r)W:sB = B(r;)W;B
\U BSB. Also y € B(r;)W,;B if and only if yK € {. Soif yK € K+ (xr, K)L — ¢,
for x € X,;, then y € BSB = BUB. We now show that Nyxe, A(¥K) 2
{zK : z € BSB}. Since clearly ¢ is itself a clique this will imply the line on K
and x7,K contains ¢ for any x € X,,.

Since ¢ is invariant under 4 = G4 G, (where 6 = I — a(a;), v = 6 U {ay}),
s0 is Nyxe: AWK) and ¥V = {z: 2K N,xe: (WK)}. Therefore ¥V is a union of
A — K double cosets. We already know

Y C BSB = BUB = U AryriK.
aj€alai) N8
lail=|aj
To get equality it suffices to show 77K C ¥V where a; € a(a;) M with
la;| = |a. And hence we must show 7,7, K C BWsr ;WsB M xr . BWyr;W;B for
each x € X,,. Clearly r;» , K © BW,r;W;B. But by taking suitable representa-
tive for r; and r; we can show ;7 7;B C xr BWsr ;W,B and so rg;r7;K C
xr BWsr W;sB. But vy 7 ;K = rr;K and we are done.

2. Line stabilizers. Now that we have shown that the line on K and r,K
carries greater than two points and in fact contains ¢, we determine the actual
line on K and ;K and its stabilizer. Denote the line on K and 7 ;K by T". As we
shall see, except under very special circumstances, ¢t = 7 and the stabilizer of
the lineis 4 = Go M G,, where § = II — a(a;), and v = 6§ \U {ay}.

Since A takes any two points of ¢ to another pair on ¢, A4 preserves 1. Hence
{y : yK € t} is a union of 4_K-double cosets and is contained in

AK [ U Ar,»r,K] .

aj€alai) NS

ajl=lai]

There are three cases to be considered, depending on |{a; € a(a;) N6 : |ay] =

leejl} ).
Case (i). {a; € a(as) M é:|ay| = |ayl} = @. Then {y: yK € T} = AK and

t=T.

Case (ii). [{a; € a(e;) M 8 : |y = |ay|}| = 2. It suffices to show for any «;,
a; € ala;) M dwith oy = |a,] = |«)/| thatry ;W ¢ A'(r/r,W), or equivalently
rairire @ W Ws. Butrg/rp, € riWyesandrg/rpe; = — (@ +a; +a)f) €

R;~ and so by Lemma 1.6, ry/r;r, @ Wir,Ws.
Case (iii). There is a unique a; with {@;, ;) # 0, ¢; # a;and |e;| = |a4|.

Notation: For a set x of fundamental roots, and a € x, Cy(a) will denote the
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connected component of x containing « where the relation is generated by non-
orthogonality.

Claim: Unless Cs(a;) forms an A,-system of roots for some n, with
la(e;) N Cylay)| =1, thent = T.

Note. Wo M\ W, = (ry) X (re: e € Csey) — {a}) X Zwith [Z, r;] = 1.
So (Wo M Wy)?’ﬂ'iW‘s = (<7l> X <}']C Loy € Ca(a]-) - {aj}>)7j71W5.

To prove the claim it suffices to show, by our correspondence between para-
bolic double cosets in W and G that {W;, »;W;} is the line on W; and 7;W5.
This amounts to showing that the cosets of W; in (W, M\ W.)r,;7;Ws do not
formaclique withrespect to A”. Thereforeitisenough tofind w€ {r; : a, € C; (o) —
fa;}) X (r;)y such that rywry, @ Wslr,)Ws. Since rrmrgzryrgory Ws,
must in fact ind win (r; : o € Cs(a;) — {@,} ). By our assumption on C;(a;) it
must be the case that a(e;) M § = {a,;}. Set V = {r, : @, € Cs(a;) U {ai}),
Vi=(rn:ar € Csay))and V = {r, : e € 6 — Cs(a;)). Then Ws(r,)W; =
Vi{rs)V:V and from this it suffices to find w € (ry: ax € Cs(a;) — {a;}) with
ragorys & Vi(r;)V, But this assertion is the same as the assertion that V is
not doubly transitive on the cosets of V;, which is obvious from our assumption
on Cs(e;) and the parabolic representations of Weyl groups.

It now remains to consider the case where Cs(a;) is an 4,-system of roots with
a; an end-node (i.e. when |a(a;) M Cla;)| = 1). We claim that in this case
T Dt thatinfact T = {yK : y € AK\J Arr K} = ¥ where A’ = Gy N G,,
¢ = [II — a(a;)) U {e;}. By reductions similar to the above and the corre-
spondence between double cosets in the Weyl group W and in G for parabolics,
it suffices to show the line on Wjand » ;W5 is { W5, r, W35} Wo (M W,. For this we
must show that the cosets of W in ({r;) X (ry : a, € Cs(a;) — {a))ryrWs
form a clique with respect to A’. Letting V, V,; be as above, then
since Vg, V, © Wy, Ws it suffices to show rgymwry, € Vi{r;)V,; for any
w € (ry: ar € Cs(a;) — {a;}). But from our assumption on C;(e;), (V, V/V,)
is doubly transitive and hence V = V. (r;)V; and so clearly for any
w € (rp:ar € Cilay) — {a), rajwryrs € V= Vi(r)V,and T is as asserted.

Remark. In Case (i) and in Case (iii) where C;(a;) is an 4,-system of roots
with |a(e;) M Cs(a;)| = 1 we see that the line 7" is a maximal clique with
respect to A. Otherwise the number of orbits on points adjacent to each point
of T is |{a; € a(a;) M8 : Ja,| = |ay}]. It is also clear that except in Case (iii)
when T" D¢, that G, = G, = A, and in Case (iii) when I" D¢, Gy = A’ =
Go M Gy where 0/ = (I1 — alay)) J{ayd, v = 6 U {ay}.

3. Properties of Lie incidence structures. Now that we have proved the
existence of non-trivial incidence structures for all of the parabolic representa-
tions of groups of Lie type and found the stabilizers of the various lines that
arise we investigate some properties of these structures. First we must define
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the notion of subspace and singular subspace, which are applicable for any
incidence structure. We will show for the Lie incidence structures many of the
subspaces and all the singular subspaces are parabolic in the sense that their
stabilizers are parabolic subgroups.

Definition. If (P, L) is an incidence structure, then a subspace is a subset
X C P with the property that if a line [ intersects X in at least two points, then
I € X. A subspace is singular if it is a clique with respect to the point graph
(the point graph is the graph (P, A) where A consists of the pairs of collinear
points.

Lemma 3.1. If {X,;:1 € I} is a collection of subspaces, then (Nier X 1S @
subspace.

Proof. Let I € L with [l N X4| = 2. Then for each ¢ € I, |l M X
andso! € X, foreveryisin I and ! C Ny X

Definition. For X C P, the subspace spanned by X is denoted by (X) and
X) = n Y

YOX

Y a subspace

v
o

This is meaningful since P 2 X and P is a subspace.

LEMMA 3.2. Let (P, L) be an incidence structure with the property that if
I €L,z € P — 1 and 2z 1s adjacent to two points of I then z is adjacent to every
point of 1. Then maximal cliqgues with respect to the point graph (P, A) of (P, L)
are subspaces and hence singular.

Proof. Let M be a maximal clique. Then M = N ey x+. Let I € L with
N M| =2 andx € M.Ifx € M — I, then |l N\ A(x)| = [N M| = 2, and
so by our hypothesis I C A(x) € x+. If x € [, then ! C x+ by definition of the
point graph. Hence I © N,ep xt = M.

An immediate consequence is

CorOLLARY. If (P, L) satisfies the hypothesis of Lemma 3.2 and X 1is a clique,
then (X) is a singular subspace.

Proof. By Zorn’s Lemma there is a maximal clique, and hence a singular
subspace, containing X.

LeEMMA 3.3. Suppose (G, P) 1s a parabolic representation of a group of Lie type,
A = A, a self-paired orbit corresponding to some deleted root of the fundamental
system, M a singular subspace of the associated incidence structure and assume M
properly contains a line. Then M 1is a projective space.

Proof. By the axioms of Veblen and Young it suffices to prove for each line
I € M and point x € M — I that (/, x) is a projective plane and so we may
assume M = (I, x). By transitivity on lines we may assume [ is the line on
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K = Gjsand 7K where § is the set of roots corresponding to this representation.
Since M is singular x € K+ N (r;,K)+ — I. Then x = yK for some v in
Uajcata,lajl=lai] A7 ;7K. Since Gony = A is transitive on the cosets of K in
Ar K we may assume x = 7;7,K for some a; € a(a;) M 8 with |e;| = |a,|. For
x ©CII, let a(x) ={B€ O — x: {B,a) # 0 for some a € x}. Let A, =
Go, M Gy, v as before and 6, = II — a(a;, @;). Then A, fixes Z = {z: zisona
line from 77,;K to a point of I}, and induces a PSL; on Z in one of its doubly
transitive representations. Thus Z is a projective plane and hence a singular
subspace. As {x} Ul C Z, (x,!) C Z. But clearly we must have {(x,1) D Z
so we get equality. Note that 4 stabilizes Z = M and so the stabilizer of M
contains a Borel subgroup and hence is a parabolic subgroup (c.f. Theorem 8.3.2
of [2]). By considering fundamental reflections for roots not in Wy, N W,, we
see that in fact G, = A, in this case.

LEMMA 3.4. Let 6 C I, a; € T — 3, A" = A/, Assume {a; € a(ay) : |ay =
la;l} % @ and if there is a unique a; in this set then Cy(a;) is not an A-system of

roots with a; an end-node. Let a; = By, B, . .., B, be a sequence of roots in
o\ U {a} with {8, ..., B, a naturally ordered A-system of roots. Set vy = 1,
Vpr1 = TgpsiUs Then M = {osWs, 0, Ws, . .., v,Ws} is a clique with respect to A'.

Wz, the stabilizer in W of M, is equal to Wo M\ W, where 8, = I — a({By,. . ., Ba})
and v = 6 \U {a;}. Also

N A (w,W) = {wWazw € U Wuf,gvnWa}.
k=0 BeaBn) N 8=(fn-1)
181=18nl

Proof. Clearly W,, M W, stabilizes M and induces a 3,;; on it. As W,
rWs = v;W; are adjacent and in M, M is a clique. Suppose w ¢ W,, then
clearly w ¢ Wy and also wW; ¢ Miwo A’ (v, W). As everything can be calcu-
lated inside W,, we may assume W, = W and 6 \U {a;} = v = II. Therefore
the representation is a maximal parabolic representation of W (but not
necessarily primitive). W, induces the full symmetric group on M, so if w
is in W3 — W, we may assume w acts as the identity on M, and so is in
Cw(Wip,....pm)- But Cow(Wis,,...80) = Wi_iss,...80—at81,...80) & Wa,. So in
fact Wy C W,, and we have equality. The last part of the lemma we prove by
considering the different Weyl groups and representations separately. As they
are all similar we only give the details for a couple.

(@). W = W(4,). Then a; = 8; must be an interior root from our hypothe-
ses. Assume that a; is the 7th node in a natural ordering of the roots with
1 < s/2. Then the graph may be described as follows: the vertices are the
i-subsets of a set of cardinality s + 1. Two are adjacent if they meetinans — 1
subset. Cliques come of two types—some set of i-subsets contained in an
(i 4 1)-subset, or some set of 7-subsets containing a given (¢ — 1)-subset. In
either case under the action of the stabilizer of the subset there is a single orbit
of vertices adjacent to each one in the clique and this suffices.
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(b). W = W(By). Thena; = B;is either an end-node or an interior node, but
is not adjacent to a node of different length. Let us consider the case that «; is
an end node. Then the graph may be described as follows: there are 2s vertices
X1, X2, . . ., X2s_1, Xa2s. X2r_1 15 adjacent to all vertices except itself and x;, and
similarly x is adjacent to all other nodes except itself and xs;—;. Then under
the action of W there is a single class of cliques of size #, and under the stabilizer
of such a clique there is a single orbit of vertices adjacent to every point of the
clique, and this suffices. If «; is an interior node say the 7th node in a natural
ordering of the roots then the graph can be described as follows: the vertices
are the i-subsets of x1, %9, . . . , x2; which are cliques. Two are adjacent if they
meet in an ¢ — 1 subset and join to a clique. Then a clique for this graph is
either of the following type—a set of i-subsets contained in some clique of
X1, ..., %ss of size 7 + 1, or some set of i-subsets of xi, . .., x2, contained in
some clique of x4, . . . , ¥s; and containing a given (¢ — 1)-subset. In either case
the stabilizer of such a clique has a single orbit on vertices adjacent to every
point of the clique and this suffices.

(c). W is exceptional. Then some identifications similar to the above can be
made or the result can be proved by direct calculation using distinguished coset
representatives.

With Lemma 3.4 we can prove

LEMMA 3.5. Assume the hypotheses of Lemma 3.3. Then Gy, the stabilizer of M,
s a parabolic subgroup.

Proof. The proof is by induction on the projective dimension of M = n. We
first show that under the action of G, M has an image M’ = (v;K:0 =j < n)
where there is an A-system of roots a; = 81, B2, ..., B8, in 6 U {a;} and
vy = 1, v;41 = 75;,,v;. Suppose we have shown this. Then we may assume
M = M’'. By looking at generators we see that Ge, M G, is contained in G,
where 8, = T — a({B1, . . ., Ba}). Then G, contains a Borel subgroup and so is
parabolic (c.f. Theorem 8.3.2 of [2]). By considering reflections not in We, M W,
it is then easy to see that in fact G, = Gg, M G,.

For dimension of M equal to two this was shown in Lemma 3.3. So assume
dimensionof M = n > 2.Let Mybeahyperplaneof M. By induction thelemma
applies to My, so in fact we may assume My = (@,K: 0 =<j <#n — 1) and
Guy = Go1 M Gy where 0,1 = II — a({B1, ..., Bw—1}). Let xK € M — M.
Then since Gy, WG = Gy, WK = G we may assume «x is in . But then

n—1

W S m A,(UjW)
j=0

It

(Wf}”“l m W.,)rﬂv,,_ll/V&
B€a(Bn-1) N 3—{fn-2}
181=18: |

=1Pn-1

and so we may assume x = 7gv,_;. Setting 8, = 8 completes the lemma.

Definition. By the diagram of the incidence structure (P, L;) with point
graph (P, A)), A; = A,,, arising from G, II, §, @; € II — & we mean the triple
(Hv 67 ai)‘
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We have shown that the classes (under the action of G) of singular subspaces
of (P, L;) are in one-to-one correspondence with the subsets x C 6 \U {a,} such
that @; € x and x is a fundamental base for an 4-system of roots.

In another paper we will consider the structures associated with certain
maximal parabolic representations of groups of type 4,, B,, C,, D,, and Es and
characterize them when the underlying field is finite.
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