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In direct numerical simulations (DNS) of turbulent Couette flow, the observation has been
made that the long streamwise rolls increase in length with the Reynolds number (Lee
& Moser, J. Fluid Mech., vol. 842, 2018, pp. 128–145). To understand this, we employ
both linear stability theory and its extension to resolvent analysis. For this, we emphasise
the high Reynolds number (Re → ∞) and small streamwise wavenumbers (α → 0) limit,
imposing the distinguished limit Reα = Re α = O(1). We find that in case of linear
stability theory, Reα acts as a global invariant in the resulting eigenvalue problem, while
in case of resolvent analysis, Reα acts as a local invariant in the behaviour of the energy
of the system characterised through the first singular value σ1 of the resolvent operator
within the investigated asymptotic limit. In order to obtain constant streamwise structures
for increasing Reynolds numbers, the respective streamwise wavenumber has to decrease,
which verifies the observations from DNS studies of an increasing length of the streamwise
structures with the Reynolds number. In linear stability theory, a parameter reduction
is achieved for the above asymptotic limit, resulting in the modified Orr–Sommerfeld
and Squire equations being dependent only on Reα . The behaviour of both the coherent
structures obtained from linear stability theory and resolvent analysis are compared with
each other and show similar behaviours over Reα .
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1. Introduction

In a turbulent plane Couette flow beyond a certain Reynolds number threshold,
streamwise-elongated structures spanning the entire channel can be observed, and
they have been validated in both simulations (Bech & Andersson 1994; Komminaho,
Lundbladh & Johansson 1996; Papavassiliou & Hanratty 1997; Tsukahara, Kawamura
& Shingai 2006; Avsarkisov et al. 2014; Pirozzoli, Bernardini & Orlandi 2014; Lee &
Moser 2018) and experiments (Bech & Andersson 1994; Tillmark & Alfredsson 1995,
1998; Kitoh, Nakabyashi & Nishimura 2005; Kitoh & Umeki 2008).

Despite the many aspects of the flow, it has been observed in direct numerical
simulations (DNS) that the large-scale rolls grow in length with increasing Reynolds
number (Lee & Moser 2018). As a side effect, this led to the conclusion that very long
computational boxes had to be used for running turbulent Couette flow (Avsarkisov et al.
2014; Lee & Moser 2018). In some works, the very large computational costs have been
avoided, which led to the fact that the effect of the too-small box was visible to a certain
extent even in the mean flow profile (Lee & Moser 2018). Despite the fact that shear
flows are governed by the nonlinear Navier–Stokes equations, certain important aspects
of shear flows, such as the streamwise-elongated structures of the plane Couette flow, have
their roots in linear mechanisms. Linear analyses revealed that for plane Couette flow, the
structures that are most excitable are streamwise-constant. This observation has been made
for laminar plane Couette flow by Gustavsson (1981), Butler & Farrell (1992), Farrell &
Ioannou (1993), Trefethen et al. (1993) and Jovanović & Bamieh (2005), as well as for its
turbulent counterpart for which the linear analyses were performed about the mean flow
state (see e.g. del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010a,b).

Despite certain linear mechanisms, in turbulent flows, coherent structures can be
understood as being permanently forced via convective nonlinear interactions of the
fluctuations. Thus the idea was formed to analyse the flow behaviour as the response to
a nonlinear intrinsic forcing through a linearised operator, which led to the development
of the resolvent analysis. The idea stems from works of Trefethen et al. (1993), Farrell
& Ioannou (1993) and Jovanović & Bamieh (2005), where linear responses of flows
to external excitation were studied. The resolvent-based approach has gained sustained
interest due to the work of McKeon & Sharma (2010), where all nonlinear terms in the
Fourier-transformed Navier–Stokes equations for the perturbations are summarised as an
unknown intrinsic forcing, and key features of wall-bounded turbulent flows (Moarref et al.
2013; Sharma & McKeon 2013) have been reproduced with it. These are in particular the
reproduction of properties, such as a self-similar distribution of energy for small scales
near the wall to a large-scale velocity distribution, two-point correlations in medium and
high Reynolds number boundary layers (McKeon & Sharma 2010), and the necessity of
a logarithmic turbulent mean velocity for geometrically self-similar resolvent modes in
turbulent channel flows (Moarref et al. 2013), to name only a few. The resolvent analysis
approach has been used for opposition control, considering flow control techniques that
employ linear control strategies, as investigated in Luhar, Sharma & McKeon (2014) for
a pipe flow and e.g. for analysing the effect of riblets in turbulent channel flows as done
in Chavarin & Luhar (2020). The resolvent analysis identifies the forcing modes, which
are the most responsive and the most receptive response modes of a dynamical system,
in an input–output formulation, based on its governing equations (Herrmann et al. 2021).
The response of the plane Couette flow for low Reynolds numbers has been investigated
in Hwang & Cossu (2010a). A component-wise analysis uncovering several amplification
mechanisms for subcritical transition and investigating the roles of Tollmien–Schlichting

968 A23-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.574


Reynolds number induced roll growth in a plane Couette flow

waves, oblique waves, and streamwise vortices and streaks using an input–output system
analysis can be found in Jovanović & Bamieh (2005). Using an input–output analysis
for harmonic forcing, Hwang & Cossu (2010b) show once again that the most amplified
structures in the plane Couette flow are largely invariant in streamwise direction, while
flows with streamwise wavenumbers significantly smaller than the spanwise wavenumber
behave very similarly to streamwise independent flows. Illingworth (2020) investigated
the amplification mechanism for the coherent structures in a streamwise independent
plane Couette flow, which is to a great extent encoded in the Orr–Sommerfeld operator
alone, independent of the Squire operator. When investigating the resolvent modes using a
turbulent mean velocity profile, it has been shown in Symon, Illingworth & Marusic (2021)
that the energy transferred from streamwise-constant streaks can be predicted satisfactorily
by implementing a Cess eddy viscosity profile for channel flows. The resolvent analysis
approach can also be used by employing external forces, as may be seen in Vadarevu et al.
(2019), where coherent structures containing long streamwise velocity streaks flanked by
quasi-streamwise vortices and hairpin vortices evolved from an impulsive body force in a
turbulent channel flow. A link from the resolvent analysis to the linear stability theory
highlighting the types of amplification mechanisms was emphasised by Symon et al.
(2018), where the resolvent norm was split into a resonance part and a non-normal part,
thus leading to a deeper understanding of pseudo-resonance phenomena.

The present work aims to understand the apparent length dependence of the Couette
roll-cells on the Reynolds number, and thus intends to investigate linear amplification
mechanisms in plane Couette flow while focusing on small streamwise wavenumbers α →
0 and simultaneously high Reynolds numbers Re → ∞ with the distinguished limit

Reα = lim
Re→∞
α→0

Re α = O(1). (1.1)

This leads to large-scale structures by making use of linear stability theory as well as
the operator-driven resolvent analysis approach inserting a laminar base velocity profile.
The influence of various parameters, such as the Reynolds number Re, the streamwise
and spanwise wavenumbers α and β, and especially Reα , is investigated for harmonic
forcing with ω ∈ R on the first singular value σ1 for the resolvent analysis and the most
critical eigenvalues ω1,i using linear stability theory in order to analyse the amplification
mechanism in the plane Couette flow and thus investigate the appearance of coherent
structures in it. The concept of Reα is studied for its role as a global and local invariant
in the fields of linear stability theory and resolvent analysis, respectively. The significance
of such invariants is emphasised in the pioneering work by Oberlack (2001), in which
Lie symmetries were utilised in the study of turbulence for the first time to derive
invariant solutions. These solutions, known as turbulent scaling laws, play a crucial role in
understanding the complex dynamics of turbulent flow.

In the present paper, first the governing equations for the plane Couette flow are derived
in § 2. In § 3, linear stability theory is applied on the plane Couette flow within the
distinguished asymptotic limit Re → ∞ and α → 0 with Reα = O(1), with the motivation
for this limit stemming from the results of § 4. The resulting eigenvalue problem, for which
a parameter reduction is obtained, is solved in § 3, where § 3 serves as a preparatory step
for the resolvent analysis approach in § 4. The resolvent analysis is then applied on the
plane Couette flow in § 4, where the singular values and the response modes are compared
to the most critical eigenvalue and the eigenfunctions from § 3. Finally, conclusions are
drawn in § 5.
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2. Dynamical description of the plane Couette flow system

In this section, the general equations of motion to be used in the subsequent analysis are
derived. For this, the Navier–Stokes equations are derived for the wall-normal velocity
fluctuation u′

2 and wall-normal vorticity fluctuation η′
2.

2.1. Governing equations
For the analysis to follow, the Navier–Stokes equations will be the basis, i.e.

∂ui

∂t
+ uj

∂ui

∂xj
+ ∂p

∂xi
= ν

∂2ui

∂x2
k

,
∂ui

∂xi
= 0, (2.1a,b)

where ui refers to the velocity in each spatial direction xi, with i = 1, 2, 3, p denotes
the pressure, and ν represents kinematic viscosity. A Reynolds decomposition for the
velocities is introduced:

u1 = U1(x2) + u′
1, u2 = u′

2, u3 = u′
3, p = p′, (2.2a–d)

with U1(x2) representing the base velocity for the plane Couette flow in the streamwise
direction, while u′

i and p′ respectively refer to the fluctuations of velocity and pressure.
Implementing the aforementioned Reynolds decomposition into the Navier–Stokes
equations (2.1a,b) and subtracting the momentum equations for the base flow from the
Navier–Stokes equations leads to the following system of equations for the fluctuations:

∂u′
1

∂t
+ U1(x2)

∂u′
1

∂x1
+ dU1(x2)

dx2
u′

2 + ∂p′

∂x1
− ν

∂2u′
1

∂x2
k

= f ′
1, (2.3a)

∂u′
2

∂t
+ U1(x2)

∂u′
2

∂x1
+ ∂p′

∂x2
− ν

∂2u′
2

∂x2
k

= f ′
2, (2.3b)

∂u′
3

∂t
+ U1(x2)

∂u′
3

∂x1
+ ∂p′

∂x3
− ν

∂2u′
3

∂x2
k

= f ′
3, (2.3c)

with all the nonlinearities being summarised as an intrinsic forcing term on the right-hand
side as

f ′
i = −u′

j
∂u′

i
∂xj

+ u′
j
∂u′

i
∂xj

. (2.4)

Further, the continuity equation for the fluctuations is given by

∂u′
i

∂xi
= 0. (2.5)

All velocity fluctuations vanish at both walls, i.e. at x2 = ±1, yielding conditions
in the form

(
u′

1 u′
2 u′

3
)T

(x1, x2 = ±1, x3) = 0, where all length scales have been
non-dimensionalised by the channel half-width h. In this work, the linear stability theory
is to be compared directly with the resolvent analysis, and for this the laminar base flow
forms the basis for both approaches.

Thus the velocity profile for the laminar plane Couette flow is used subsequently as
U1(x2) = Ax2, which allows an explicit derivation of the analytical solutions for the
eigenfunctions of the linear stability theory, where A represents an inverse time scale and
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Reynolds number induced roll growth in a plane Couette flow

at the same time defines the velocity at the wall, i.e. Uw = ±Ah. We have also analysed
a turbulent mean flow based on DNS data of a turbulent Couette flow, with the key
findings remaining qualitatively identical to those obtained from the laminar base flow,
albeit exhibiting only a quantitative rescaling in the magnitudes. Consequently, in order
to utilise explicit analytical solutions for the eigenfunctions of the linear stability theory,
we decided to focus on the laminar base velocity. Non-dimensionalising with A and h, the
Reynolds number may be defined as

Re = Ah2

ν
. (2.6)

Thus the system (2.3a)–(2.3c) can be rewritten such that the viscosity ν can be replaced
by 1/Re, and the laminar base flow reads U1(x2) = x2.

2.2. Wall-normal formulation
In the following, the basic equations (2.3) are rewritten in a wall-normal velocity–vorticity
formulation. We obtain the wall-normal form of the Navier–Stokes equations for the
fluctuations by taking the Laplacian of (2.3b) as well as the divergence of (2.3), and by
taking the curl of (2.3a) and (2.3c), where we have also employed the wall-normal vorticity
η′

2 = ∂u′
1/∂x3 − ∂u′

3/∂x1. With this, the Navier–Stokes equations for the fluctuations u′
2

and η′
2 read

∂

∂t
	u′

2 + x2
∂

∂x1
	u′

2 − 1
Re

	2u′
2 = − ∂2f ′

1
∂x1 ∂x2

− ∂2f ′
2

∂x2
1

+ ∂2f ′
2

∂x2
3

− ∂2f ′
3

∂x2 ∂x3
(2.7)

and
∂η′

2
∂t

+ ∂u′
2

∂x3
+ x2

∂η′
2

∂x1
− 1

Re
	η′

2 = ∂f ′
1

∂x3
− ∂f ′

3
∂x1

. (2.8)

Solid wall boundary conditions for the wall-normal formulation are Dirichlet boundary
conditions for u′

2 and η′
2 as well as the Neumann boundary condition for u′

2, that is,(
u′

2 ∂u′
2/∂x2 η′

2
)T

(x1, x2 = ±1, x3) = 0. For the further analysis below, we employ
a Fourier decomposition in the streamwise and spanwise directions as well as in time to
obtain

u′
i = ũ′

i(x2) exp(i(αx1 + βx3 − ωt)), (2.9)

η′
2 = η̃′

2(x2) exp(i(αx1 + βx3 − ωt)), (2.10)

with α ∈ R and β ∈ R being the streamwise and spanwise wavenumbers, while
ω ∈ C represents the frequency of the fluctuations, which leads to the wall-normal
velocity–vorticity formulation of the Navier–Stokes equations for the fluctuations:

−iω

(
(α2 + β2)ũ′

2 − d2ũ′
2

dx2
2

)
+ iαx2

(
(α2 + β2)ũ′

2 − d2ũ′
2

dx2
2

)

− 1
Re

(
d4ũ′

2

dx4
2

− 2(α2 + β2)
dũ′

2

dx2
2

+ (α2 + β2)2ũ′
2

)

= −iα
df̃ ′

1
dx2

+ (α2 − β2)f̃ ′
2 − iβ

df̃ ′
3

dx2
, (2.11)
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− iωη̃′
2 + iαx2η̃

′
2 + iβũ′

2 − 1
Re

(
d2η′

2

dx2
2

− (α2 + β2)η̃′
2

)
= iβ f̃ ′

1 − iαf̃ ′
3, (2.12)

with the continuity equation

iαũ′
1 + dũ′

2
dx2

+ iβũ′
3 = 0, (2.13)

where f̃i = (−u′
j(∂u′

i/∂xj))k denotes the Fourier transformed nonlinear forcing term

corresponding to the generalised wavenumber vector k = (
α β ω

)T. All velocity
fluctuations ũ′

i are generated from the wall-normal fluctuations ũ′
2 and η̃′

2 using the
continuity equation (2.13), since ũ′

2 and η̃′
2 are considered as known quantities. Introducing

k =
√

α2 + β2, the velocity fluctuations ũ′
i are then given by

⎛⎜⎝ũ′
1

ũ′
2

ũ′
3

⎞⎟⎠ = C

(
ũ′

2

η̃′
2

)
, with C = 1

k2

⎛⎜⎜⎜⎜⎜⎝
iα

d
dx2

−iβ

k2 0

iβ
d

dx2
iα

⎞⎟⎟⎟⎟⎟⎠ . (2.14)

2.3. Distinguished asymptotic analysis
The present focus is on large-scale streamwise coherent structures, which are observed to
occur for high Reynolds number plane Couette flow, which admits very weak streamwise
variation as may e.g. be taken from Hwang & Cossu (2010b). Hence we intend to
analyse the asymptotic limits of α → 0 and Re → ∞, which are the key parameters to
observe coherent channel-wide structures. Yalcin, Turkac & Oberlack (2021) studied this
coupled limiting case for an asymptotic suction boundary layer in great detail, where the
actual analysis was based on the Orr–Sommerfeld equation and led to a rather generic
result. They concluded that separate limiting procedures were of little value, whereas the
distinguished limit (DL)

Reα = lim
Re→∞
α→0

Re α = O(1) (2.15)

led to a self-consistent asymptotic, and a global minimum for Reα could be calculated.
The analysis can be extended for the present case. For this purpose, the corresponding
expansion (2.15) is inserted into (2.11)–(2.12), and all terms of order O(αn) with n > 1
have been neglected in the subsequent equations.

3. Linear stability theory

In this section, we want to investigate plane Couette flow within the DL using linear
stability theory, where the interest in this limit was further motivated from the results
shown in figure 4 in § 4, where only structures for this limit are sustainably amplified. This
section is meant to be understood as a preparatory step for the resolvent analysis approach
in § 4.
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Reynolds number induced roll growth in a plane Couette flow

3.1. Orr–Sommerfeld and Squire equations
The Orr–Sommerfeld and Squire equations are obtained by applying the expansion (2.15)
and setting the right-hand sides of (2.11) and (2.12) to 0 due to considering only small
fluctuations ũ′

2 and η̃′
2 of order O(ε) with ε � 1, leading to negligible nonlinearities

f̃ ′
i of order O(ε2). Furthermore, we observe that terms of order ω/α prevail, hence a

low-frequency assumption is implied, as in Yalcin et al. (2021):

ω = ω1α + O(α2), (3.1)

resulting in the leading-order versions of the Orr–Sommerfeld and Squire equations given
as

−iω1 Reα

(
β2ũ′

2 − d2ũ′
2

dx2
2

)
+ i Reα x2

(
β2ũ′

2 − d2ũ′
2

dx2
2

)
+ d4ũ′

2

dx4
2

− 2β2 d2ũ′
2

dx2
2

+ β4ũ′
2 = 0

(3.2)
and

−iω1 Reα η̃′
2 + i Reα x2η̃

′
2 + iβ

Reα

α
ũ′

2 − d2η̃′
2

dx2
2

+ β2η̃′
2 = 0. (3.3)

The reduced Orr–Sommerfeld equation (3.2) is dependent only on the newly introduced
variable Reα due to the low-frequency assumption, whereas the Squire equation (3.3) still
contains α. Thus the wall-normal velocity fluctuation ũ′

2 has to be of order O(α) compared
to the wall-normal vorticity fluctuation η̃′

2 so that all the terms are of the same order. This
is also supported by the observation of Schmid & Henningson (2001), that in particular,
the wall-normal vorticity in an Orr–Sommerfeld mode is typically orders of magnitude
larger than the wall-normal velocity. Thus we set ũ2 = αũ2,α , where α is used to rescale
ũ2. By this assumption, α formally vanishes in the Squire equation (3.3) as well, leading
to the modified Orr–Sommerfeld and Squire equations

−iω1 Reα

(
β2ũ′

2,α − d2ũ′
2,α

dx2
2

)
+ i Reα x2

(
β2ũ′

2,α − d2ũ′
2,α

dx2
2

)

+d4ũ′
2,α

dx4
2

− 2β2 d2ũ′
2,α

dx2
2

+ β4ũ′
2,α = 0 (3.4)

and

−iω1 Reα η̃′
2 + i Reα x2η̃

′
2 + iβ Reα ũ′

2,α − d2η̃′
2

dx2
2

+ β2η̃′
2 = 0, (3.5)

where a parameter reduction in both (3.4) and (3.5) using Reα is obtained. Thus in the
linear stability theory, Reα affects the system of the plane Couette flow globally within
the DL of Re → ∞ and α → 0, where it can be seen that invariant solutions can be found
independent of both Re and α as long as the product Reα within the DL remains the same.
This supports the observation in DNS studies of growing streamwise lengths with the
Reynolds number (Lee & Moser 2018) for invariant structures as α has to decrease for an
increasing Re for Reα to remain constant.
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3.2. Derivation of an eigenvalue problem
The solution for the rescaled wall-normal velocity fluctuation ũ′

2,α is obtained analytically
from the modified Orr–Sommerfeld equation (3.4) in terms of integrals of Airy functions
Ai(z) and Bi(z) using Maple 2020 as

ũ′
2,α = C1 eβx2 + C2 eβx2

∫ x2

−1
e−2βx2 dx2

+ C3

(
eβx2

2β
E1(Reα, β, ω1, x2) − e−βx2

2β
E2(Reα, β, ω1, x2)

)
+ C4

(
eβx2

2β
E3(Reα, β, ω1, x2) − e−βx2

2β
E4(Reα, β, ω1, x2)

)
, (3.6)

with

Ej(Reα, β, ω1, x2) =
∫ x2

−1
e(−1) jβx2 Ai

(
(−i)1/3 Re−2/3

α

(
Reα (ω1 − x2) + iβ2

))
dx2,

(3.7a)
for j = 1, 2, and

El(Reα, β, ω1, x2) =
∫ x2

−1
e(−1)lβx2 Bi

(
(−i)1/3 Re−2/3

α

(
Reα (ω1 − x2) + iβ2

))
dx2,

(3.7b)
for l = 3, 4.

The Dirichlet and Neumann boundary conditions for the rescaled wall-normal velocity
fluctuation

(
ũ′

2,α ∂ ũ′
2,α/∂x2

)T
(x1, x2 = ±1, x3) = 0 may be written in homogeneous

matrix form as
A(Reα, β, ω1) · C = 0, (3.8)

where the solution for the wall-normal eigenfunction ũ2,α in (3.6) as well for its derivative
∂ ũ2,α/∂x2 (see Appendix A) is used with C = (

C1 C2 C3 C4
)T. The elements of the

matrix A represent the respective coefficients for the Dirichlet and Neumann boundary
conditions and are to be taken from Appendix A as well. For a non-trivial solution to exist,
the determinant of A(Reα, β, ω1) has to vanish, yielding the dispersion relation

det(A(Reα, β, ω1)) = A14A33 − A13A34 = 0. (3.9)

For a good initial guess for the eigenvalues, a Chebyshev collocation point based method
is applied to (3.4), for which the package by Schmid & Henningson (2001) was modified
for the problem at hand in order to solve for the eigenvalues ω1 numerically. The sole
employment of the spectral collocation method based on the Chebyshev polynomials is
not enough to acquire physical spectra due to the existence of spurious modes. Thus in
order to eliminate these spurious modes and to increase the accuracy of higher modes in
the spectra, all eigenvalues obtained numerically were subsequently refined iteratively by
evaluating the complex nonlinear dispersion relation (3.9), in which the eigenvalues ω1
occur nonlinearly due to the nature of the entries A13, A14, A33, A34, which can be seen
in Appendix A even though one must note that the original modified Orr–Sommerfeld
equation (3.4) used for the derivation of the dispersion relation (3.9) is linear in both
the eigenvalues ω1 and rescaled eigenfunctions u′

2,α . The eigenvalues obtained by the
Chebyshev collocation method were employed as starting points in a nonlinear root finder
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Figure 1. The most critical eigenvalue obtained numerically, ω1,i: (a) over β for Reα = 1, 1.5, 5; and (b) over
Reα for β = 1, 1.5, 2.

with Maple 2020. The iteration was halted when the residual of the eigenvalue problem
(3.9) reached a threshold of O(10−60).

The most critical eigenvalue obtained numerically, ω1,i = Imag(ω1), is shown over β

for Reα = 1, 1.5, 5 in figure 1(a), and over Reα for β = 1, 1.5, 2 in figure 1(b). It can be
seen that for e.g. Reα = 1, the most critical eigenvalue obtained numerically, ω1,i, over β

reaches its maximum for βmax = 1.2. For larger values of Reα , the most critical eigenvalue
obtained numerically, ω1,i, converges towards the neutral stability boundary at ω1,i = 0.
To analyse the coherent structures obtained from the linear stability theory, it is necessary
to solve for the wall-normal eigenfunctions ũ′

2,α and η̃′
2 first. To solve for the wall-normal

vorticity fluctuation η̃′
2 analytically using Maple 2020, the modified Squire equation (3.5)

can be used, resulting in

η̃′
2 = C5 Ai (Z(x2)) + C6 Bi (Z(x2)) + iπ Reα β

(−i Reα)1/3

[
Ai (Z(x2))

∫ 1

−1
Bi (Z(x2)) ũ′

2,α dx2

− Bi (Z(x2))

∫ 1

−1
Ai (Z(x2)) ũ′

2,α dx2

]
, (3.10)

with Z(x2) = (−i)1/3 Re−2/3
α (Reα (ω1 − x2) + iβ2). The calculation for the constants Ci

within the analytical solutions for both ũ′
2,α in (3.6) and η̃′

2 in (3.10) using the boundary

conditions
(
ũ′

2 ∂ ũ′
2/∂x2 η̃′

2
)T

(x1, x2 = ±1, x3) = 0 is shown in Appendix A. The
streamwise and spanwise velocity fluctuations ũ′

1 and ũ′
3 can be obtained using the

continuity equation (2.14), resulting in

ũ′
1 = − i

β
η̃′

2, (3.11a)

ũ′
3 = i

β
αũ′

2,α + i
β

αη̃′
2. (3.11b)

Inserting (3.6) into ũ′
2 = αũ2,α , one can see that α acts as a magnitude amplifier in the

wall-normal velocity fluctuation ũ′
2, while its qualitative behaviour is dependent only
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Figure 2. The analytically obtained eigenfunctions ũ′
1, ũ′

2,α , ũ′
3,α for β = 2, Reα = 1, for the most critical

eigenvalue ω1 = −10.1590 i, over the wall-normal direction x2. Solid lines represent the real part of the
solution, with dotted lines representing the imaginary part of the eigenfunctions.

on Reα . From (3.10), it can be seen that the wall-normal vorticity fluctuation η̃′
2 depends

only on Reα in both its qualitative and quantitative behaviour. From (3.11a), one can see
that the streamwise velocity fluctuation ũ′

1 thus is also dependent only on Reα . Furthermore
in (3.11b), one can rewrite ũ′

3 = αũ′
3,α , with ũ′

3,α = (i/β)ũ′
2,α + (i/β)η̃′

2, thus α also acts
only as a magnitude amplifier for ũ′

3, while its qualitative behaviour is dependent only
on Reα . Figure 2 shows the analytically obtained eigenfunctions for ũ′

1, ũ2,α and ũ3,α for
Reα = 1 and β = 2. The most critical eigenvalue was solved for using (3.9), and was found
at ω1 = −10.1590 i.

3.3. Influence of Reα on the streamwise fluctuation structures
The streamwise fluctuations are shown over the spanwise direction x3 and wall-normal
direction x2 by plotting the real part of the product of the complex-valued streamwise
eigenfunction with the Fourier decomposition in spanwise direction with Re(ũ′

1(x2) eiβx3)

for β = 2, Reα = 1, ω1 = −10.1590 i (figure 3a), β = 2, Reα = 5, ω1 = −2.0507 i
(figure 3b), and β = 2, Reα = 10, ω1 = −1.0553 i (figure 3c). Here, the most critical
obtained eigenvalues for a given parameter combination (β, Reα) obtained from (3.9) were
used.

An increasing value of Reα causes a stronger inclination of the structures in the direction
of the propagating waves in the wall-normal and spanwise plane due to the Orr mechanism.
Since for α /= 0, the waves are no longer propagating in the streamwise direction alone,
an inclination can be observed within the wall-normal and spanwise directions due to the
Orr mechanism. A reflexion symmetry break for a sign change in β is observed in the
inclination direction of the structures.

Since the eigenvalues ω1 and the eigenfunctions in the streamwise direction are
dependent only on Reα , in order to obtain constant structures for growing Reynolds
numbers, the streamwise wavenumber has to decrease, agreeing with the observations
made in Lee & Moser (2018) about increasing length of the streamwise rolls with the
Reynolds number.
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Figure 3. Streamwise fluctuations over the spanwise direction x3 and wall-normal direction x2 for (a) β = 2,
Reα = 1, ω1 = −10.1590 i, (b) β = 2, Reα = 5, ω1 = −2.0507 i, and (c) β = 2, Reα = 10, ω1 = −1.0553 i.
Solid lines represent fluctuations with a positive sign, while dashed lines represent fluctuations with a negative
sign.

4. Resolvent analysis

In this section, we are applying the resolvent analysis in the DL used in § 3 on the
plane Couette flow in order to connect the linear stability theory with the resolvent
analysis, where we aim to compare the results of both approaches regarding the optimal
wavenumber combination for the coherent structures, the energy and the appearance
of these structures and the Reynolds-number-induced growth of these large-scale rolls
obtained from both approaches with each other. For this, it is necessary to rewrite (2.11)
and (2.12) in an input–output system by reformulating them into the matrix system

iωq̃′ = Lq̃′ + Bf̃ ′, (4.1)

with the output vector q̃′ =
(

ũ′
2

η̃′
2

)
and the input vector f̃ ′ = (

f̃ ′
1 f̃ ′

2 f̃ ′
3

)T. Here, L

represents the Orr–Sommerfeld and Squire operator, i.e.

L = M−1

⎛⎜⎜⎜⎝
−i Re αx2

(
d2

dx2
2

− k2

)
+ d4

dx4
2

− 2k2 d2

dx2
2

+ k4 0

−i Re β −i Re αx2 + d2

dx2
2

− k2

⎞⎟⎟⎟⎠ ,

(4.2)
where the mass matrix M reads

M =

⎛⎜⎝Re

(
d2

dx2
2

− k2

)
0

0 Re

⎞⎟⎠ , (4.3)
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and the matrix B is given as

B = M−1

⎛⎝−i Re α
d

dx2
−Re k2 −iβ Re

d
dx2

i Re β 0 −i Re α

⎞⎠ . (4.4)

In a final step, we may rewrite (4.1), by introducing the resolvent matrix H and making use
of the unit matrix I , as

q̃′ = (iωI − L)−1Bf̃ ′ = (iωI − L)−1f̃ ′
B = H f̃ ′

B. (4.5)

4.1. Singular value decomposition
The goal of the resolvent analysis is to identify the dominant directions along which
f̃ ′

B can be most amplified through the resolvent operator H to form the corresponding
responses in q̃′. By using a singular value decomposition on the resolvent operator H , one
can obtain the most amplified response and forcing modes for given wavenumbers α, β, ω

and Reynolds numbers Re. Response modes can be considered to represent the coherent
structures that occur in the plane Couette flow, where only the knowledge of the base
velocity profile U1(x2) = x2 has been employed. Applying a singular value decomposition
rewrites the resolvent matrix as H = USV T. In this formulation, S represents a diagonal
matrix with the singular values σn = √

λn in decreasing order on its diagonal, where λn

are the eigenvalues of HTH . Therefore, σ1 represents the maximum singular value on a
given set of parameters. The matrix V T contains the forcing modes Φj, while U contains
the respective response modes Ψj. Both sets of singular vectors are guaranteed to form an
orthonormal basis and are ranked according to their singular values. Thus the resolvent
operator can be rewritten as

H =
∞∑

j=1

ΨjσjΦj. (4.6)

In other words, the resolvent analysis interprets left and right singular vectors q̃′ and f̃ ′
B

of q̃′ = H f̃ ′
B, respectively, as response and forcing modes, with the magnitude-ranked

singular values σi representing the amplification for the corresponding forcing–response
pair. The first column of U contains the maximum response mode, which can be interpreted
as the most amplified output vector q̃′ = (

ũ′
2 η̃′

2
)T. Through this, the singular value

decomposition enables the observation of coherent structures, i.e. presently occurring in
plane Couette flow. The resolvent operator can be considered to be of lower rank if

p∑
j=1

σ 2
j ≈

∞∑
j=1

σ 2
j , (4.7)

where σp 	 σp+1, and the number of these singular values p is small. If the resolvent
operator is rank 1, hence σ1 	 σ2, then the response of the system can be well predicted
from the leading singular vectors alone.

4.2. Numerical methods and discretisation
The input–output system (4.5) is analysed numerically using Matlab code based on
an approach similar to that in Vadarevu et al. (2019), where it is discretised in the
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wall-normal direction x2 using a Chebyshev discretisation, whereas the differentiation
matrices are being built using the chebdif function by Weideman & Reddy (2000). The
dimension of the resolvent matrix H is 2(N − 2) × 2(N − 2), where N is the number of
the wall-normal collocation points. The Dirichlet boundary conditions for the wall-normal
velocity fluctuation ũ′

2 and the wall-normal vorticity fluctuation η̃′
2, and the Neumann

boundary condition for the wall-normal velocity fluctuation ũ′
2, are implemented according

to Weideman & Reddy (2000). The Matlab code of the present work applies the singular
value decomposition on the inverse of the resolvent operator H−1 = (−L − iωM) rather
than on the resolvent operator itself, H = (−L − iωM)−1, directly to avoid computing one
additional inversion. The correct singular values for H are then obtained by flipping the
reciprocals of the singular values of H−1. The resolvent operator is scaled to the kinetic
energy for wall-normal fluctuations as described in Schmid & Henningson (2001) as

Ev =
∫

α

∫
β

1
2k2

∫ 1

−1

(∣∣∣∣ ∂

∂x2
ũ′

2

∣∣∣∣2 + k2|ũ′
2|2 + |η̃′

2|2
)

dy dα dβ. (4.8)

For the results presented below, a total of N = 275 Chebyshev discretisation points have
been used.

4.3. System analysis
In this subsection, the results received from the obtained input–output system (4.5) using
the numerically implemented resolvent analysis are shown.

4.3.1. Investigation of the most energetic structures for various parameter combinations
In this work, we are particularly interested in the coherent structures within the plane
Couette flow, which can be observed as spanwise-periodic vortices occupying the whole
channel width, and their dependence on α and Re. In order for these spanwise-periodic
vortices to exist, the most amplified structures for the plane Couette flow have to admit
a spanwise wavenumber with βmax /= 0. Thus the energy of the system as a function of
β is being analysed in the form of the first singular value σ1 for the harmonic forcing
at the specific value ω = 0 for various combinations of α and Re. For each parameter
combination, the structure with the most energy will be preserved within the flow.
Therefore, we will search for βmax for which the largest value of σ1 is given. Before
focusing on the DL, we investigate the entire parameter range in order to further show
that this limit is of most interest. Here, we analyse the energy of the system for various α

over β in figure 4 for Re = 1, 102, 104, in order to cover small and large Reynolds numbers.
It is noticeable that for Re = 1, the system energy σ1 decreases with growing α, while

the spanwise wavenumber leading to the most energetic structures is given at βmax = 0.
Furthermore, we observe that the energy of the system is decreasing monotonically over β.

Conversely, when considering the opposite limiting case of large Reynolds numbers
with Re = 104, we find that the absolute energy exhibits a maximum at βmax /= 0,
representing spanwise-periodic coherent structures, where such a maximum can already
be found for Re = 102. However, for Re = 102, this maximum value for σ1 is only slightly
larger than for spanwise wavenumbers close to 0. For Re = 104 and α = 0, this maximum
spanwise wavenumber is located at βmax = 1.18, which confirms the value found in
Illingworth (2020). In the case of large Reynolds numbers, σ1 increases linearly with β

before reaching a maximum, and then eventually decreases as β increases further following
an inverse power law of β−2.
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Figure 4. Here, σ1 is plotted for ω = 0 and α = 0, 0.0001, 0.0005, 0.001, 0.01, 1, 2, 5 for Re = 100, 102, 104

over the spanwise wavenumber β.

From figure 4, it becomes clear that only in the limiting case of α → 0 and Re → ∞ are
structures amplified sustainably at βmax /= 0, similarly to how only streamwise elongated
structures with α < β are significantly amplified as seen in Hwang & Cossu (2010b),
where a Couette flow with low Reynolds numbers was investigated using the resolvent
analysis. In Jovanović & Bamieh (2005), the dominance of streamwise-elongated and
spanwise-periodic structures was also seen for the Poiseuille flow using the infinity norm
of the resolvent operator. Further detailed analyses investigating even more Reynolds
numbers – which, however will not be presented here – further solidify this finding. Hence
subsequently we essentially focus our studies on this parameter range. These results served
as motivation for introducing the aforementioned limit (2.15), which also motivated the
application of the linear stability theory on the problem at hand.

Subsequently, we investigate the influence of the parameter Reα , the spanwise
wavenumber β, and the harmonic forcing frequency ω ∈ R on the first singular value σ1
and thus on the energy of the system.

Since α and hence Re cannot be eliminated completely from the resolvent operator as
compared to the linear stability theory, we will now look at the influence of α and Re
separately within the DL. Here, we control Reα by changing Re for fixed values of α, and
by changing α for fixed values of Re separately, in a way that Reα = O(1). Even though
α and Re are not eliminated from the governing equations of the resolvent analysis, Reα

represents a key parameter in it, thus reinforcing the consideration of Reα = O(1) for the
resolvent analysis as well. Illingworth (2020) found that the amplification mechanism for
the coherent structures in plane Couette flow with streamwise invariance (α = 0) is to a
great extent encoded in the Orr–Sommerfeld operator alone, independent of the Squire
operator. The Orr–Sommerfeld equation in both the linear stability analysis (3.4) and the
resolvent analysis, which is represented by the first row of (4.2), respectively, is dependent
only on Reα . Only the Squire equation for the resolvent analysis, which is represented by
the second row of (4.2), still contains a term with Re standing alone as opposed to the
linear stability analysis (3.5). Therein, due to the rescaling of the wall-normal fluctuation,
an additional parameter reduction in the Squire equation was achieved. Since the DL
Re → ∞ and α → 0 for the extreme case of ever-decreasing α transitions to the case
that was considered in Illingworth (2020), the amplification mechanisms investigated in
this work are mostly described by the Orr–Sommerfeld operator alone as well, which is
dependent only on Re α = Reα , making Reα a key parameter in the resolvent analysis as
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Figure 5. Here, σ1 is plotted for β = 2 and Reα = 1, 1.5, 5 for (a) a fixed α = 0.0001, and (b) a fixed
Re = 104, over the harmonic forcing frequency ω.

well, even though α and Re are not eliminated completely from the governing equations of
the resolvent analysis.

4.3.2. Influence of ω and Reα on σ1
Figure 5 shows the behaviour of σ1 for β = 2 for Reα = 1, 1.5, 5 over the harmonic forcing
frequency ω. In figure 5(a), Reα grows with increasing Re, while a fixed α = 0.0001 was
chosen leading to a raising of the first singular value. In figure 5(b), a fixed Re = 104

was set, while α was increased in order to grow Reα , resulting in a decreasing first
singular value. In figures 5(a,b), it is visible that for the chosen wavenumber combination,
stationary forcing leads to the most amplified structures. Thus ω = 0 will be used for the
subsequent analyses.

4.3.3. Influence of β and Reα on σ1
The influence of β and Reα on σ1 for ω = 0 is now being investigated. For this purpose,
figure 6 shows the behaviour of σ1 over β for Reα = 1, 1.5, 5, where once again Reα was
increased over Re and a fixed α (figure 6a), and over α and a fixed Re (figure 6b). We
find that σ1 once again increases for a growing β before reaching a peak value, and then
declines over β as seen already in figure 4 for the case Re = 104. Furthermore, σ1 increases
with increasing Reα for a fixed α, while the position of its maximum spanwise βmax also
increases slightly. In figure 6(a), the Reynolds number was set to Re = 104, while α is
being changed. Increasing Reα in this way leads to a decreasing first singular value. For
Reα = 1, for example, the spanwise wavenumber for which the first singular value reaches
its maximum can be found at βmax = 1.18, which is very close to βmax = 1.2, where the
most critical eigenvalue for Reα = 1 was found for the linear stability theory.

4.3.4. Influence of Re and α within Reα on σ1
We will now investigate the influence of both α and Re within the DL on σ1. Figures 7(a,b)
show the first singular values for ω = 0, β = 2 and Re = 104, 105, 5 × 105 over α, and
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Figure 6. Here, σ1 is plotted for ω = 0 and Reα = 1, 1.5, 5 for (a) a fixed α = 0.0001, and (b) a fixed
Re = 104, over the spanwise wavenumber β.
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α = 0.001

α
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Figure 7. Here, σ1 is plotted for ω = 0, β = 2 and (a) Re = 104, 105, 5 × 105 over α, and
(b) α = 0.00001, 0.0001, 0.001 over Re.

α = 0.00001, 0.0001, 0.001 over Re, respectively. It can be seen that the first singular value
σ1 decreases monotonically over α. Then σ1 remains almost constant for small values of
α, before it starts to decrease significantly. It is noticeable that the value of Reα , before
the first singular value decreases significantly over α, remains approximately the same for
each Re = const. line with Reα ≈ 10, which is marked via the circles on each Re = const.
line. In figure 7(b), σ1 increases with Re2 over Re until a certain value of Reα is reached,
then the behaviour changes to a saturation curve. Once again, the value of this separation
point Reα ≈ 10 of the curves is the same for all the investigated values of α represented
via the circles on each α = const. line. Thus it can be seen that Reα plays a significant role
in the behaviour of the first singular value σ1 within the DL. In this investigated limit, Reα

acts as a local invariant of the resolvent analysis, since the behaviour of σ1 over both α

and Re is determined through Reα , and its trend over α or Re, respectively, is constant only
within a certain Reα range. Here, local invariant refers to a physical quantity that does not
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Figure 8. Share of the first 10 singular values of the resolvent operator over all singular values for ω = 0,
β = 2, Reα = 1, α = 0.0001.

change its value even though the parameters within the invariant change. The first singular
value σ1 changes its behaviour over α and Re, respectively, for the same invariant value
of the product Reα independent of Re or α individually within the DL. Local refers here
to the fact that invariance is observed only for the DL of α → 0 and Re → ∞, and not
outside of these limits.

4.3.5. Low-rank behaviour
Figure 8 shows the share of the first 10 singular values over all singular values for
ω = 0, β = 2, Reα = 1 with α = 0.0001. The share of each singular value decreases
over-exponentially with increasing modes. One can see that the first singular value σ1
makes up to 82 % of all singular values, thus a low-rank behaviour can be assumed with
σ1 	 σ2, allowing the coherent structures to be well estimated by using only the first
singular mode. These results resemble the results in Hwang & Cossu (2010b) for the
contribution of the leading Karhunen–Loève modes to the total variance for stochastic
forcing for the Couette flow at low Reynolds numbers, where an over-exponential decrease
of the share over the modes with a strong dominance of the first mode can be observed.

4.3.6. Forcing and response modes
Resolvent modes can be considered to describe the mode shapes that are most amplified
by the linear dynamics of the equations of motion. The forms of the resolvent modes
(response and forcing pairs) impart information about the properties of the resolvent
operator itself and the physical mechanisms giving rise to amplification.

In figure 9, the magnitudes of the forcing and the response modes are shown
logarithmically over the wall-normal direction for ω = 0, β = 2, Reα = 1 with
α = 0.0001, where the modes were normalised using the largest forcing and response
mode component, respectively. We observe that the energy within the forcing is given
mainly in the wall-normal and spanwise components, while the energy of the response
is mostly stored in the streamwise component. This agrees well with the results in both
Hwang & Cossu (2010a) for turbulent channel flows and Hwang & Cossu (2010b) for
Couette flow at low Reynolds numbers. Therein, the optimal output velocity fields have
a dominant streamwise component with dominant cross-stream components in the input.
Further, Jovanović & Bamieh (2005) observe a strong influence of the wall-normal and

968 A23-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

57
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.574


T. Dokoza and M. Oberlack

10–5
–1.0

–0.5

x2

0.5

1.0

0

–1.0

–0.5

0.5

1.0

0

10–510–10100 100

f̃ ′
1

f̃ ′
2

f̃ ′
3

ũ′
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Figure 9. (a) Forcing modes and (b) response modes, for each velocity fluctuation for ω = 0, β = 2,
Reα = 1, α = 0.0001 over the wall-normal direction x2.

spanwise forcing on the streamwise velocity component for the Poiseuille flow. It can be
seen that the spanwise and wall-normal forcing modes give rise to streamwise response
modes, indicating that the lift-up effect is dominant. The magnitudes of the wall-normal
and spanwise response modes are of order O(α) compared to the streamwise response
modes, thus streamwise streaks can be observed.

4.3.7. Influence of Reα on the streamwise fluctuation structures
Figure 10 shows the streamwise fluctuations over the the spanwise direction x3 and
wall-normal direction x2 by plotting the real part of the product of the complex-valued
first streamwise response mode with the Fourier decomposition in the spanwise direction
with Re(ũ′

1(x2) eiβx3) for a variation of α and a fixed Re in figures 10(a–c), and for various
Re and a fixed α in figures 10(d–f ), where the same Reα value is used for each pair of
figures 10(a,d), 10(b,e) and 10(c, f ). Similar to the structures from the linear stability in
figure 3, one can see that the structures become increasingly inclined for an increasing
value of Reα , while the effect of an increasing Re and a growing α on the inclination
angles of the structures is the same as long as the resulting product Reα = Re α is the
same, which can be seen by the fact that the inclination angles of the coherent structures
in figures 10(a,d), 10(b,e) and 10(c, f ), where each Reα is the same, are identical to two
decimal places. Thus Reα affects the inclination and appearance of these structures rather
than α or Re alone, further substantiating its role as a local invariant within the DL. Since
Re and α cannot be eliminated within the governing equations for the resolvent analysis,
in contrast to the governing equations of the linear stability analysis, Reα does not affect
the system globally, but only if both parameters Re and α meet the DL. In order to obtain
constant streamwise structures for increasing Reynolds numbers, the respective streamwise
wavenumber has to decrease, thus the structures grow in length for increasing Reynolds
numbers, agreeing with DNS studies (Lee & Moser 2018). The Orr mechanism once again
yields an inclination of the streamwise structures in the direction of the propagating waves,
as was seen in § 3. A reflexion symmetry break for a sign change in β is observed in the
inclination direction of the structures. In conclusion, applying the resolvent analysis on
the plane Couette flow within the DL, we were able to show that for constant streamwise
structures, the streamwise wavenumber has to decrease for increasing Reynolds numbers,
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Figure 10. Streamwise structures are shown over the spanwise direction x3 and wall-normal direction x2 for:
(a) ω = 0, β = 2, Reα = 1, α = 0.0001; (b) ω = 0, β = 2, Reα = 5, α = 0.0005; (c) ω = 0, β = 2, Reα = 10,
α = 0.001; (d) ω = 0, β = 2, Reα = 1, Re = 10 000; (e) ω = 0, β = 2, Reα = 5, Re = 50 000; and ( f ) ω = 0,
β = 2, Reα = 10, Re = 100 000. Solid lines represent fluctuations with a positive sign, while dashed lines
represent fluctuations with a negative sign.

thus enlarging the streamwise length of the rolls, as well as that the most energetic
structures are given for Re → ∞ and α → 0, further agreeing with the findings of Lee
& Moser (2018). Since the observation of an increasing length of the streamwise rolls
with the Reynolds number was made in both § 3 and § 4, using the linear stability and
the resolvent analysis respectively, this phenomenon is governed primarily by the modal
behaviour of the system, implying that the dominant modes identified by the linear stability
theory are also responsible for the amplification observed in the resolvent analysis. The
role of Reα as a local invariant for the resolvent analysis was shown by obtaining constant
streamwise structures for constant values Reα , and by obtaining constant dependencies of
σ1 on α and Re, respectively, only within a certain Reα range.

5. Conclusion

In this work, linear stability theory and resolvent analysis were used to investigate the
linear amplification mechanisms leading to coherent structures in laminar plane Couette
flow with emphasis on the distinguished asymptotic case with high Reynolds numbers
Re → ∞ and small streamwise wavenumbers α → 0, with Reα = Re α = O(1). First, the
latter distinguished limit (DL) was investigated using the linear stability theory, where a
parameter reduction could be obtained by deriving the modified Orr–Sommerfeld equation
(3.4) and Squire equation (3.5). The eigenvalues of the modified Orr–Sommerfeld equation
(3.4) could be obtained depending only on Reα instead of both Re and α, while analytical
expressions for the eigenfunctions could be obtained using both (3.4) and (3.5). In the
linear stability theory, α acts only as a magnitude amplifier for both the wall-normal and
the spanwise velocity fluctuation ũ′

2 and ũ′
3, while the streamwise velocity fluctuation

ũ′
1 depends only on Reα in the DL. Since the streamwise eigenfunctions are dependent

only on Reα , in order to obtain constant structures for increasing Reynolds numbers, the
streamwise wavenumber has to decrease, verifying the observations made in Lee & Moser
(2018) about the increasing length of the streamwise rolls with the Reynolds number.
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An increase of Reα leads to inclined structures within the wall-normal and spanwise plane.
Due to the parameter reduction of the eigenvalue problem in the linear stability theory,
Reα plays the role of a global parameter. The most energy of the fluctuations can be found
in the streamwise direction, whereas the amplitudes of the velocity fluctuations in the
wall-normal and spanwise directions are of the order of O(α) smaller compared to the
streamwise velocity fluctuations. Hence rescaled wall-normal and spanwise fluctuations
ũ′

2,α and ũ′
3,α were introduced. The resolvent analysis was applied on the plane Couette

flow as well, where through a singular value decomposition of the input–output system
(4.5), the most amplified structures and the energy of the system were analysed by
using knowledge of the laminar base velocity profile only. Only structures with high
Reynolds numbers Re and small streamwise wavenumbers α are amplified significantly,
leading to the most energetic structures given at a spanwise wavenumber βmax /= 0,
representing streamwise-elongated spanwise-periodic coherent channel-wide structures,
further showing the importance of the DL. The influence of the streamwise and spanwise
wavenumbers α and β, as well as the Reynolds number Re, on the first singular value
σ1, which represents the energy of the system, was investigated and compared to the
behaviour of the eigenvalues from the linear stability theory. The behaviour of the most
critical eigenvalues obtained numerically for Reα close to 1 over the spanwise wavenumber
β resembles the behaviour of the first singular value over the spanwise wavenumber β,
where for Reα = 1, a spanwise wavenumber βmax = 1.2 leading to a maximum eigenvalue
was found very close to βmax = 1.18, where the first singular value reaches its peak. It
could be seen that Reα plays a significant role in the behaviour of the first singular value
σ1, thus the energy of the structures within the distinguished asymptotic limit, where
the behaviour of σ1 over both α and Re is determined through Reα , and its trend over
α or Re, respectively, is constant only within a certain Reα range, thus acting as a local
invariant. The influence of Reα on the streamwise velocity fluctuation was investigated.
These structures are predominantly determined by Reα , where it could be seen that they
remain the same for a constant value of Reα . Thus for larger Reynolds numbers Re,
the streamwise wavenumber α has to decrease in order to lead to the same streamwise
structures, confirming the observation from DNS that elongated streamwise structures
increase in length with the Reynolds number. It could be seen that an increase of Reα leads
to stronger inclinations of the streamwise velocity fluctuation within the wall-normal and
spanwise plane. Using both the resolvent analysis and the linear stability theory for the
DL, the observation from DNS studies of increasing lengths of streamwise rolls in the
plane Couette flow was confirmed.
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Appendix A

For the final formulation of the dispersion relation (3.9), we used the first derivative of
the rescaled wall-normal velocity fluctuation ∂ ũ′

2,α/∂x2 using the analytical expression for
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ũ′
2,α given in (3.6), resulting in

∂ ũ′
2,α

∂x2
= C1β eβx2 + C2

(
e−βx2 + β eβx2

∫ x2

−1
e−2βx2 dx2

)
+ C3

(
eβx2

2
E1(Reα, β, ω1, x2) + e−βx2

2
E2(Reα, β, ω1, x2)

)
+ C4

(
eβx2

2
E3(Reα, β, ω1, x2) + e−βx2

2
E4(Reα, β, ω1, x2)

)
, (A1)

which yields the matrix A(Reα, β, ω1) in (3.8) as

A(Reα, β, ω1) =

⎛⎜⎝A11 A12 A13 A14
A21 0 0 0
A31 A32 A33 A34
A41 A42 0 0

⎞⎟⎠ , (A2)

with elements given by

A11 = eβ, (A3a)

A12 = e3β − e−β

2β
, (A3b)

A13 = eβ E1(Reα, β, ω1, 1) − e−β E2(Reα, β, ω1, 1)

2β
, (A3c)

A14 = eβ E3(Reα, β, ω1, 1) − e−β E4(Reα, β, ω1, 1)

2β
, (A3d)

A21 = e−β, (A3e)

A31 = βeβ, (A3f )

A32 = e3β + e−β

2
, (A3g)

A33 = eβ E1(Reα, β, ω1, 1) + e−β E2(Reα, β, ω1, 1)

2
, (A3h)

A34 = eβ E3(Reα, β, ω1, 1) + e−β E4(Reα, β, ω1, 1)

2
, (A3i)

A41 = βe−β, (A3j)

A42 = e−β. (A3k)

To solve for Ci in (3.6), the Dirichlet and Neumann boundary condition for the lower
wall at x2 = −1 is being implemented first, leading to

ũ′
2,α(x2 = −1) = C1 e−β = 0, (A4)

∂ ũ′
2,α

∂x2
(x2 = −1) = βC1 e−β + C2 eβ = 0, (A5)
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so that C1 = C2 = 0. The Dirichlet boundary condition for the upper wall at x2 = 1 then
enables us to express C3 in terms of C4:

C3 = e−β E4(Reα, β, ω1, 1) − eβ E3(Reα, β, ω1, 1)

eβ E1(Reα, β, ω1, 1) − e−β E2(Reα, β, ω1, 1)
C4. (A6)

The constant C4 can be omitted because of the linearity of the problem. In order to solve
for the constants C5 and C6 in (3.10), first the Dirichlet boundary condition for the lower
wall at x2 = −1 for η̃2

′ is implemented, resulting in an expression for C5 using C6 as

C5 = −Bi (Z(x2 = −1))

Ai (Z(x2 = −1))
C6 = −γ C6. (A7)

Finally, the boundary condition for the upper wall at x2 = 1 for η̃′
2 is being implemented

in order to solve for the last remaining constant C6, resulting in

C6 = − iπ Reα β

(−i Reα)1/3

[
κ Ai (Z(x2 = 1))

∫ 1

−1
Bi(Z(x2)) ũ′

2,α dx2

− κ Bi (Z(x2 = 1))

∫ 1

−1
Ai(Z(x2)) ũ′

2,α dx2

]
, (A8)

with 1/κ = −γ Bi(Z(x2 = 1)) + Ai(Z(x2 = 1)).
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