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INVERSE SCATTERING FOR THE MATRIX SCHRODINGER
OPERATOR AND SCHRODINGER OPERATOR ON GRAPHS
WITH GENERAL SELF-ADJOINT BOUNDARY CONDITIONS
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Abstract

Using a parameterisation of general self-adjoint boundary conditions in terms of Lagrange
planes we propose a scheme for factorising the matrix Schrodinger operator and hence con-
struct a Darboux transformation, an interesting feature of which is that the matrix potential
and boundary conditions are altered under the transformation. We present a solution of the
inverse problem in the case of general boundary conditions using a Marchenko equation
and discuss the specialisation to the case of a graph with trivial compact part, that is, with
diagonal matrix potential.

1. The matrix Schrodinger operator on the semi-axis

We consider here the matrix Schrodinger operator on the semi-axis, that is,

2 = -ft + Q(x)dx2

on L2(R+, C ) where R+ = [0, oo). The potential matrix Q(x) is assumed to be
hermitian, absolutely integrable with absolutely integrable first moment and contin-
uous on the open semi-axis [1]. The matrix Schrodinger operator, J2o, defined on
smooth functions vanishing at the origin and with compact support, is a symmetric
operator with deficiency indices (n, n). Using von Neumann extension theory [2]
we may parameterise all self-adjoint extensions of this operator by unitary mappings
between the deficiency subspaces, that is, U e U(n). For practical purposes, however,
it is more convenient to describe the self-adjoint extensions in terms of self-adjoint
boundary conditions at the origin.
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It is well known that the construction of self-adjoint extensions is analogous to
the description of Lagrange planes in a hermitian symplectic space [4]. In [4] these
Lagrange planes are parameterised in terms of two n x n matrices such that their
product is hermitian. Really, in the case of a hermitian symplectic space which admits
a canonical basis,1 the Lagrange Grassmannian is isomorphic to the unitary group
U(n) and we are able to explicitly parameterise the Lagrange planes, and hence self-
adjoint boundary conditions, in terms of a unitary matrix—for details see [3], In the
case of the matrix Schrodinger operator on the semi-axis the self-adjoint boundary
conditions at the origin are given by

3 = 0. (1)

Then the solution of the matrix Schrodinger equation .if 3 = A. 3 with boundary
values

o 2 * ° 2

satisfies these boundary conditions. Using the Jost solutions, F±, solutions of the
homogeneous equation j£f F± = A,F±, with asymptotic behaviour

lim F±(x, k) ~ e±ikxl k = Vx.

and no prescribed behaviour at the origin, can be written as

3(x, k) = F_(x, k)M_{k) + F+(x, k)M+(k). (3)

We define the scattering wave solution

*Cx, k) = 3(x, k)MZl = F_ + F+S(k),

where S(k) is known as the scattering matrix. The coefficients M± can be evaluated
by taking the Wronskian of 3 and F+ or F_ [3]

M± = ± ^ I ±B ~ ±,*A\ ' (4)

where F±(&) = F±(0, k) are known as the Jost functions and + is the involution
Y^x, k) = Y*(x, k). The Wronskian of Sf and 3

W{E\ 3} = [ 3 f 3 , - 3}3]|0 = A*B - B'A = 0,

'By our definition, a hermitian symplectic space for a symmetric operator with non-equal deficiency
indices does not admit a canonical basis or Lagrange planes [3].
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is always zero. Moreover, if we write 3 in terms of the scattering wave solutions

W{E\ 3} = M^W{Ff_ + S*Fl, F_ + F+S}M_

= likMl [-D + Sf5] M_ = 0

we see, since S+ = 5* for k e K, that the scattering matrix is unitary for real k.
If we diagonalise U, and use the well known asymptotics of the Jost functions [1,3]

in the above expression for Ms

adjoint operator Jf, with assosciastessd unitary matrix U
defining the boundary conditions ofS£, the scattering matrix of Jf has the asymptotics

Urn S(k) ~ U
k-+OQ

where U is a unitary hermitian matrix U = U* derived from U by applying the map

i l : z e T \ { - l } ,
l - l : z = - l

to the spectrum of U.

Here T is the unit circle in C. The matrix U, since it is hermitian, defines projections

p E I ( 0 + #), PL = ^-U),

which may be used to define a factorisation of the original operator .£?.

THEOREM 1.2. Given the self-adjoint operator .£? we can formally factorise it as

where

and the functions in the domain of D satisfy the following boundary conditions at the
origin:

Furthermore, V is a hermitian matrix which satisfies the Riccati equation with the
potential Q(x) on the right-hand side and has initial value satisfying

P V|o = -PH (5)

where H is a bounded hermitian matrix specified by the boundary conditions of S£.
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PROOF. The fact that V(x) satisfies the Riccati equation is well known. We diago-
nalise the matrix U. Suppose that / of the eigenvalues of U are — 1, then we choose
the first / elements of the basis used in the diagonalisation to be the eigenvectors with
eigenvalue — 1. In this basis the boundary conditions of S£ can be written

where ifr is the boundary value (under the change of basis) and <p is the (n — I) x (n — /)
diagonal matrix with entries which are the eigenvalues of U excluding the eigenvalues
— 1. This means that we can write the boundary conditions for jSf as

where H is the hermitian matrix depending on the original boundary conditions.
Consider the operator D*D. From D we get the boundary condition

and from D* we get the boundary condition

which is

So we see that as long as the initial value of V satisfies (5), D*D has the required
boundary conditions.

It is well known that the Riccati equation can be linearised to the Schrodinger
equation at zero energy; let us denote by 3 0 these zero-energy solutions. Then it is
natural to ask how we can express the coefficient V(x) in terms of So. The following
theorem is proved in [3], we merely quote it here.

THEOREM 1.3. The hermitian matrix V can be written V(x) = So,x0c)3o1(jt)
where 30(x) is the matrix of solutions of the Schrodinger equation at zero energy
satisfying the boundary values of (2) specified by the unitary matrix Uo and subject
to:

(1) The matrix Uo satisfies

PU0=PU. (7)

(2) The potential Q(x) is continuous in some neighbourhood containing the origin.
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The inverse problem for the matrix Schrodinger operator on the semi-axis with
Dirichlet boundary conditions (that is, vanishing of the functions at the origin) is
described in Agranovich and Marchenko [1]. In [3] the author extends Agranovich
and Marchenko's result to arbitrary self-adjoint boundary conditions at the origin; the
inverse problem may be reduced to a Marchenko equation2

/»0O

G(x+y) + K(x,y) + K(x,t)G(t + y)dt = O, x<y, (8)
Jx

where

G(t) = J" C}e-K" + -L / (S(k) - U)eikt dk.

Here A.; = — K] are the discrete eigenvalues and the C( are non-negative hermitian
matrices known as the normalisation matrices. The set [S(k); /Q, C/, / = 1 , . . . , N]
is known as the scattering data. As this is a lengthy derivation we will not repeat it
here. If we are able to solve (8) for the kernel of the transformation operator K(x, y)
we can recover the potential matrix from the well known identity [1]

dx ~v/

We can also recover the self-adjoint boundary conditions at the origin from the inverse
problem via

which follows from the definition of the scattering wave solution plus (2). Conse-
quently, the solution of the inverse problem allows us to recover not only the potential
but also the self-adjoint boundary conditions at the origin.

2. The Schrodinger operator on the graph with trivial compact part

The motivation for studying the matrix Schrodinger operator is that, in the case
of diagonal potential, it may be identified with the Schrodinger operator on the non-
compact graph with trivial compact part—here we mean the graph consisting of n
semi-infinite rays with the origin of each ray identified with the single vertex of the
graph. Although these are really two different operators, for the purposes of the
inverse problem they may be identified: each component of the vector fuction on
which the matrix Schrodinger operator acts is identified with the value of the function
on one of the rays of the graph.

2It is also possible to reformulate it as a Riemann-Hilbert problem [3].

https://doi.org/10.1017/S1446181100008014 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008014


166 M. S. Harmer [6]

In this case the self-adjoint boundary conditions at the origin play a crucial role; for
instance if we have Neumann or Dirichlet3 boundary conditions there is no interaction
between the rays and the graph decomposes into n semi-axes for which the solution of
the inverse problem is well known. The self-adjoint boundary conditions at the origin
describe the interaction between the rays and they may also be thought of as inducing
a 'zero-range' potential at the origin [3], It is for these reasons that we consider the
matrix problem with general boundary conditions above.

For the problem on the graph—the diagonal matrix potential—the matrix of Jost
solutions is clearly a diagonal matrix and so too is the kernel K(x, y). As a result
the Marchenko equation (8) has along the diagonal n scalar, independent (in the
sense that each diagonal entry of K(x, y) appears only once) Marchenko equations.
Consequently, the inverse problem on the graph decouples to n scalar inverse problems
which can always be solved using only the n diagonal entries of the scattering data4 .
Using this scattering data we can recover the potential on the rays plus the self-adjoint
boundary conditions/zero-range potential at the origin.

If the self-adoint boundary conditions at the origin are specified it may be possible
to recover the potential on the rays using a smaller set of scattering data. For Dirichlet
or Neumann boundary conditions there is no interaction between the rays and we need
all n elements of the scattering data in order to recover the potential. On the other
hand, if there is an even number of rays n = 2m and we have boundary conditions
at the origin so that the graph decomposes into m copies of the whole real axis it is
well known that we can recover the potential using only m reflection coefficients and
normalisation constants [5].

Let us consider flux-conserved boundary conditions which are defined by continuity
at the origin

(9)

plus conservation of flux. These are self-adjoint and we provide a brief proof that in
this case we need only n — 1 of the diagonal elements of the scattering data in order
to recover the potential (for details see [3]). We are able to show that the dispersion
function is equal to [3]

= M(k) = —f+,,f+i2 • • -f- T *i
n

3 Agranovich and Marchenko [1] consider the inverse problem for the matrix operator on the semi-axis,
however, they only consider Dirichlet boundary conditions which are not interesting in the case of
diagonal potential.
4Actually, from (8) we need the diagonal entries of S(k) and Cf.
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where f±i, denotes the Jost function for the i-th ray of the graph and f'+ (.(it) =
limx_>0 df+i(x, k)/dx. The scattering matrix has entries [3]

c /i\ 2i"ki+jf+2 • • -f+,n f_,,

Suppose we are given the first n — 1 diagonal entries of the scattering matrix for real
k, the reflection coefficients, Rj (k) = 5;7 (it), plus the discrete eigenvalues k, = IK,
and the first n — 1 diagonal entries of the squares of the normalisation matrices,
denoted btj, for each eigenvalue. Since the Marchenko equation degenerates into n
independent scalar equations on the rays we can use this data to recover the potential
and Jost solutions on the first n — 1 rays. Equation (10) implies

5</= I"*'+ K l r 1 - for'*j-
Consequently, we have enough information to recover the (n — 1) x (n — 1) minor of
the scattering matrix formed by deleting the last column and row. Since S(k) is unitary
for k € K we can recover the magnitudes of the remaining entries of the scattering
matrix. Let us consider any entry in the last column not on the diagonal

As we have the Jost functions for i = 1 , . . . , n — 1 we can solve this for the magnitude
of the dispersion function on the real axis. Now M(k) is analytic in the upper half-
plane [3], has known magnitude on the real axis and known zeroes—the discrete
eigenvalues—and so we can recover M(k) in the upper half-plane. To do this we
consider the 'normalised' dispersion function

M(k) = M(k)-
in(k + i

Here i/c/ are the zeroes and m( the orders of the zeroes of M(Jk). In [3] we describe in
detail how, using the £/,,, to find the orders wi/ and also show there that, subject to the
absence of vitual levels, M(k) is bounded and non-zero on the closed real axis with
asymptotic

lim M(k) = 1.
l*l—oo

Furthermore, by definition M(k) is analytic in the upper half-plane with no zeroes
there. By a simple application of the Cauchy integral formula and the Plemelje formula
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(see [5] for a similar calculation in the scalar case)

argM(*) = T|ln/n(/t + O + y V l n "
1 f

= - In i\
_, *"

•dk'

where we take the principal value of the integral. Consequently we recover M(k).
From M(k) we can use (10) to recover Sin for i ^ n. We now have enough information
to recover the potential on the last ray: from the scattering matrix we can find f+,n and
from M(k) we can find f'+ n. These two functions are enough to recover the potential
on the ray as they provide the scattering data for the Schrodinger operator on the
semi-axis [1] (with Dinchlet boundary conditions in the cited text).

3. Acknowledgements

The author would like to thank Prof. B. S. Pavlov for his advice and many useful
conversations.

References

[1] Z. S. Agranovich and V. A. Marchenko, The Inverse Problem of Scattering Theory (Gordon and
Breach, New York, 1963).

[2] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space (Frederick Ungar
Publishing, New York, 1966).

[3] M. S. Harmer, "The matrix Schrodinger operator and Schrodinger operator on graphs", Ph. D.
Thesis, University of Auckland, 2000.

[4] V. Kostrykin and R. Schrader, "Kirchhoff's rule for quantum wires", / Phys. A 32 (1999) 595-630.
[5] S. P. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov, Theory ofSolitons: The Inverse

Scattering Method (Consultants Bureau, New York, 1984).

https://doi.org/10.1017/S1446181100008014 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100008014

