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FACTORIZATION OF TRIANGULAR OPERATORS AND IDEALS
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We give a necessary and sufficient condition to determine when an operator in the nest algebra of doubly
infinite block upper triangular operators factors through a diagonal projection. An example shows that this
condition does not extend to more general nest algebras, but a similar criterion yields a description of the
ideals of nest algebras generated by diagonal projections.

1991 Mathematics subject classification: 47D25.

1. Introduction

Let "HJji e Z) be a sequence of infinite-dimensional Hilbert spaces, and let
H := £•{«„ : n e Z}. Write En := P(Hn), Pn := P(- - • © Hn_, © Hm) where P(S) is the
orthogonal projection onto the subspace S of H. Let M be the nest in H consisting of
the projections Pn together with 0 and /.

The nest algebra, AlgTV, is the set of doubly infinite block operator matrices. Let
D = 5Z®Dn be a block diagonal projection, and dn — rankDn. Since the projections Pn

are invariant for Alg./V, and the intervals Pn - Pm are semi-invariant, it follows that
any operator X which factors as ADB for A, B e AlgA/" will satisfy:

rank(Pn - Pm)X(Pn - Pm) < rank(Pn - PJD = £ dt

for all n>m. The main technical result of this paper, Theorem 2.6, shows that the
converse also holds.

Our main application of this result is to describe the ideals in any nest algebra which
are generated by diagonal projections (Theorem 3.1).

We were led to these results through an attempt to classify the ideals of continuous
nest algebras. Ideals of nest algebras have been studied throughout the life of the
subject, and in recent years, some very detailed information has been obtained about
the ideals of continuous nest algebras. In particular, the family of maximal ideals [6]
and the family of automorphism-invariant ideals [7] have both been classified.

•Both authors were partially supported by NSF grant DMS-9204811.
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228 JOHN LINDSAY ORR AND DAVID R. PITTS

The hope was (and still is) that the lattice of automorphism invariant ideals would
provide a framework around which the whole lattice of ideals could be built up. We
still believe this program is feasible, but the road appears more rocky than we
anticipated.

The main obstacle is our inability to answer the following question: Let A be the
conditional expectation of Alg A/" onto its diagonal. Does A(X) belong to the ideal
generated by X for all X e AlgVV? If so, then the results of this paper, which show
how to describe the ideal generated by A(X) would be immensely useful in understand-
ing the general ideals of AlgAA, and, probably, other nest algebras.

The obstacle described here is, moreover, one which has recently arisen in a number
of questions on nest algebras (see the fuller discussion in [3, 6]). A positive answer to
this question would significantly deepen our understanding of nest algebras.

2. Factorization through diagonal projections

Definition 2.1. Let J\f be the nest described above and let {dt : i e Z} be a sequence
of non-negative integers. We say that an operator X is subordinate to the sequence
{dt :ieZ} i f

rank(Pn - PJX(PH - Pm) < J^ d> f o r

Suppose that D is a diagonal projection with rank £,£> = d( for all i. We observed
above that every operator in AlgTV which factors through D must be subordinate to
{dj}. In this section we shall prove the converse. To do this, we need to factor an
operator which is subordinate to {d,} through another operator A which satisfies
rank/4£, < dt for all i. This is accomplished in Theorem 2.4, using the following
lemma.

Lemma 2.2. Let {</,} be a sequence of non-negative integers indexed by Z. Suppose
that X e Alg J\f is subordinate to {d,} and the projection onto Ker X commutes with J\f.

Then, for any fixed N e N, X may be factored as X' U, where X' and U are operators
in Alg Af satisfying:

(1) U is a partial isometry whose initial space is the cokernel of X and whose final
space is the cokernel of X';

(2) X' is subordinate to {dt} and the projection onto Ker X' commutes with A/7
(3) rankX'Ejv < dN.

Proof. The idea of the proof is to "shunt" part of the column operator X\HN into
HN_X. The trick is to do it in such a way that exactly the right part is left behind. To
this end, we first construct the subspace S on which the part, X\s, which will be left
behind by the "shunting" will live.

For each reZ, let
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FACTORIZATION OF TRIANGULAR OPERATORS AND IDEALS 229

C, := {x : PfXENx e RanP^XPN_,}.

Since our primary interest is in Cf, it is useful to observe that Cf may be viewed as
the largest part of the cokernel of PrXEN which P,XEN sends to a subspace
independent of the range of (P^_, - Pr)X(PN_t - Pr).

Observe that {Cr: r e Z} is a chain of subspaces. For if x e C, then PfXENx =
PfXPN_ty for some y. Multiplying on the left by Pf+i shows that x also belongs to
Cr+I.

Notice that C^ = (0) if r > N and that dim C^_, < dN since

Cw_, = larPfi^XEs = ker(Pw - PN.t)X(PN - PN_{).

Thus there are two cases. Either there is an r < N such that

dim Cf < dN < dim Cf_t

or else the sequence of dimensions, {dimC^}reZ, is bounded by dN, in which case Cf
is finally constant as r -> — oo. We shall deal with these two cases separately.

Case (i) In this case, we may choose S to be a subspace of dimension exactly dN,
with

Cr
x
0 e s c C x _ ,

for some value of r0 < N.
Since the projection onto Ker X commutes with TV, the cokernel of X is the direct

sum of spaces Dn c Hn. Clearly all the C^'s lie in DN, so S c DN. Let UN be a partial
isometry which maps DN 8 S and DN_t into HN_U and set

U:=UN + P(S)+

Thus U "shunts" part of DN into HN_{ and acts as the identity on S and all of the
Dn's with n / N — 1, N. So (/ e AlgA/\ and the initial space of U is the cokernel of
X.

Define X':— XU*. To show that X' has the required properties, we first note that
the cokernel of X' is the final space of U, by construction, and that X = X'U. Next,
X' € AlgTV since RanX'Pn = RanXPn for all n # N - 1 and

Ran X'PN_t c Ran X(PN_t + P{DN Q S))

It remains to show that X' is also subordinate to {d,). The compression of X' to
Pn — Pm has the same rank as the compression of X to this projection unless one of m
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230 JOHN LINDSAY ORR AND DAVID R. PITTS

or n is equal to N — 1. When m = N — 1 then the compression of X' to Pn — PN_t equals
the compression of X(P(S) + P^) to Pn - PN_t and all is well.

Suppose then that n = N - 1 and consider the first case when m>r0.
Then the range of the compression (PN_t — P^)X'{PN_X — Pm) is

Ran P^XPN_, + Ran PiX(EN - P(S)).

But

Ran PiX{EN - P(S)) c Ran PiXP(Cro) c Ran Pi*Pw_,

by the definition of the sets Cr, and so the rank of the compression of X' is dominated
by the rank of the compression of X.

The final case, when m < r0, is the most subtle. We claim that

.-PJJTCiV, - P J
- rank (PN - Pm)X(PN - Pm) - rank PiXP(S)
<(dm+l+--- + dN)-dimS

as desired. Since S c C^_, c C^ and P^X does not map (non-zero) vectors in C^
into Ran P^XPN_t, it follows that, in particular, P^X is one to one on S and
rank P^,XP(S) — dim S = dN. The equality claimed in line (1) will follow from the
equation

Ran(PN - Pm)X(PN - Pm) - RanPJiX'/V, + Ran P^

once we observe that the spaces Ran P^ATP(S) and Ran P^X'PN_X are independent.
Indeed, if P^Xx e Ran P^X'PN_y for some xe S then P^Xx = PiX{y + z) for
some y = PN_ty and zeHNQS. But thus P^_,X(x - z) e Ran P^-iArPw_1 and so
x — z e Cro_, c SL. But since z is also in Sx and x e S , this means that x — 0 and we
are done.

Case (ii) As r decreases, the spaces C^ increase. Since the dimensions of these
spaces are bounded, they finally stabilize to a subspace S. Define U and X' in the same
way as above, but with this different choice of S. The argument from the first case is
still adequate to show that X = X'U, and that X' and U belong to AlgA/". The only
part of the earlier argument which needs further scrutiny is the claim that X' is still
subordinate to {dt}. Once again, when we consider the compression to (Pn — Pm), the
only interesting case is when n = N — 1. But then if we simply set r0 := m, we can use
the fact that this time Sx is necessarily contained in Cro, to argue exactly as we did in
the case when m > r0 above. •

Remark 2.3. Notice from the construction in the proof that U commutes with all
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FACTORIZATION OF TRIANGULAR OPERATORS AND IDEALS 231

the Pn's except for ?„_,. By the same token, X'P^ = XPf, and X'PN_2 = XPN_2.

Theorem 2.4. Let {dn} be a sequence of non-negative integers indexed by Z and
suppose that X e AlgW is subordinate to {dn}. Then X factors as AB in MgM, where
rank/4£n < djor all n e Z and \\A\\ \\B\\ = \\X\\.

Proof. We first factor X as X0V where V e AlgA/" is a partial isometry and
Xo e AlgAf satisfies the hypotheses of Lemma 2.2. The important thing is to ensure
that the projection onto the cokernel of Xo commutes with Af, while Xo stays
subordinate to {d^. This can be done using the inner-outer factorization of operators
in nest algebras [1], but for completeness we present here a slightly less stringent
factorization which is sufficient for our purposes. Let Q be the projection onto the
cokernel of X and let V be a partial isometry mapping the range of

Pn A Q ~ Pi+l A Q

into the range of Pn+, - Pn for each n and set Xo := XV*.
Clearly V is in AlgW and, since

PtXQ = PtX = P±XP±

it follows that the ranges of both P^ and Q contain the cokernel of P^X. Thus
P^X = PiX(P$ A Q) and so

Thus XV also belongs to AlgW, X — (XV*)V and the projection onto the cokernel
of X V* commutes with M.

Next we need to show that XV is subordinate to {d,}. Since both XV and V are
in AlgjV,

(P. - PJX(Pn - Pm) = (P. - P J ( * n K ( P . " Pm)
= (Pn-Pm)XV(Pn-Pm)VPn.

The compression condition for XV then follows, because it turns out that the ranges
of (P. - Pm)XV(Pn - Pm)VPn and (Pn - Pm)XV(Pn - Pm) are the same.

To see this, we need only show that the ranges of V(Pn - Pm)VPn and V(Pn - Pm)
are the same. But V(Pn - Pm)V — P^, A Q - P^ A Q and so the range of this projection
is disjoint from the range of P^; hence Pn is one to one on the range of F*(Pn — Pm)V.
It follows that

kerPnV\Pn - Pm)V = ker V(Pn - Pm)V
= ker (Pn-Pm)V
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232 JOHN LINDSAY ORR AND DAVID R. PITTS

and, taking adjoints, the closed ranges of K*(Pn - Pm)VPn and V*(Pn - Pm) are the same.
The ranges of these operators are closed (they are products of operators which take
closed sets to closed sets) so their ranges are equal.

Now that we have X factored as X0V, we apply Lemma 2.2 repeatedly to Xo. First
use the lemma to factor Xo = XQ0U00 where rank X00E0 < d0. Next, factor Xoo as
XUUU where rank AT, ,£, < dx and then get Xl0 by factoring X}, = X]0Ul0 with rank
Xl0E0 < d0, and X{ _, by then factoring Xi0 — X, _,(/,_, with rank A", _,£_, < d_,.

Proceed inductively in this way, obtaining Xn „ by rolling over from the last level
and factoring ATn_, _(n_0 = XnnUnn with rank XnnEn < dn. Then obtain Xnk by stepping
down columns, from the nth to the —nth; factoring Xnk_x as XnkUnk subject to rank
XakEk < dk at each stage.

The payoff from this is that, in view of the remark following the proof of Lemma
2.2, rank Xn t£, < dt for k < i < n.

Now let E := PK — P_K be fixed. We claim that the range of EXnkE always increases
as we move through the Xnks in the order in which they were defined. For, applying
Lemma 2.2 to the feth column, YEk, of an operator Y does not change the range of the
compression to E for any k ^ K + I, — K + l, since the right hand factor of Y (i.e.
the partial isometry) commutes with E. If we apply Lemma 2.2 to the (K + l)st
column, the range of EY'E (the left hand factor of Y) might be greater than Ran EYE,
since part of YEK+l may have been "shunted" into Y'EK, but it cannot be smaller. By
the same token, the range of Y'E might be smaller than the range of YE when the
lemma is applied to the — K + 1st column. But, since Y' e AlgTV, the part of YE_K+I

which is "shunted" into Y'E_K must map into P_K. Thus, in fact, the ranges of EYE
and EY'E are the same in this case.

So, as we run through the successive factorizations which give rise to Xnk, the ranges
KnnEXnkE stay constant except for a possible increase each time k moves from
K + 2 to K + 1 (and, exactly once, when we roll over from XK _K to XK+l K+1).

Also, of course, since Xnk remains subordinate to {d,} through all of these
factorizations, rank EXnkE is bounded above by Yl!^K^I- Thus the range of EXnkE is
finally constant. Moreover, the projection onto the cokernel of Xnk commutes with M,
so we can modify Xnk and Unk by multiplying by a diagonal unitary to suppose in
addition that the cokernels of EXnkE are finally constant. Now, write Yn for Xn_„ and
Wn for the product

[/„._„ c/n,_n+1 •••{/„[/,._, uuouuu0fi.

and bear in mind that Xo — YnWn.
We have seen that EYnE is a bounded sequence of operators with fixed finite

dimensional range and cokernel. Thus it has a norm-convergent subsequence.
Throughout this discussion E was fixed, but by a diagonal argument we can pick a
subsequence Y<0 so that EY^ converges for each interval E = PK — P_K. Further,
passing to a subnet, we may suppose that W<0 and Y ô converge weakly, say to X' and
W. Then for any fixed E = PK- P_K,
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EX'WE = (EX'E)(EW'E)
= norm-lim (EY^E) weak-lim (EW<0E)

= EX0E.

If we now let E increase to the identity, we see that XQ = X'W. Moreover, for each
k, rank Xn(!)Ek < dk eventually, so rank X'Ek < dk. Thus X = X'{W'V) is the desired
factorization. •

Remark 2.5. Because W is only the weak limit of partial isometries we can only
conclude from this argument that it is a contraction. We expect a factorization by a
partial isometry is possible, but we do not have a proof.

A nest is called discrete if it has no limit points other than, possibly, 0 or /. Discrete
nests are ordered as one of

Z U {-oo, +oo}, N U {+oo}, - N U {-oo}, or a finite set.

Theorem 2.6. Let A4 be a discrete nest acting on a Hilbert space 7i and let P be a
projection in the diagonal of AlgM. Then X e Alg.M factors as X = APE in MgM if
and only if

rank(N - M)X(N - M) < rank(N - M)P

for all N > M in M.

Proof. First, suppose that the compressions of P to the atoms of M are all finite
dimensional.

It is straightforward to construct a Hilbert space K.~2H together with a nest
M = {Pn : n e Z} U {0, /} on K, such that the projection Q of K onto H commutes with
M,M — QN, and the atoms of TV are all infinite rank. Let < = rank(Pn - Pn.,)P,
which is a sequence of non-negative integers.

Clearly X is subordinate to {dn} along N, so by Theorem 2.4 there are A, B in
AlgTV factoring X, and with

Let V be a partial isometry which commutes with M and which maps the cokernel of
each column A{Pn - Pn_,) to a subspace of (Pn - Pn.,)P. Then

X = (QAV')P(VBQ)

is a factorization in Alg.M.
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234 JOHN LINDSAY ORR AND DAVID R. PITTS

In the general case, some compressions of P to atoms of M may be infinite
dimensional. Let Px be the join of all those atoms of M which meet P in infinite rank
projections. Decompose I — Px as the sum of its maximal subintervals £, = M, — N,
(indexed in no particular order), which are necessarily pairwise orthogonal. Given
X e Alg.M which satisfies the compression conditions, our first job is to factor
* » := X - £,. E,XE, through PM.

For each i, unless M, = /, M, has an immediate successor, Mj1" and (Af,+ — Mt)P has
infinite rank. Take V to be a partial isometry which maps each interval M|*" — N, (for
M, ^ I) into a subspace of (Mj1" — Mt)P of infinite codimension, and which maps each
atom E for which EP has infinite rank into a subspace of EP of infinite codimension.
Notice that V* e Alg.M. We likewise construct a partial isometry W € AlgjM which
maps the intervals (Af, — N~) into N, — NJ (where N~ is the immediate predecessor
which every TV, ^ 0 has) and likewise maps each atom E for which EP has infinite rank
into a subspace of EP having infinite codimension. In addition, arrange that the ranges
of V and W are mutually orthogonal.

Then, if there is an M, = /, write N for the corresponding AT,, otherwise take
N = I. It follows that V*V = N and WW > N \ Thus we have

xM = K*(KNXJ + ( ^ i . r i i y = (7* + jv±jf0O»r)(KAr̂ eo + wo

which factors Xx through P^. The fact that X^M, - iV.AT̂ M, ensures that VNXM

and N^X^W* belong to AlgA4.
Next, we factor Xf := £ £ , X £ , through Pf :— I — PM. To do this, simply apply the

argument from the first two paragraphs of this proof to Xf in the nest algebra
/̂ •(Alg M)Pf = Alg PfM to get Xf = AP{B. To conclude the proof, observe that we
have factored Xx as A'P^B', so that

X = Xx + Xf = A'P^tf + APfB = (A'PM + APf)P(PxB + P7B) •

Unfortunately, Theorem 2.6 does not hold for more general nests. In the next
example, we exhibit a nest M and a diagonal projection P for which there is an
operator X e Alg M which satisfies

rank (N - M)X(N - M) < rank (N - M)P

for all N > M in M, but which does not factor through P.

Example 2.7. Let M be an atomic nest with order type co + co* and infinite rank
atoms. That is to say M consists of a projection M together with two chains Mn and
Nn(n e N) of projections where Mn increases from 0 to M and Nn decreases from / to
M. Let P be a diagonal projection with

rank P(Mn+l - M.) = rankP(Nn - Nn+1) = 1
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for all n. Then clearly any operator of the form X = P + Xo with Xo e MB{yi)ML will
satisfy the rank condition of Theorem 2.6 in comparison with P. Yet we claim that
an operator of this form only factors through P if PLX0P

L = 0.
For, writing P, := PM and P2 := PM^, then X factors through P in Alg.M if and

only if

/P , XO\_(AU An\(P, 0\(Bu Bi2\
\0 P2) \ 0 A22)\0 P2)\0 B22J

AUP]BU AuPtBl2 + A]2P2B
0 A22P2B22

for suitable operators in AlgTV. But thus rank(Mn+1 - Mn)AuPtBu(Mn+l — Mn) —
rank(Mn+, — MJP, = 1. Since (Mn+, — Mn) is a semi-invariant projection, this means
that (Mn+, — Mn)P,Bn(Mn+, — Mn) is non-zero for all n and so RanP|B,, is dense in
Ran P,. Thus

Rany4MP,B|2 c Ran/luP, = Ran^nPiB,, = RanP,.

By the same token, the cokernel of AnP2B22 is contained in Ran P2) and so

which yields P^XP^ = 0.

3. Ideals generated by diagonal projections

Although the factorization result of Theorem 2.4 does not hold for general nests,
we can use it to describe the algebraic (not necessarily norm-closed) ideal generated by
an arbitrary diagonal projection in any nest algebra.

Theorem 3.1. Let M be a nest and let P be a projection in the diagonal of AlgAf.
Then the set of operators X in Alg M for which there is a constant Ksuch that

rank(N - M)X(N - M) < K rank(N - M)P

for all N > M in M coincides with the algebraic ideal generated by P.

Proof. For each J V e ^ let U(N) be the join of all M > N in Af such that
(M - N)P has finite rank. Similarly, L(N) is the meet of all M < N such that
(N - M)P has finite rank. The distinct non-zero intervals of the form U(N) - L(N) are
pairwise orthogonal, so we can enumerate them as £,.

Let JP denote the algebraic ideal generated by P. Given X e Alg .A/" which satisfies
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the rank condition, we first show that £ , EiXEi e %p- Let n be a positive integer
greater than K and let Q be a rank-one projection in Mn(C). Fix i and let
Xi := £,X£( <g> Q, P, := P£f <8» /„ and let Aft := EtM <g> /„.

It is easy to see that the compression condition for X implies that each Xt satisfies
the compression condition of Theorem 2.6 with respect to P, in AlgA/",. However, since
Mi need not be a discrete nest, we cannot apply Theorem 2.6 directly in AlgTV/j.

To deal with this, let C, be the central cover of P, in the diagonal of Alg.A/",. Then
C, is a sum of atoms of Nt and the set of end points of these atoms is ordered as a
subset of the integers. Let £, be the nest consisting of the endpoints of these atoms,
together with the endpoints of £„ so that £, is a discrete subnest of Mt. Then X,
satisfies the conditions of Theorem 2.6 to factor through P, in Alg£, and

X, = A,P,B, = {A^PiiQB,)

Since C, is a sum of atoms of Afu both At = /1,C, and B, = Cfii belong to
AlgAf, = (£, AlgAT £,) ® Mn(C).

Pick partial isometries Vj(\ <j<ri) in Mn(C) with pairwise orthogonal ranges and
V;Vt = Q. Then

Thus £,*£, can be expressed as the sum ^"=1 A^PE^^, where A{j, Btj e Alg£,7V and
Mull. HBull ^ H^lll/2- Regarding Au and BfJ as operators in AlgV, set S, := E ~ , i4w

and 7J :— Y°lt Bu and note that

It remains to show that X2 := X - £ fijA'E, belongs to the ideal generated by P. We
shall need the following result, which is a simple rephrasing of Proposition 4.3 of [7].

Proposition 3.2. Let Nc be a continuous nest and £, a sequence of pairwise orthogonal
intervals of Nc. Suppose that T e AlgA^. satisfies ||£7E|| > 1 whenever E is an interval
of Mc which is not dominated by any Et. Then every operator Y e AlgTV,. with

EiYEi=0 for alii

factors through T.

Now let Maa := M ® I, where / is the identity on an infinite dimensional Hilbert
space, /C, let Q be a rank-one projection on K., and Po := P<8> Q. Since all the atoms of
//„, are infinite rank, we can find a continuous nest Afc containing Afx.
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If we can find A and B in AlgA/"M so that T := AP0B belongs to AlgfSc and satisfies:

||£7E|| > 1 for any interval £ of Nc which is not dominated by any £, <g> /,

then by the last proposition, X2 <8> Q factors through T in A\gAfc c AlgA/^, and so

X2 <g> Q = (/ ® Q)A'A(P <S> Q)BB'(I ® Q),

which gives a factorization of X2 in Alg N.
To accomplish this, let F{ be an enumeration of the atoms of A/̂ ,. If F(P0 is infinite

rank, then let B, be an isometry of Ft into FjP0, and let At — B*. If FtP0 is non-zero but
finite rank, just choose Ait Bt to be any partial isometries on Ff such that AjFjPgBi is
norm 1 and belongs to A\gAfc. Let A := Pc + £ , At and B :=/>,. + £ f B , , where
Pc := / - J2i Ft is t n e projection onto the continuous part of Afm. Then T :—AP0B
satisfies ||£7E|| = 1 when E is any interval of TV̂  for which EP0 ̂  0.

Now suppose E is an interval of Afc which is not dominated by any £, <g> /. We can
decompose £ as a sum £' + E" + £'" of intervals of Mc, where £' and £'" are dominated
by atoms of Mx, and £" is itself an interval of M^. If no £, <8> / dominates £" then
E"P0 / 0 so ||£7E|| = 1. On the other hand, if a certain Eh <g>/ > £" then, by the
construction of the £,'s, no other £, <8> / can dominate either £' or £'" (provided they
are non-zero). Since E^ ® / does not dominate £, it cannot dominate both of £' and
£'"; so say it does not dominate £'. Then in fact no £, (g> / dominates £' and so likewise
no £j (g> / dominates the atom f" of A/^ which contains £'. This tells us that F'P0 has
infinite rank and so £7E = EF' = £' ^ 0 and so £7E is norm 1. •

Corollary 3.3. Let M be a nest and let E be an idempotent in AlgTV. Then the set
of operators X in AlgAffor which there is a constant Ksuch that

rank(iV - M)X(N - M) < K rank(iV - M)E(N - M)

for all N > M in M coincides with the algebraic ideal generated by E.

Proof. Suppose that £ is an idempotent in Alg TV. Letting S be the positive square
root of (£*£ + (/ - £)*(/ - £)), we find that SES'1 is a self-adjoint projection in
AlgSAf where SAf := {[SN] :NeAf). The proof of Lemma 2.1 of [5] shows that for
any operator Y e Alg N,

rank([SN] - [SM])SYS~\[SN] - [SM]) = rank (AT - M)Y(N - M).

This equality shows that S conjugates the set of operators satisfying the conditions of
this corollary onto the set of operator satisfying the conditions of Theorem 3.1 for
SES'1. Since this latter set is the algebraic ideal generated by SES~l, the result
follows. •
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Corollary 3.4. Let P1,...,Pn be projections in the nest algebra AlgW. Then the
algebraic ideal generated by the P, is the set of operators X 6 AlgAf with the property
that there is a K such that for all intervals E if M,

rank EXE < K max rank EPfi
i

Proof. The ideal generated by the P, is generated by P, v • • • v Pn, and

rank £(P, v • • • v Pn)E < max EPfi •

Theorem 3.1 provides a little information about the norm closed ideal generated by
a general diagonal operator. If D is in the diagonal of AlgW, we can express \D\ as the
spectral integral J^°xdEx. The closed ideal generated by D is the same as the closed
ideal generated by the spectral projections [Ex : x > 0}. Clearly

{X G AlgjV : 3K, x > 0 such that V intervals E, rank£X£ < K rank££x}

is dense in the ideal generated by D. This is not a very effective description unless
one can tell whether a particular operator lies in the closure of this set.

Unfortunately, we are unable to describe the norm closed ideals generated by
projections any more satisfactorily than to characterize them as the norm closures of the
sets of operators described in Theorem 3.1. It sometimes happens, though, that the
algebraic ideal generated by a particular projection (which we can describe) turns out to
be weakly closed. This happens whenever the projection is a finite sum of intervals of
the nest and in many other cases too. (To give another example, if AlgTV is the algebra
of all infinite upper triangular matrices with respect to a fixed basis, and P is the
projection onto the even numbered basis elements then the ideal generated by P consists
of all matrices whose even numbered diagonal positions are zero. This is clearly weakly
closed.) A weakly closed ideal generated by a projection has the following particularly
nice description which is an easy consequence of Corollary 1.7 of [4]:

{X eAlgAf: £,X£, = 0 for all i)

where £, is a sequence of pairwise orthogonal intervals of TV. Moreover, if the ideal
generated by a projection is even norm closed, it is automatically weakly closed, as the
next result shows.

Theorem 3.5. Let P be a projection in the nest algebra AlgTV. The algebraic ideal
generated by P in AlgTV is norm closed if and only if it is weakly closed.

Proof. Suppose that the algebraic ideal, X, generated by P is norm-closed and let
X be a fixed operator in the weak closure of I. The aim is to construct an operator Y
as a norm-convergent sum of operators in J , with the property that
rank EXE < 2rank£Y£ for all intervals E of M. Then, since Y belongs to 1 and so
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satisfies the criterion of Theorem 3.1, the same is true of X. We shall make use of
the weak operator topology lower semicontinuity of the map A*-* rank A, together
with the fact that

max{rank.4 + B, rank/1 — B) > \ max{rank/4, rankB}

which is a straightforward consequence of the subadditivity of A >-> rank A.
Nests on separable Hilbert spaces are separable in the weak operator topology, so

we can find a countable set of intervals with the property that every interval of M is the
limit of an increasing sequence from this set. Enumerate these intervals as {£, : i e N}
in such a way that each individual interval is listed infinitely many times. By the weak
lower semicontinuity of the rank, we can pick contractions Xn e 1 such that

Y F - 1 r a n k £-.*£„. if rank EnXEn is finite;
" " ~ { n, if rank EnXEn is infinite.

Next, we shall inductively choose a sequence {ak} of positive numbers and
ek e {—1, 1} to force convergence in norm of ^,kekakXk. Start with a, = e, = 1. Then,
with ak, Ek chosen for k= I, ...,n— 1, find a 0 < 8n < 1 such that

n-l n-1

rank(Z + £._, ^ekakXk £._,) > rank(£n_, £E^kXk £„_,)
k=\ k=\

for all operators Z with \\Z\\ < dn. (This is possible since the weak lower semicontinuity
of the rank tells us that rank(X + Z) > rank A for all sufficiently small Z.) Set

and then pick en e {—1,1} so that

rank (£„ ^ akekXkEn) > \ rank EnXnEn.
k=\

Notice that J2T=nan < $n f°r a^ "> a n d so» m particular, Y := J^Jl, ekakXk belongs to
I.

Let £„ be fixed. Since || YZn+l ^akXk\\ < 5n+}.

k=\

rank £„ ^ etatAT4 £„ > rank £n J ^ ê ÂTfc £„

> imin{n, rank£BAT£n}.
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Since each individual interval £„ appears in the sequence infinitely many times, in fact
rank£ny£n > ^rank£nX£n. Finally, if £ is an interval of M, let £„ increase to E. Then
rank£ny£n and rank EnXEn increase to rank£y£ and rank£X£ respectively, so we
are done. •

In the final example of the paper, we show how the norm closed ideal generated by
certain diagonal operators can be related in a moderately satisfactory way to another
natural object in the algebra.

Example 3.6. Let H be a Hilbert space. For vectors x,y e H , let xy* denote the
rank-one operator z i-> (z, y)x. Suppose {e,}~, is an orthonormal basis for H, let
£, = c,e*, set Pn :— £ " £, and let A/" be the nest contained in B(H) whose elements
consist of 0, the identity, and the projections Pn. It is well known that the weak closure
of the span of the elementary tensors, (AlgAT)®B(H), is a nest algebra. (The invariant
projections are Pn <g> /.) Let (AlgAO ® fC(H) be the norm-closed span of the elementary
tensors. Viewing (AlgA/)®B(H) and (AlgAO ® IC(H) as upper-triangular matricies with
operator entries, one might expect that (Alg A/") ® /C(W) is an ideal in
However, it is not. Indeed, let

00

Q := I ® £, and T :=

It is readily seen that Q e (AlgAO ®1C(H) and T e (AlgAO ® B(H). Since the
algebraic tensor product of Alg M with the finite rank operators is norm-dense in
(AlgAO ® K-(H), we find that T <? (AlgAO ® £• But T = TQ; hence (AlgAO ® K-CH) is
not an ideal.

The following proposition shows that the closed ideal generated by Q and the closed
ideal generated by Alg A/"® K. are the same. In fact, slightly more is true.

Proposition 3.7. Let X be the closed ideal of (AlgA/)®B(H) generated by (AlgAO®
fC(H) and let K e B(H) be a non-zero compact operator. If JK is the closed ideal of
(AlgAfj®B(H) generated by I ® K, then X = JK.

Proof. We first show that the ideals J := JEl and X coincide. Clearly J c X. To
obtain the reverse inclusion, note that for any finite rank operator F e B(7i) and any
A G Alg A/", A ® F satisfies the hypotheses of Theorem 3.1, and so an application of that
theorem shows /I ® F e J. Taking the closure of the span of such operators, we
conclude that (AlgAO ® WH) C J. Hence X = J.

Now let K be an arbitrary non-zero compact operator. Again, it is clear that
J ^ c l . Choose an operator S so that KS = Et. Then / ® £, = (/ ® K)(I <g> S), so
/ ® £, 6 JK and hence X = JEl c JK. Q
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