
Geometrical Theory of the Hyperbolic Functions.
By W. L. THOMSON, M.A.

FIGURE 1.

1. If PQRS be an Hyperbola, O£, OF its asymptotes,
P, Q, R, S any points on it such that the sectorial area OPQ =
sectorial area ORS; and if PA, QB, RO, SD be ordinates to one
asymptote and parallel to the other, it is known that

OA:OB = 00 :OD, and PA:QB = RC:SD (1).

Hence if A, B, C . . . be taken so that OA, OB, OC . . . are in
continued proportion, the areas OPQ, OQR, ORS . . . are all equal,
and since the number of points can be made as large as we please,
the sum of the sectorial areas can be made as large as we please.
.•. The area between an asymptote, the curve, and any radius
vector is infinite.

FIGURE 2.

2. Let P be any point on a rectangular hyperbola whose
asymptotes are OE, OF and axis OA. Draw PM perpendicular to
OA meeting OE in p, PB perpendicular to OE, P// parallel to OA
and AD -perpendicular to OE.

Then o9M = 45° = Bp'P .-. Bp=BP = Bp'.

From siurlar triangles

OE+BP OA O B - B P OA
OM " O D ( J ) d PM ~OD ( t J ) j

OB + BP OM . . , O B - B P PM / r v

. = ^ 5 (4) and —Qir- = m (5).

Hence if Q be any other point on the curve, QC, QN perpendicular
to asymptote and axis,

OC-CQ QN
( 7 )OA ~OD ( b ) Md OA " O D (7

Multiplying (4) and (6)

OB.OC + BP.CQ + OC.BP + OB.CQ OM.ON
= ODa
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but OA' = 2OD2;
CQ = 20M.0N.

Similarly from (5) and (7)
OB.OC + BP.CQ-OC.BP-OB.CQ = 2PM.QN.

Adding and dividing by 2
OC.OB + BP.CQ = OM.ON + PM.QN. - - (8)

In the same way by multiplying (4) by (7) and (5) by (6), and
adding we get

OB.OC-BP.CQ = OM.QN + ON.PM. - - (9)

FIGURE 3.

3. Let PM, OM be ordinate and abscissa of any point on the
right hand branch of the rectangular hyperbola whose axis is OA.

2XJ
Let OA = a and area OAP = U, and let — - = M .

a"
Then u is our variable and the definitions are

. , PM . OM t , PMs inh M =—, coshM = ̂ x , tanhw =m>

OM , OA , OA
PM' OM' h

4. The functions so defined are independent of the particular
hyperbola we take, that is to say, given u, sinhw, etc., are all
determinate.

For all rectangular hyperbolas are similar figures and taking
them with the same asymptotes, the centre is the centre of similarity.
Then, drawing OPF cutting any two in P, F , (Fig. 3) P, F are
corresponding points.
xr * 2 0 A I > u i 20A'F
Now if M = -OAJT' l t a l 8 ° — OA7*-'
since corresponding areas are as the squares of corresponding lines.
Also PM, FM' are corresponding lines being parallel.

PM PM' . ,
.'. -p-j- =77X7 *-e- s m n M depends only on u.

Similarly for the other ratios.
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5. From the definitions we have
1 , 1 , . 1 sinhw

smh u = . cosh u = , tanh u = —=-— = r—.
cosech u seen u cotn u cosh u

Also from the known property of the rectangular hyperbola that
OM2 - PM? = OA* we derive the three equations

cosh2 M - sinh2 w = 1, tanh2 u + sech2 u = 1, coth2w - cosech2 u= 1.

6. The signs of lines are determined as in the circular functions,
and u is + if OP rotates counterclockwise, - if clockwise.

Hence it is evident that sinh u, tanh u, coth u, and cosech u are
odd functions, while cosh u and sech u are even functions.

FIGUKE 4.

7. ADDITION THEOREM.

Let OAP = U, OPQ = U'.
Make OAR = IT.
Draw QM, PL, RN perpendicular to the axis,

QB, PC, RE perpendicular to the asymptote.

_. .{ 2U , 2U' QM . OM
Then if u = —— and v — ——, •=— = sinn(u + v), p—- =

OB - BQ QM
OD

OB.

QM

O B - BQ
' " 2OD

OD - BQ.
2OD3

. O A = O B

= OE
= OL

OD

.OD

. 0 0

QM
OA'

QM.

since

OA
OA2 '

- B Q .
- P C .

.RN+ON

OD

RE
PL

OA2

by

by

Of

(l)-
(9).

Q M O L RN ON PL

i.e. sinh(w + v) = sinh u cosh v + cosh u sinli v.

OB+BQ OM

OB.OD + BQ.OD OM. OA
2OD2 = 0AJ '
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.-. OM.OA = OB.OD + BQ.DO
= OL.ON + R N . P L .

O M O L ON RN PL
O A ~ O A " O A + O A ' O A '

i.e. cosh(« + v) = cosh u cosh v + sinh w sinh v.
Whence also sinh(w - v) — sinh u cosh v — cosh u sinh v,

and cosh(w - v) = cosh M cosh « - sinh u sinh i>.
Whence also we may obtain formulae for multiples and sub-multiples
of u. Whence also we obtain in the usual way

cosh nu = cosh"w + nG2 cosh"~2w sinh!M + . . . etc. (10)

8. FUNDAMENTAL INEQUALITIES.

FIGURE 3.

P M _ P M . O A _ 2 A O A P 2 sectorial area OAP
S l n h M l = O A = OA2 " OA2 > OA1

> u.
Also sinh2 u = cosh2 u - 1.

sinh M < cosh u.
PM AT

tanh u = j^j-j = -=—, (if AT is the tangent at A),

AT.OA 2AOAT
OA2 ~ OA2

2 sectorial area OAP
< OA2

< M.

tanhw < u < sinhw < coshw - - - - (12)

Also sinhw = 2 sinh| cosh |

= 2tanh|/sech2!

_ 2 tanh "

1-tanh2!

w>tanhw. (13)

coshS - 1 + t a n h ' l < ^ 7 - - - (14)
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9. LIMITS.

Prom (12)
cosh u sinh u

.-. Also Lt.

. , L t .
t .
=o sinti ?*

= 1 .

Again

«=o tanhu
u

i < sinh^ < - 2 ^ - , by (12) and (13),

1
sinh-

l < rt
4n2

IT") < I1-*?) •

^Now Lt. 1 1 - f r J = Lt. { ( i - _

= e°=l.

/sinh "v»
.-. Lt. I—v-^-1 = 1

n=« \ j|j /

Again 1 < cosh^ < j - by (14)

The Limit of the last expression

(16)
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10. From these inequalities we can get the expansion of cosh u
and sinh u in terms of u, by the same method as is used in the case
of the circular functions, e.g. for cosh u.
From (10) we have

cosh nu=cosh" W-H—̂—;—= cosh"~2Msinlrw + . . .
1.2

= cosh"u\ 1 + —-—̂— tanh2wH —. „"" . • tanhJ?t + . . ,• .
I. 1 . ^ I . A . O . 4 J

From the way we got this n must be an integer and the series
terminates, but we may take n as large as we please.
Writing u for nu we have

cosh u = cosh" £ •! 1 + -^-—— tanh2 -j- H —^—^^ ^tanh4 j + ... J-

= cosh" ̂  {1 + v., + vt... +V&. + R}, '" being a fixed finite number.

Here R - 1 ( I ~ " ) ( 1 ~ " } ' ( 1 " ^nere ti ^—^ ^ — - series,

1(1--)(1-—) . (1 — -~ )
< r2-- ^—-—M^^- . . a terminating series,

< -n>—w& + T-Q 5—M2r+- + .. to a finite number of terms,

since (1 - ~),.. 1 - "-^=?, are all positive,

11 | ^
2r I (2r+l)(2r + 2) (2r+l)(2r+2)(2r+3)(2r + 4)

|2r

(2r+l)2

1
(17)

This is true for all values of n, n, of course, being > 2r.
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Hence i t is t rue when n is infinite.

But Lt. ( cosh^ ) N = l

and Lt. v2n = - p - — , m being finite.
n=» 12J»

Since r is finite
u2 w4

 M81"
cos w = + "§7 + "4? + + 2^1 + »•'

where R^. is subject to condition (17).

-'*• 1
Now Lt.

. •. Lt. R,, = 0.

M2 « 4

Hence we may write cosh u=l +—+ — +.. ad itifinitum.

In the same way we get

sinh M = M + "o7 + T 7 + - - aa" infinitum.

whence cosh u —
2 '

and sinh u = — - — , the usual definitions.
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