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Abstract

The germination percentage (GP) is commonly employed to estimate the viability of a seed
population. Statistical methods such as analysis of variance (ANOVA) and logistic regression
are frequently used to analyse GP data. While ANOVA has a long history of usage, logistic
regression is considered more suitable for GP data due to its binomial nature. However,
both methods have inherent issues that require attention. In this study, we address previously
unexplored challenges associated with these methods and propose the utilization of a likeli-
hood ratio test as a solution. We demonstrate the advantages of employing the likelihood
ratio test for GP data analysis through simulations and real data analysis.

Introduction

Germination percentage (GP) is utilized as an estimation of the viability of a seed population.
The analysis of GP involves examining experiments that measure the proportion of germinated
seeds under different treatments or conditions. Various statistical tests, such as ANOVA, logis-
tic regression or Kruskal–Wallis, are commonly employed to assess the impact of different
treatments on GP. However, it is often overlooked whether these specific tests and their under-
lying assumptions are suitable for the analysis. Several studies have explored this issue to
address the appropriateness of statistical analyses in GP studies. Both Jaeger (2008) and
Warton and Hui (2011) argued that ANOVA’s assumptions are violated by binomial data,
thus advocating for the use of logistic regression instead. Sileshi (2012) conducted a study
on considerations when utilizing ANOVA and its nonparametric counterpart, the Kruskal–
Wallis test, and proposed logistic models or their extensions with random effects as alternative
approaches. Additionally, Onofri et al. (2010) and Ritz et al. (2013) recommended employing
time-to-event survival analysis for the analysis of germination data. Despite the availability of
these studies, we believe that there are still significant statistical issues to be explored concern-
ing the analysis of germination data.

Our main focus is the statistical issue that arises when analysing data where GPs are con-
sistently either 0 or 100% across all replicates. This situation is commonly observed in experi-
ments that study methods of breaking dormancy. In such cases, the absence of variability
around the treatment mean significantly violates two crucial assumptions of ANOVA: normal-
ity and homogeneity of error variances. Consequently, it is not feasible to employ ANOVA
methods or conduct subsequent mean comparison tests. Sileshi (2012) asserted that such
data should conform strictly to the binomial distribution. However, he did not outline how
to compare GP using the binomial distribution. It is important to emphasize that logistic
regression or mixed logistic regression cannot be applied in this scenario either (Heinze
and Schemper, 2002; Gianinetti, 2020), as it corresponds to the situation of perfect separation
in logistic regression. As Albert and Anderson (1984) investigated, when there is a combin-
ation of predictor variables that can perfectly predict the outcome variable, logistic regression
models may yield infinite parameter estimates or extremely large values. These infinite esti-
mates lead to very inaccurate test results, as will be demonstrated in our numerical simulations.
Some researchers, cognizant of this issue, have eliminated data where GPs are all zeros or ones
within a treatment before performing statistical analysis (see Yang et al., 2011, Table 1).
Considering the experimental significance of conditions where GPs are consistently zero or
one, we believe that such an approach constitutes an incomplete solution.

The second issue pertains to the utilization of GP as raw data for statistical analysis. While
many studies have examined whether the GP or its transformation satisfies ANOVA assump-
tions (Ahrens et al., 1990; Sileshi, 2012; Malik and Piepho, 2016), our perspective differs.
We contend that when only GPs are employed as data, an issue arises since crucial informa-
tion, such as the number of tested seeds utilized to produce each GP, is overlooked in the ana-
lysis. Figure 1 shows the ANOVA result from analysis of GP data according to gibberellic acid
(GA) concentration in Rhie et al. (2016), when the number of tested seeds is reduced to one-
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tenth for GA concentration 10. The distinction in confidence or
reliability of a GP that is zero between the two analyses is not con-
sidered by the ANOVA, resulting in the same P-values. Given this
consideration, we believe that analysing the data solely based on GP
or its transformation may not be appropriate. Our objective is to
propose a statistical method for comparing GP using binomial
data (i.e., the number of tested and germinated seeds) but without
the first problem. To overcome this issue, we use a likelihood ratio
test (LRT), which is a well-established statistical method. Although
the LRT has been utilized before to test the significance of regres-
sion coefficients in logistic regression and assess variations in GP
among treatments, no previous efforts have been made to utilize
the LRT directly for testing the significance of treatment differences
in GP. The LRT we employed does not have the first and second
problems and exhibits superior power in both the overall mean
comparison and post-hoc analysis in numerical simulations. The
rest of our paper is organized as follows. A detailed description of
the proposed LRT method for analysing GP is presented in the
second section. The third section compares the performance of
the proposed method with existing germination rate comparison
methods in various GP data scenarios through numerical simula-
tion. In the fourth section, the effectiveness of the proposed LRT
method is validated by reanalysing GP data that was previously ana-
lysed using existing methods. Finally, key discussion points for fur-
ther consideration are provided in the last section.

LRT for analysing GP

We assume the situation where one treatment factor with I levels
exists and Ni repetitions (e.g. Petri dishes, trays, plates, etc.) are
done for each treatment level i. We use i for denoting the treat-
ment level and j for the replication. Let nij and gij be the number

of tested seeds and the number of germinated seeds for the jth
replication of the ith treatment level, respectively. Finally, pi is
the GP of the ith treatment level. In this situation, we are interested
in testing whether there is a significant difference in GP between the
treatment levels (H0: p1 = ⋅⋅⋅ = pI vs. H1: not H0) and which levels
differ significantly from one another in case there is a difference.
Our GP data are (gij, nij), i = 1,… ,I, j = 1,… ,Ni.

The LRT is a statistical test used to compare the fit of two nested
statistical models. A nested model can be obtained by imposing
restrictions on the parameters of a more general model. In our
case, the model specified under H1 is gij∼ binomial(nij,pi) for i =
1,… ,I, while the model under H0 is gij∼ binomial(nij,pi) for i =
1,… ,I, subject to the constraint p1 = ⋅⋅⋅ = pI. Consequently, under
H0, there is only one parameter. The likelihood function measures
the probability of the observed data, given the model and its para-
meters. Therefore, the likelihood ratio compares the support pro-
vided by the data for one model relative to the other.

In our case of analysing GP, the estimated parameters under
H0 and H1 through the maximum likelihood method are

p̂i,H0
=

∑I
i=1

∑Ni
j=1 gij∑I

i=1

∑Ni
j=1 nij

and p̂i,H1
=

∑Ni
j=1 gij∑Ni
j=1 nij

, (1)

respectively. Note that p̂i,H0 does not depend on the treatment
level i, but p̂i,H1 does depend. p̂i,H0 is the pooled estimate across
all treatment groups. Furthermore, the log-likelihoods of the
two models are given as follows:

l(H0) = l( p̂i,H0
; data) = log

∏I
i=1

∏Ni

j=1
p̂
gij
i,H0

(1− p̂i,H0
)nij−gij

( )
(2)

Figure 1. The challenges associated with analysing GP data using the ANOVA method are compared to the results obtained from the proposed LRT.
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l(H1) = l( p̂i,H1
; data) = log

∏I
i=1

∏Ni

j=1
p̂
gij
i,H1

(1− p̂i,H1
)nij−gij

( )
(3)

The LRT typically calculates two times the difference of the
two log-likelihoods Λ = 2 (l(H1)− l(H0))and decides which
model to support depending on the size of Λ. When Λ is large,
we support the model under H1 and when Λ is close to zero,
we support the model H0. Note that Λ≥ 0 since the model
under H1 nests the model under H0. Thanks to Wilks’ theorem
(Wilks, 1938), we know that under H0 the test statistic Λ is
asymptotically chi-squared distributed with degrees of freedom
I− 1, which is the difference in the number of parameters of
the two models. Simply speaking, when Λ is greater than the (1
− α)-quantile of the chi-square distribution with degrees of free-
dom I− 1, then we conclude that there is a significant difference
in germination rates at significance level α.

One of the significant benefits of the LRT framework we are
exploring is that it permits testing even when the GPs are all
zeros or ones at particular treatment levels. Moreover, unlike
ANOVA, it considers the difference in confidence in the germin-
ation rate that arises from variations in the number of seeds used
in each repetition when testing the difference in GP. Figure 1
shows that the LRT test does consider the number of tested
seeds utilized to compare GP across levels. Once it is confirmed
that the GP is not equal as a whole, a post-hoc test can be con-
ducted to pinpoint the specific treatment levels contributing to
the GP difference. This can be achieved by conducting our LRT
test pairwisely and adjusting the P-values for multiple compari-
sons. Alternatively, other tests designed for comparing two pro-
portions can be utilized for pairwise comparisons. Based on our
simulation results (not presented in the paper), it appears that the

pairwise comparison with the LRT yields slightly better outcomes
compared to the two-sample proportion test. Our LRT method,
which we have implemented in our developed R package called
gerstat, can be executed by utilizing the function ger_test. For
more information about our R package, please refer to the Appendix.

Numerical simulation

This section assesses the efficacy of our proposed LRT method in
analysing GP data relative to conventional methods under various
scenarios. The methods we compare include ANOVA, ANOVA
with arcsine transformed response, logistic regression, and
Kruskal–Wallis test. Furthermore, we consider the test suggested
by Sill (2007) and Schaarschmidt et al. (2008) and will henceforth
refer to this method as the MCPAN method. For our simulations,
we employ a fully randomized design with three replications at
each level and four treatment levels.

Three primary simulation scenarios were taken into consider-
ation: (A) a situation where specific levels exhibit seed dormancy,
(B) a scenario where there is no seed dormancy, but a difference
in GP exists among the levels and (C) a situation where there is no
seed dormancy, and there is no difference in GP. For Scenario A,
the first two treatment levels exhibit seed dormancy ( p1 = p2 = 0),
but the third and fourth treatment levels have GP of p3 = 0.15 and
p4 = 0.5, respectively. For Scenario B, we have ( p1,p2,p3,p4) =
(0.1,0.2,0.3,0.4). Finally, we have the same GP ( p1 = p2 = p3 = p4
= 0.3) all across the levels. We generate all the data from the
model gij∼ binomial(nij,pi), i = 1,… ,4, with nij being 15 or 30
(the number of seeds per replication). The number of simulations
is 1000 and the significance level α is 0.05.

Once it is established that the GP values are not uniformly
equal, a post-hoc test is performed to identify the specific

Table 1. Detection rate of whether there is a difference in germination rates when ( p1,p2,p3,p4) = (0,0,0.15,0.5) (Scenario A)

ANOVA ANOVA-AS KW Logistic MCPAN LRT

nij = 15 1.000 1.000 1.000 1.000 1.000 1.000

nij = 30 1.000 1.000 1.000 1.000 1.000 1.000

Table 2 Percentage that identified a difference in germination rate for a given treatment pair when ( p1,p2,p3,p4) = (0,0,0.15,0.5) (Scenario A)

p1 vs. p2 p1 vs. p3 p1 vs. p4 p2 vs. p3 p2 vs. p4 p3 vs. p4

nij = 15 ANOVA 0.000 0.344 0.992 0.344 0.992 0.909

ANOVA-AS 0.000 0.742 1.000 0.742 1.000 0.915

KW 0.000 0.000 0.891 0.000 0.891 0.001

Logistic 0.000 0.000 0.000 0.000 0.000 0.840

MCPAN 0.000 0.500 1.000 0.500 1.000 0.844

LRT 0.000 0.914 1.000 0.914 1.000 0.924

nij = 30 ANOVA 0.000 0.637 1.000 0.637 1.000 0.993

ANOVA-AS 0.000 0.970 1.000 0.970 1.000 0.998

KW 0.000 0.000 0.994 0.000 0.994 0.000

Logistic 0.000 0.000 0.000 0.000 0.000 0.992

MCPAN 0.000 0.989 1.000 0.989 1.000 0.996

LRT 0.000 0.999 1.000 0.999 1.000 1.000

Note.The treatment pair (p1 vs. p2) has no difference in germination rate.
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treatment levels contributing to the GP difference. This post-hoc
test entails conducting multiple pairwise comparison tests.
To control the overall rate of false positives, multiple testing meth-
ods are implemented during the post-hoc test to control either the
false positive rate (FPR) or the family-wise error rate (FWER). As
multi-step methods are more efficient in controlling the FPR or
the FWER than single-step methods, we utilized the Holm pro-
cedure, a multi-step method, for the entire simulation. To con-
duct pairwise comparison tests in both ANOVA and logistic
regression, we utilized the glht function from the R package mult-
comp. This package streamlines pairwise comparisons across
diverse models by furnishing suitable inference procedures for
testing general linear hypothesis tests. In the context of
Kruskal–Wallis, we conducted pairwise comparisons similar to
Dunn’s test (Dunn, 1964), a frequently employed post-hoc test
in nonparametric scenarios. As for the LRT method, we executed
the pairwise comparison as outlined in the section ‘LRT for ana-
lysing GP’. To apply the MCPAN method, we conducted pairwise
comparisons and adjusted P-values following the guidelines pro-
vided by Sill (2007). The MCPAN method was implemented
using the function binomRDtest in the R package MCPAN.

In our comparison of the methodologies under consideration,
we evaluate their performance on two key dimensions. Firstly, we
calculate the proportion of overall tests that have detected differ-
ences between groups, if any. Secondly, we assess the accuracy of
the follow-up tests in detecting treatment pairs with distinct GPs.
Although various GP vectors could be examined for a given scen-
ario, such simulations (which are not included in the paper) did
not yield significantly different conclusions compared to those
presented in the paper.

Scenario A (( p1,p2,p3,p4) = (0,0,0.15,0.5))
In this subsection, we present the results obtained when cer-

tain treatment levels exhibit seed dormancy. As shown in

Table 1, the performance differences between the methodologies
are insignificant when it comes to testing for differences in GP.
However, as highlighted in Table 2, the methods exhibit notice-
able performance differences in identifying the specific treatment
levels that contribute to the difference in GP. Logistic regression
struggles with detecting GP differences due to the issue of com-
plete separation (Mansournia et al., 2017). On the other hand,
the Kruskal–Wallis test has a lower power, which is a characteris-
tic of nonparametric methods, and can only detect pairs with rela-
tively large differences in germination rates ( p1 = 0 vs. p4 = 0.5 or
p2 = 0 vs. p4 = 0.5). In most cases, the proposed LRT demonstrates
superior performance compared to ANOVA, arcsine-transformed
response-based ANOVA and the MCPAN method in detecting
treatment pairs with distinct germination rates.

Scenario B (( p1,p2,p3,p4) = (0.1,0.2,0.3,0.4))
In this subsection, we investigate the scenario where there is no

seed dormancy, but a difference in GP exists among the treatment
levels. Table 3 shows that the proposed LRT, logistic regression
and the MCPAN method outperform the other methods in
detecting whether there are differences in germination rates.
Concerning the identification of specific treatment levels contrib-
uting to the difference in GP (Table 4), two primary trends are
evident. Firstly, the Kruskal–Wallis test continues to exhibit low
detection power. Secondly, the proposed LRT, logistic regression
and the MCPAN method consistently outperform ANOVA and
acsine-transformed response-based ANOVA in the majority
of cases. Notably, the proposed LRT demonstrates the best
performance.

Scenario C (( p1,p2,p3,p4) = (0.3,0.3,0.3,0.3))
In Scenario C, there are no differences in germination rates

among the treatment levels. Consequently, it is crucial to control
the power of the overall test close to the significance level.
Similarly, when employing multiple testing methods, it is

Table 3 Detection rate of whether there is a difference in germination rates when ( p1,p2,p3,p4) = (0.1,0.2,0.3,0.4) (Scenario B)

ANOVA ANOVA-AS KW Logistic MCPAN LRT

nij = 15 0.641 0.621 0.427 0.870 0.869 0.870

nij = 30 0.915 0.916 0.745 0.997 0.996 0.997

Table 4 Percentage that identified a difference in germination rate for a given treatment pair when ( p1,p2,p3,p4) = (0.1,0.2,0.3,0.4) (Scenario B)

p1 vs. p2 p1 vs. p3 p1 vs. p4 p2 vs. p3 p2 vs. p4 p3 vs. p4

nij = 15 ANOVA 0.033 0.219 0.507 0.066 0.233 0.070

ANOVA-AS 0.066 0.260 0.495 0.044 0.147 0.027

KW 0.000 0.014 0.243 0.004 0.008 0.000

Logistic 0.049 0.350 0.731 0.061 0.269 0.054

MCPAN 0.122 0.468 0.824 0.071 0.311 0.057

LRT 0.150 0.471 0.802 0.084 0.311 0.065

nij = 30 ANOVA 0.104 0.503 0.859 0.147 0.507 0.139

ANOVA-AS 0.182 0.571 0.862 0.126 0.396 0.084

KW 0.000 0.016 0.524 0.000 0.006 0.000

Logistic 0.283 0.805 0.988 0.172 0.674 0.139

MCPAN 0.266 0.810 0.992 0.146 0.666 0.122

LRT 0.329 0.837 0.990 0.191 0.690 0.145
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important to ensure that the percentage of detected differences in
each treatment pair is controlled at a value near the significance
level. Upon analysing the findings presented in Tables 5 and 6,
we observe that all the methods exhibit these characteristics.
However, it is notable that the Kruskal–Wallis test proves to be
conservative, with a detection rate lower than the significance
level.

An important observation across all scenarios is that both
logistic regression and the proposed LRT yield identical results
concerning the test for overall differences. This alignment arises
from the equality between the deviation in deviance calculated
between the full model and the null model (the model with
only the intercept) used by logistic regression and our proposed
LRT statistic. Despite the potential instability in coefficient esti-
mates when there are consistent zeros or ones across all replicates
in logistic regression, it does not adversely affect the likelihood
values of the estimated model. Consequently, the detection rate
of overall differences in logistic regression remains robust in situa-
tions with perfect separation. However, concerning pairwise com-
parisons, reliance on coefficient estimates significantly hampers
testing performance in situations of perfect separation.

Reanalysis of the data from Rhie et al. (2016)

To demonstrate the advantages of our method, we conducted a
reanalysis of the data from Rhie et al. (2016)’s study that examines
the effects of GA3 on germination under low temperatures.
Figure 2 presents the raw data and the corresponding testing
results. In Rhie et al. (2016)’s original analysis, ANOVA was
employed to test the overall difference, followed by the utilization
of Tukey’s honestly significant difference (HSD) test as a post-hoc
test with a specific significance level α = 0.05. In our reanalysis, we
applied the LRT described in the section ‘Numerical simulation’

with the same significance level α = 0.05. It is important to note
that both the Holm–Bonferroni correction, which we used for
our LRT analysis, and Tukey’s HSD method for ANOVA are
designed to control the family-wise error rate. Upon comparing
the two analyses, it was determined that both reached the same
conclusion that there is a difference in GP. However, there were
variations in the results for the treatment pair that exhibited a dif-
ference in GP. In Rhie et al. (2016)’s analysis, it was observed that
there was no significant difference in GP between the 100 and
10 mg L−1 doses of GA3. However, it is challenging to accept
the conclusion that there was no significant difference in germin-
ation between the two treatments. This is due to the fact that no
germination occurred at the 10 mg L−1 dose of GA3, while certain
replications at the 100 mg L−1 dose showed high germination
rates of up to 43%. The substantial disparity in germination out-
comes between the two treatments raises doubts about the conclu-
sion of no significant difference. In contrast, the LRT-based
analysis classifies the 0 and 10 mg L−1 treatments, which displayed
no germination, into the same germination rate group (a).
Furthermore, it distinguishes the 100 and 1000 mg L−1 treat-
ments, which exhibited a significant difference in average germin-
ation, into distinct germination rate groups (b and c). Considering
our reanalysis of Rhie et al. (2016)’s data and the findings from
our simulations, where the ANOVA method occasionally failed
to detect differences between treatments with zero germination
and those without, we can conclude that the proposed LRT
method can provide more reliable conclusions than traditional
methods in various GP data analysis situations.

Discussion

This paper introduces a novel germination rate comparison
method based on LRT, which performs effectively even in

Table 5 Detection rate of whether there is a difference in germination rates when ( p1,p2,p3,p4) = (0.1,0.2,0.3,0.4) (Scenario C)

ANOVA ANOVA-AS KW Logistic MCPAN LRT

nij = 15 0.030 0.034 0.016 0.044 0.043 0.044

nij = 30 0.034 0.036 0.016 0.042 0.041 0.042

Table 6 Percentage that identified a difference in germination rate for a given treatment pair when ( p1,p2,p3,p4) = (0.3,0.3,0.3,0.3) (Scenario C)

p1 vs. p2 p1 vs. p3 p1 vs. p4 p2 vs. p3 p2 vs. p4 p3 vs. p4

nij = 15 ANOVA 0.006 0.008 0.008 0.007 0.003 0.007

ANOVA-AS 0.008 0.007 0.007 0.006 0.005 0.005

KW 0.000 0.004 0.001 0.000 0.001 0.001

Logistic 0.005 0.005 0.005 0.007 0.004 0.004

MCPAN 0.011 0.006 0.013 0.009 0.008 0.007

LRT 0.008 0.006 0.007 0.007 0.005 0.006

nij = 30 ANOVA 0.006 0.008 0.006 0.008 0.002 0.003

ANOVA-AS 0.008 0.007 0.006 0.009 0.002 0.002

KW 0.000 0.002 0.002 0.002 0.001 0.002

Logistic 0.007 0.006 0.004 0.008 0.004 0.005

MCPAN 0.013 0.007 0.010 0.009 0.007 0.009

LRT 0.008 0.007 0.006 0.008 0.005 0.005
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scenarios where all germination rates for a particular treatment
can be either 0 or 1. However, it is crucial to emphasize that
our paper exclusively addresses the analysis of a single treatment
factor. In real germination rate experiments, the consideration of
multiple treatment factors is plausible. We are currently working
on extending our proposed methodology to encompass cases
involving two treatment factors. Furthermore, it is worth men-
tioning that our methodology did not address the issue of overdis-
persion, which is a significant concern in the analysis of
germination rate data. In practice, when different Petri dishes
are employed within the same treatment, the Petri dish effect
can influence the germination rate. It is customary to model
this effect as a random effect in order to account for its impact
on the observed data. Considering and incorporating this aspect
of overdispersion is crucial for a more comprehensive analysis
of germination rate data. The development of a methodology
that simultaneously considers the random effect and addresses
the scenario where germination rates in a specific treatment can
be 0 or 1 is a topic that deserves thorough research. In line with
this direction, a promising avenue would involve extending
Firth’s method (Heinze and Schemper, 2002), an alternative
approach for resolving complete separation in logistic regression,
to accommodate a random effect setting. Conducting a study in
this direction would contribute significantly to the field of ger-
mination rate data analysis.

Acknowledgements. The authors are indebted to one reviewer and the
Editor for their excellent comments and suggestions. Yongha Rhie would
like to thank the support of R&D Program for Forest Science Technology pro-
vided by the Korea Forest Service (Korea Forestry Promotion Institute). Partial
financial support is acknowledged from the Korea Forest Service (Korea
Forestry Promotion Institute) (Project No. 2021380A00-2123-BD02).

Competing interest. The authors declare no conflict of interest.

References

Ahrens WH, Cox DJ and Budhwar G (1990) Use of the arcsine and square
root transformations for subjectively determined percentage data. Weed
Science 38, 452–458.

Albert A and Anderson JA (1984) On the existence of maximum likelihood
estimates in logistic regression models. Biometrika 71, 1–10.

Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6,
241–252.

Gianinetti A (2020) Basic features of the analysis of germination data with
generalized linear mixed models. Data 5, 6.

Heinze G and Schemper M (2002) A solution to the problem of separation in
logistic regression. Statistics in Medicine 21, 2409–2419.

Jaeger TF (2008) Categorical data analysis: away from ANOVAs (transform-
ation or not) and towards logit mixed models. Journal of Memory and
Language 59, 434–446.

Malik WA and Piepho H-P (2016) On generalized exponential transforma-
tions for proportions. Communications in Statistics – Theory and Methods
45, 5857–5870.

Figure 2. Reanalysis of the data from Rhie et al. (2016)’s study. (*** means that the germination rate difference is significant at P < 0.001. The use of different letters
to mark the averages signifies that the corresponding treatments have been identified as having significantly different germination rates through multiple
comparisons.)

6 Rhie et al.

https://doi.org/10.1017/S0960258524000023 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258524000023


Mansournia MA, Geroldinger A, Greenland S and Heinze G (2017)
Separation in logistic regression: causes, consequences, and control.
American Journal of Epidemiology 187, 864–870.

Onofri A, Gresta F and Tei F (2010) A new method for the analysis of
germination and emergence data of weed species. Weed Research 50,
187–198.

Rhie YH, Kim J, Lee SY and Kim KS (2016) Non-deep simple morphophy-
siological dormancy in seeds of heavenly bamboo (Nandina domestica
Thunb.). Scientia Horticulturae 210, 180–187.

Ritz C, Pipper CB and Streibig JC (2013) Analysis of germination data from
agricultural experiments. European Journal of Agronomy 45, 1–6.

Schaarschmidt F, Sill M and Hothorn LA (2008) Approximate simultaneous
confidence intervals for multiple contrasts of binomial proportions.
Biometrical Journal 50, 782–792.

Sileshi GW (2012) A critique of current trends in the statistical analysis of seed
germination and viability data. Seed Science Research 22, 145–159.

Sill M (2007) Approximate Simultaneous Confidence Intervals for Multiple
Comparisons of Binomial Proportions. Technical Report, Institute of
Biostatistics, Leibniz University Hannover.

Warton DI and Hui FKC (2011) Arcsine is asinine: the analysis of propor-
tions in ecology. Ecology 92, 3–10.

Wilks SS (1938) The large-sample distribution of the likelihood ratio for
testing composite hypotheses. The Annals of Mathematical Statistics 9,
60–62.

Yang CJ, Chien CT, Liao YK, Chen SY, Baskin JM, Baskin CC and
Kuo-Huang LL (2011) Deep simple morphophysiological dormancy
in seeds of the basal taxad Cephalotaxus. Seed Science Research 21,
215–226.

APPENDIX

Using gerstat for method implementation

We have created the R package gerstat to empower researchers in analysing
germination rate data with a wide range of germination rate comparison meth-
ods, including the proposed LRT approach. The R package gerstat can be
installed from our github repository. To install the package, please verify
that the R base (version≥ 4.3.1) is installed on your system and follow these
R code instructions:

if (!requireNamespace(“devtools”, quietly = TRUE)) {
install.packages(“devtools”)
}
library(devtools)
devtools::install_github(“Noh-Hohsuk/gerstat“)

As gerstat is an optional package, it needs to be loaded in each new R ses-
sion before using its functions. To load the gerstat package, you can use the
library() command:

library(gerstat)

For germination rate testing, the function ger_test can be used.

Germination rate test using gerstat

The ger_test function executes a germination rate comparison test based on the
specified method. If the difference in germination rate comparison is statistic-
ally significant at the designated significance level, it generates a compact letter
display that groups treatments with similar germination rates, utilizing the spe-
cified multiple comparison method. The basic usage is the following:

ger_test(gdata = data, method = “LRT”, p_adjust_mtd = “holm”, ctr_lv =
0.05)

The gdata is expected to be an R data frame with three variables: treatment,
num_seed and ger_seed. The treatment variable should be a factor representing
the treatment level, num_seed should indicate the number of seeds used in
each treatment iteration and ger_ seed should indicate the number of seeds
that germinated. The method parameter specifies the statistical method for
germination rate comparison. The available options for the method are
‘LRT’ (likelihood ratio test), ‘ANOVA’ (analysis of variance), ‘ASANOVA’
(ANOVA with arcsine square root transformed response), ‘logistic’ (logistic
regression) or ‘KW’ (Kruskal–Wallis test). The p_adjust_mtd parameter speci-
fies the P-value correction method for multiple comparisons. The ctr_lv par-
ameter represents both the significance level for the overall test and the control
level for multiple testing. For more information, you can use the command ?
ger test. To reproduce the analysis of the data from Rhie et al. (2016) using the
ger test function, you can execute the following R code:

data(nandina)
ger_test(gdata = nandina,method = “LRT”,p_adjust_mtd = “holm”,ctr_lv = 0.05)
The output is
$p_value [1]
0$cld
GA0 GA10 GA100 GA1000
“a” “a” “b” “c”

The P-value represents the result from the overall test, while the cld (com-
pact letter display) is generated based on multiple testing. When the P-value is
lower than the specified significance level, the cld value will be NULL.
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