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ARTŪRAS DUBICKAS

(Received 1 March 2011; accepted 1 February 2012)

Communicated by I. E. Shparlinski

Dedicated to the memory of Alf van der Poorten

Abstract

Let K be a number field. For f ∈ K[x], we give an upper bound on the least positive integer T = T ( f )
such that no quotient of two distinct T th powers of roots of f is a root of unity. For each ε > 0 and each
f ∈ Q[x] of degree d ≥ d(ε) we prove that log T ( f ) < (2 + ε)

√
d log d. In the opposite direction, we show

that the constant 2 cannot be replaced by a number smaller than 1. These estimates are useful in the study
of degenerate and nondegenerate linear recurrence sequences over a number field K.

2010 Mathematics subject classification: primary 11R04; secondary 11R18, 11B37.
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1. Introduction

Let K be a number field, that is, a finite extension of the field of rational numbers Q,
and let

f (x) := xd + ad−1xd−1 + · · · + a0 =

d∏
i=1

(x − αi) ∈ K[x]

be a monic polynomial of degree d ≥ 2. It may happen that the quotient of two
distinct roots of f , say, αi/α j, 1 ≤ i < j ≤ d, is a root of unity (for example, for
f (x) = xd − 2 ∈ Q[x]). We say that the polynomial f is torsion-free if no quotient of
two distinct roots of f is a root of unity. In the case where f (x) =

∏d
i=1(x − αi) is not

torsion-free, the polynomial fT (x) :=
∏d

i=1(x − αT
i ) is torsion-free for some T ∈ N. The

smallest positive integer T = T ( f ) with this property is called the torsion order of f , so
that torsion-free polynomials have torsion order one. For example, for the polynomial
xd − 2, we have T (xd − 2) = d. The torsion order of a polynomial can be greater than
its degree, for example, T (Φd) = d, where Φd is the dth cyclotomic polynomial of
degree ϕ(d). Note that the torsion order T ( f ) is independent of the field K. If f ∈ K[x]
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is not monic and has a leading coefficient a ∈ K \ {0} then the torsion order of f is
defined as T ( f /a).

Here is the main result of this paper.

T 1. Let K be a number field with k := [K : Q]. For every f ∈ K[x] of degree
d ≥ 2,

log T ( f ) < (1.053 14 +
√

6k)
√

d log(kd). (1)

Furthermore, if ε > 0 then

log T ( f ) < (1 + ε)(1 +
√

k)
√

d log d (2)

provided that d is large enough. On the other hand, for all ε > 0 there exists d0(ε) such
that for each positive integer d ≥ d0(ε) there is a monic polynomial Φ ∈ Z[x] ⊂ K[x] of
degree d for which

log T (Φ) > (1 − ε)
√

d log d. (3)

On replacing ε by ε/2 in (2) and selecting K := Q, we find that

exp((1 − ε)
√

d log d) < max
f∈Q[x],deg f =d

T ( f ) < exp((2 + ε)
√

d log d) (4)

for each ε > 0 and each sufficiently large d. Note that the difference between the upper
and lower bounds in (4) is only in the constants 1 and 2.

The torsion order T of the polynomial f (x) = xd + ad−1xd−1 + · · · + a0 is related to
the properties of the linear recurrence sequence

xn+d = −ad−1xn+d−1 − · · · − a0xn,

where n = 1, 2, . . . . Such a sequence is called degenerate if its characteristic poly-
nomial f has a pair of distinct roots whose ratio is a root of unity and nondegenerate
otherwise. On replacing f by fT , where T is the torsion order of f , one reduces the
study of arbitrary linear recurrence sequences to the study of nondegenerate sequences.
Theorem 1.2 in [4] asserts that, for some t ≤ T ( f ), each subsequence xtn+s, where
n = 1, 2, . . . , is either identically zero or nondegenerate. Other applications of the
torsion order to the Skolem–Mahler–Lech theorem were mentioned by Berstel and
Mignotte [2] (see also [4, Ch. 2]). Schinzel [11] used T ( f ) to treat an old problem of
Pólya [9] on the description of rational functions

∑∞
n=0 unxn ∈ Q(x) whose numerators

are divisible by only finitely many primes. In this sense the bound in (4) gives the best
possible (up to a constant) estimate in [11, Theorem 2]. See also [14], where the case
K = Q was considered. Robba [10] investigated the case of a number field, but his
upper bound T ( f ) ≤ 2kd+1 is weaker than that given in (1).

It seems likely that if f ∈ Q[x] is irreducible over the field Q then the upper bound
for T ( f ) should be given by the inequality

ϕ(T ( f )) ≤ d, (5)

where ϕ is Euler’s function. Note that equality holds in (5) for cyclotomic polynomials
f = Φd. Since lim infn→∞(ϕ(n) log log n)/n = e−γ, where γ = 0.577 21 . . . is Euler’s
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constant (see, for example, [5, Theorem 324]), the upper bound (5) via [11, Lemma 3]
would imply the inequality

T ( f ) < eγd(log log d + 4) (6)

for every d ≥ 2. Unfortunately, the proof of Corollary 2.1 (which is equivalent to (5))
in our paper [3] contains an error. The best known bound in this direction is due to
Schinzel [11] who showed that

T ( f ) < e3γ/2d3/2(log log d + 4)3/2

for every irreducible polynomial f ∈ Q[x] of degree d ≥ 2 (which is short of the
conjectured bound (6)). In [1, 3, 6, 14], one can find different proofs of the inequality

[K(ζ) : K] ≤ d = [K(α) : K]

when α, α′ are two algebraic numbers conjugate over K and ζ := α/α′ is a root of
unity. This shows that one can get rid of at least one root of unity among the ratios
of roots of an irreducible polynomial f ∈ K[x] of degree d by taking some power t for
which ϕ(t) ≤ d.

In the next section we shall prove (3) and give another example which shows that for
some f ∈ K[x] the torsion degree T ( f ) may tend to infinity as k→∞ for cyclotomic
extensions K of Q. In Section 3 we state two results on the least common multiple
of positive integers b1, b2, . . . , bm, whose sum (or the sum of the values of Euler’s
function ϕ(b1), ϕ(b2), . . . , ϕ(bm)) does not exceed some fixed integer n. We give two
more lemmas in Section 4, and then complete the proofs of (1) and (2) in Section 5.

2. Examples

Let X(d) be the largest integer for which∑
p≤X(d)

(p − 1) ≤ d, (7)

where the sum is taken over prime numbers p. Set

Φ(x) := g(x)
∏

p≤X(d)

(xp−1 + · · · + x + 1), (8)

where g(x) :=
∏e

i=1(x − i) ∈ Z[x] is a polynomial of degree

e := d −
∑

p≤X(d)

(p − 1).

Then Φ(x) ∈ Z[x] is a monic polynomial of degree d. (Note that Φ(x) ∈ Z[x] ⊂ K[x]
for every number field K.) Put

Y(d) :=
∏

p≤X(d)

p, (9)
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where the product is taken over primes p. Clearly, ΦT is a torsion-free polynomial
for T = Y(d), since the T th powers of the roots of Φ are iT , where i = 1, . . . , e, and 1,
because ζ jY(d)

p = 1 whenever p ≤ X(d) and j = 1, . . . , p − 1. (Throughout, ζr := e2πi/r

is the primitive rth root of unity.) On the other hand, if some prime p ≤ X(d) does not
divide T then ΦT is not torsion-free, because the quotient of two distinct roots of ΦT ,
say ζ2T

p and ζT
p , is a root of unity. Consequently, for the polynomial defined in (8),

T (Φ) = Y(d).

Now, using the prime number theorem pi ∼ i log i as i→∞, from (7) and (9) one can
easily derive that

X(d) ∼
√

d log d and log Y(d) ∼ X(d)

as d→∞. Hence the inequality log T (Φ) = log Y(d) > (1 − ε)
√

d log d holds for every
d ≥ d0(ε) and every ε > 0 . This proves (3).

Suppose next that K = Q(ζm), where ϕ(m) = k, so that k = [K : Q]. Let us take

G(x) := g1(x)
∏

m<p≤X1(d)

(xp − ζm),

where the product is taken over primes p, the number X1(d) is the largest integer for
which

∑
m<p≤X1(d) p ≤ d, and g1(x) :=

∏e1
i=1(x − i) with e1 := d −

∑
m<p≤X1(d) p. By the

same argument as above, we see that G ∈ K[x] is a monic polynomial of degree d
whose torsion order is

T (G) = m
∏

m<p≤X1(d)

p > m exp((1 − ε)
√

d log d)

for each ε > 0 and each sufficiently large d. Since m > k, it follows that

log T (G) > log k + (1 − ε)
√

d log d

for each ε > 0 and each sufficiently large d.

3. Two results for the least common multiple

L 2. Let b1, . . . , bm be some positive integers satisfying b1 + · · · + bm ≤ n, where
n ≥ 2. Then

lcm(b1, . . . , bm) < exp(1.053 14
√

n log n),

where lcm stands for the least common multiple. Furthermore, for each ε > 0 there is
an integer n0(ε) such that, for every n ≥ n0(ε),

lcm(b1, . . . , bm) < exp((1 + ε)
√

n log n).

The first part of Lemma 2 was proved by Massias [7]. In fact, lcm(b1, . . . , bm) is
the order of an element consisting of m disjoint cycles of lengths b1, . . . , bm in the
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full symmetric group on n elements S n. Let M(n) be the maximal order of an element
in S n. Landau proved that log M(n) ∼

√
n log n as n→∞ and Shah [12] gave a more

precise asymptotic formula

log M(n) =
√

n log n(1 + log log n/(2 log n) + O(1/log n)).

This implies the second part of Lemma 2. See also [8, 13] for further work on this
problem. It is interesting to note that the upper bound 1.053 13 . . . is attained for the
symmetric group S 1 319 766.

The following lemma was proved by Berstel and Mignotte [2].

L 3. Let b1, . . . , bm be positive integers satisfying ϕ(b1) + · · · + ϕ(bm) ≤ n, where
n ≥ 2. Then

lcm(b1, . . . , bm) < exp(
√

6n log n).

Furthermore, the constant
√

6 can be replaced by any constant strictly greater than 1
if n is sufficiently large.

4. Some divisibility results for the torsion order of a polynomial

Let f ∈ K[x] be a separable polynomial of degree d ≥ 2. We say that two of its
roots α and α′ belong to the same equivalence class if their quotient is a root of unity.
Suppose that there are s := s( f ) distinct equivalence classes. It is easy to see that each
equivalence class contains the same number of elements, say, ` := `( f ) roots of f , so

d = s` = s( f )`( f ). (10)

Now, let f ∈ K[x] be an irreducible polynomial of degree d ≥ 2, and let α be one of
its roots. Suppose that r is the largest positive integer for which

Q(ζr) ⊆ K(α). (11)

Then K(ζr) ⊆ K(α). Since K(ζr) is a normal extension of K, the field K(ζr) is contained
in the field K(α′) for any conjugate α′ of α over K. Hence Q(ζr) is contained in every
field K(α′) too. Thus r := r( f , K) is independent of the choice of α and depends only
on the polynomial f and the field K. Of course,

r( f , K) = w(K(α)), (12)

where w(F) stands for the number of distinct roots of unity lying in the field F.
We claim that if α , α′ and α/α′ is a root of unity (so that ` ≥ 2) then

α`r = (α′)`r. (13)

Indeed, write γ(C) for the product of conjugates of α belonging to the equivalence class
C. From α, α′ ∈C we obtain α` = ζγ(C) and (α′)` = ζ′γ(C) for some roots of unity
ζ, ζ′. It is clear that s = s( f ) equivalence classes are blocks of imprimitivity of the
Galois group Gal(K(α)/K). Hence every automorphism σ ∈ Gal(K(α)/K) satisfying
σ(α) = α is a permutation of the set C, so it maps γ(C) to γ(C). Thus γ(C) ∈ K(α).

https://doi.org/10.1017/S1446788712000183 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000183


142 A. Dubickas [6]

This yields ζ = α`/γ(C) ∈ K(α), so that ζ ∈ Q(ζr), by (11). Hence ζr = 1. By the same
argument, (ζ′)r = 1. Therefore,(

α

α′

)`r
=

(
ζγ(C)
ζ′γ(C)

)r

=
ζr

(ζ′)r
= 1.

This proves (13) and so implies the following result.

L 4. The torsion order of an irreducible polynomial f ∈ K[x] satisfies

T ( f ) | `( f )r,

where r := r( f , K) is defined in (11) and (12).

Next we extend this result to the product of two irreducible polynomials.

L 5. Let f1, f2 ∈ K[x] be two distinct irreducible polynomials having `1 := `( f1)
and `2 := `( f2) elements in their equivalence classes and with r1 := r( f1, K) and
r2 := r( f2, K) defined as in (11) and (12). Then

T ( f1 f2) | lcm(`1 lcm(r1, r2), `2 lcm(r1, r2)).

P. In view of Lemma 4 it suffices to prove that if α is a root of f1 and β is a root
of f2 such that α/β is a root of unity then

αL = βL,

where L := lcm(`1r, `2r) and r := lcm(r1, r2). Suppose that α and β belong to the
equivalence classes C1 and C2. As above, let γ(C1) and γ(C2) be the product of
conjugates of α from C1 and the product of conjugates of β from C2. Then

α`1 = ξ1γ(C1) and β`2 = ξ2γ(C2) (14)

with some roots of unity ξ1, ξ2.
Let S be the set of deg f1 + deg f2 roots of the polynomial f1 f2. The equivalence

class of S containing α consists of C1 ∪C2. Consider the Galois group Gal(K(α, β)/K)
as permutations of the set S . Each element σ ∈ Gal(K(α, β)/K) that fixes α (or β)
permutes the class C1 and the class C2. Hence the products γ(C1) and γ(C2) both lie
in the intersection K(α) ∩ K(β). Thus ξ1 ∈ K(α) and ξ2 ∈ K(β), by (14). From (14),
the quotient ζ := γ(C1)L/`1r/γ(C2)L/`2r is a root of unity, because α/β is a root of
unity. Note that ζ, ξ1 ∈ K(α) yields ζ, ξ1 ∈ Q(ζr1 ), by the definition of r1. Similarly,
ζ, ξ2 ∈ K(β) yields ζ, ξ2 ∈ Q(ζr2 ). It follows that ζ, ξ1, ξ2 lie in the compositum

Q(ζr1 )Q(ζr2 ) = Q(ζr1 , ζr2 ) = Q(ζlcm(r1,r2)) = Q(ζr).

Now, using the fact that the root of unity ζξL/`1r
1 ξ−L/`2r

2 belongs to the field Q(ζr) (so
that its rth power is 1), we obtain

αL

βL
=
ξL/`1

1 γ(C1)L/`1

ξL/`2
2 γ(C2)L/`2

=

(ξL/`1r
1 ζ

ξL/`2r
2

)r

= 1,

which completes the proof of the lemma. �
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5. Proof of the upper bound for torsion order

Without loss of generality, we may assume that f ∈ K[x] is monic. Let us write f
in the form

f (x) = f1(x)k1 f2(x)k2 · · · fm(x)km

for distinct irreducible monic polynomials f1, . . . , fm ∈ K[x] and k1, . . . , km ∈ N.
Obviously, T ( f ) = T ( f1 · · · fm) and the degree of the polynomial f1 · · · fm is smaller
than deg f provided that at least one ki is greater than 1. So we may assume that
k1 = · · · = km = 1. Then, by Lemmas 4 and 5, for f = f1 · · · fm,

T ( f ) | lcm(`1, . . . , `m) lcm(r1, . . . , rm) (15)

with ri := r( fi, K) defined in (11) and (12), because lcm(`i lcm(ri, r j), ` j lcm(ri, r j))
divides lcm(`i, ` j) lcm(ri, r j) for all indices i, j in the range 1 ≤ i, j ≤ m. From (10) we
see that `i | di, where di = deg fi. Thus lcm(`1, . . . , `m) divides lcm(d1, . . . , dm). Using
the equality

∑m
i=1 di = d = deg f from Lemma 2 we deduce that

lcm(`1, . . . , `m) ≤ lcm(d1, . . . , dm) < exp(1.053 14
√

d log d). (16)

Suppose that αi is a root of fi for i = 1, . . . , m. Then we see that Q(ζri ) ⊆ K(αi)
from (11). Hence [Q(ζri ) : Q] = ϕ(ri) divides

[K(αi) : Q] = [K : Q] · [K(αi) : K] = kdi.

In particular, ϕ(ri) ≤ kdi for each i = 1, . . . , m and thus

m∑
i=1

ϕ(ri) ≤ k
m∑

i=1

di = kd.

Therefore, Lemma 3 implies that

lcm(r1, . . . , rm) < exp(
√

6kd log(kd)). (17)

Now, from (15), multiplying (16) and (17) we derive (1).
Next, suppose that ε > 0 and that d is large enough. Then, by Lemmas 2 and 3,

inequality (16) becomes

lcm(`1, . . . , `m) ≤ lcm(d1, . . . , dm) < exp((1 + ε)
√

d log d),

whereas (17) is replaced by

lcm(r1, . . . , rm) < exp((1 + ε/2)
√

kd log(kd)) < exp((1 + ε)
√

kd log d).

Multiplying these two inequalities, we derive (2) in view of (15).
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