STRUCTURE OF PSEUDO-SEMISIMPLE RINGS

SAAD MOHAMED and BRUNO J. MÜLLER

(Received 2 May 1989; revised 10 October 1989)

Communicated by B. J. Gardner

Abstract

A ring R is called right pseudo-semisimple if every right ideal not isomorphic to R is semisimple. Rings of this type in which the right socle S splits off additively were characterized; such a ring has $S^2 = 0$. The existence of right pseudo-semisimple rings with zero right singular ideal Z remained open, except for the trivial examples of semisimple rings and principal right ideal domains. In this work we give a complete characterization of right pseudo-semisimple rings with $S^2 = 0$. We also give examples of non-trivial right pseudo-semisimple rings with $Z = 0$; in fact it is shown that such rings exist as subrings in every infinite-dimensional full linear ring. A structure theorem for non-singular right pseudo-semisimple rings, with homogeneous maximal socle, is given. The general case is still open.

Throughout this paper, S, Z and J will stand for the right socle, the right singular ideal and the Jacobson radical of a ring R. A local ring R will mean one in which $J \neq 0$ and R/J is a division ring. For a subset X of R, X^0 and 0X will denote the right and left annihilators in R. It is true in general that $S \leq ^0J$, and if R/J is semisimple (in particular if R is local), then $S = ^0J$. We also note that Z and J contain no non-zero idempotents of R; hence a regular ring R has $Z = J = 0$.

The split extension $R \rtimes M$ of a ring R by an $(R - R)$-bimodule M, is the ring of all ordered pairs (r, m), $r \in R$ and $m \in M$; with addition defined componentwise and multiplication defined by $(r, m) \cdot (r', m') = (rr', rm' + mr')$.

This research was supported in part by the NSERC of Canada, grants A4033 and A8778.

© 1991 Australian Mathematical Society 0263-6115/91 $A2.00 + 0.00$
The set of positive integers will be denoted by \mathbb{N}.

1. General results

Lemma 1.1. Let R be a right pseudo-semisimple ring. If $R = A \oplus B$ for right ideals A and B, then A or B is semisimple.

Proof. Assume that A is not semisimple; then $A \cong R$. Hence $A = A_1 \oplus B_1$ with $A_1 \cong A \cong R$ and $B_1 \cong B$. Iterating this process, we obtain $R = A_n \oplus B_n \oplus \cdots \oplus B_1$ for every $n \in \mathbb{N}$. Hence R contains the right ideal $\bigoplus_{i \in \mathbb{N}} B_i$ with $B_i \cong B$. This right ideal is not finitely generated, and therefore not isomorphic to R. Thus it is semisimple, and hence B is semisimple.

Corollary 1.2. Let R be a right pseudo-semisimple ring which is not semisimple.

1. If $R = A \oplus B$ for non-zero right ideals A and B, then exactly one of them is semisimple and the other one is isomorphic to R. In particular neither A nor B is an ideal.

2. If e is a non-trivial idempotent of R, then $eR(1 - e) \neq 0$.

Lemma 1.3. If R is right pseudo-semisimple, then R/S is a principal right ideal domain.

Proof. It is obvious that R/S is a principal right ideal ring. Consider $a, b \in R$ with $a \notin S$ and $ab \in S$. Then $aR \cong R$, and hence $R = a^0 \oplus C$ where $C \cong aR \cong R$. Thus $a^0 \leq S$ by Lemma 1.1. Write $b = x + y$ with $x \in a^0$ and $y \in C$. Since $S \geq abR = ayR \cong yR$, we have $y \in S$. Therefore $b = x + y \in S$.

It follows by Lemma 1.3 that a ring R with zero right socle is right pseudo-semisimple if and only if it is a principal right ideal domain. We call a right pseudo-semisimple ring R non-trivial if $0 \neq S \neq R$.

Lemma 1.4. Let R be a non-trivial right pseudo-semisimple ring. The following hold in R:

1. S is the smallest essential right ideal;
2. $0^0 S = Z \leq S \cap J$;
3. $S = Z \oplus I$ where Z and I consist of homogeneous components (hence I is also an ideal);
4. $S = 0^0 x$ for every $0 \neq x \in J$, in particular if $J \neq 0$, then $S = 0^0 J$.
(5) if \(a \notin S \), then \(aR \cap S = aS \) and \(S = aS \oplus K \) where \(K \) is isomorphic to a direct summand of \(R \) (hence finitely generated);

(6) \(SZ = 0 \) and \(Z \) is torsion-free divisible as a left \(R/S \)-module.

PROOF. (1) Consider a non-zero right ideal \(A \) of \(R \). Then either \(A \leq S \) or \(A \cong R \), and hence \(A \) contains a copy of \(S \). In either case \(A \cap S \neq 0 \).

(2) \(Z = 0 \) follows by (1). This also proves that \(Z \neq R \) and hence \(Z \leq S \). Then \(Z^2 \leq ZS = 0 \), and consequently \(Z \leq J \).

(3) If \(X \) and \(Y \) are minimal right ideals with \(X \leq Z \) and \(Y \notin Z \), then \(XS = 0 \) and \(YS \neq 0 \). Thus \(X \neq Y \).

(4) That \(S \leq J \leq x \) is obvious. Consider an element \(a \in R \) such that \(a \notin S \). Then \(a^0 \leq S \) and is a direct summand of \(R \) (since \(aR \cong R \)). Therefore \(a^0 \cap J = 0 \) and hence \(ax \neq 0 \). This proves that \(x \leq S \), and consequently \(S = xJ = x \).

(5) That \(aS = aR \cap S \) follows by Lemma 1.3. Let \(S = aS \oplus K \). Then \(R \cong aR + S = aR \oplus K \).

(6) The result is trivial in the case \(Z = 0 \). Assume that \(Z \neq 0 \). Since \(Z \leq J \), \(S = 0 \) by (4). Hence \(Z \) is a torsion-free \(R/S \)-module.

Next we prove that \(Z \leq A \) for every right ideal \(A \) not contained in \(S \). Write \(Z = (A \cap Z) \oplus B \). Then \(A \oplus B \cong R \). Since \(B \leq Z \), \(B^2 = 0 \) by (2), and hence \(B = 0 \). Thus \(Z = A \cap Z \) and \(Z \leq A \).

Now consider an element \(a \in R \) such that \(a \notin S \). Since \(aR \cong R \), \(aR = bR \) with \(b^0 = 0 \). If \(br \in Z \), then \(brS = 0 \), and hence \(rS = 0 \) and \(r \in Z \) by (2). Therefore \(bR \cap Z = bZ \).

Now

\[
\begin{align*}
aZ &= aRZ = bRZ = bZ = bR \cap Z = Z.
\end{align*}
\]

Hence \(Z \) is divisible as a left \(R/S \)-module.

LEMMA 1.5. Let \(R \) be a non-trivial right pseudo-semisimple ring.

(1) \(Z = S \) if and only if \(S^2 = 0 \) and \(S \leq J \leq S^0 \).

(2) \(Z \neq S \) if and only if \(S \) contains a countable set of non-zero orthogonal idempotents and \(S^0 = J < S \).

PROOF. (1) is obvious.

(2) Assume that \(Z \neq S \). Then \(S^2 \neq 0 \), and hence \(S \) contains a non-zero idempotent. By an argument similar to that given in Lemma 1.1, we conclude that \(S \) contains a countable set of non-zero orthogonal idempotents \(\{e_n\} \).

Write \(S = (J \cap S) \oplus X \). It is clear that the projections of the \(e_n \) into \(X \) are still non-zero orthogonal idempotents, and hence \(X \) is not finitely generated. It then follows by Lemma 1.4(5) that \(J \neq R \). Thus \(J \leq S \), and since \(S^2 \neq 0 \), \(J < S \).
Let $B = S^0$. Then $J \leq B$ and so $J \leq B \cap S$. Moreover $(B \cap S)^2 = 0$, and hence $B \cap S \leq J$. Thus $B \cap S = J$ and $S = (B \cap S) \oplus X$. Again by Lemma 1.4(5) we get $B \neq R$ and hence $B \leq S$. Therefore $B = B \cap S = J$.

The converse is obvious.

Corollary 1.6. If R is a right pseudo-semisimple ring, then the right socle of R contains the left socle.

Proof. The result is obvious in the trivial cases. So assume that R is non-trivial and consider the two cases of Lemma 1.5.

If $Z = S$, study a minimal left ideal A. Assume that $A^2 \neq 0$. Then $A = Re$ for some idempotent e such that $0 \neq e \neq 1$. However, by Lemma 1.1, either $e \in S$ or $1 - e \in S$, in contradiction to $S^2 = 0$. Hence $A^2 = 0$, and $A \leq S$ by Lemma 1.3.

If $Z \neq S$, then $S^0 < S$ by Lemma 1.5. It follows readily that S is essential as a left ideal, and therefore contains the left socle.

The following generalization of our theorem in [3] characterizes right pseudo-semisimple rings with socle square zero.

Theorem 1.7. Let R be a ring with $S^2 = 0$. Then R is right pseudo-semisimple if and only if R/S is a principal right ideal domain and S is torsion-free divisible as a left R/S-module.

Proof. The 'only if' part follows from Lemma 1.3 and Lemma 1.4 ((2) and (6)).

Conversely, assume that R satisfies the conditions. Consider a right ideal A of R which is not contained in S, and select $x \in A - S$. Since R/S is divisible, $S = xS \leq A$. Now R/S is a principal right ideal domain implies $A = aR$ with $a^0 \leq S$. But then $a^0 = 0$ as R/S is torsion-free. Hence $A = aR \cong R$.

According to Lemma 1.5, a non-trivial right pseudo-semisimple ring with $S^2 = 0$ satisfies $0 \neq S \leq J \leq S^0$. We list examples of the four possible cases.

Examples 1.8. (1) $S = J = S^0$: any local ring R with $J^2 = 0$.

(2) $S = J < S^0$: $R = F[X] \rtimes F(X)$, the split extension of the polynomial ring over a field F by the rational function field, made into an $F[X]$-bimodule via the natural multiplication on the left and multiplication by the constant coefficient on the right; compare [3].

(3) $S < J = S^0$: the localization of (2) at (X).

(4) $S < J < S^0$: the localization of (2) at $(X) \cap (X + 1)$.
Theorem 1.9. Let \(R \) be a ring with \(S \neq 0 \) and \(S^2 = 0 \). Then \(R \) is right and left pseudo-semisimple if and only if \(R \) is a local ring with radical square zero.

Proof. The 'if' part is obvious. Conversely, assume that \(R \) is right and left pseudo-semisimple. Then the left-right analogue of Corollary 1.6 implies that \(S \) is the left socle of \(R \). Consider a minimal left ideal \(A \). Since \(A^2 = 0 \), \(A = Rx \) with \(x \in J \), and \(A \cong R/0x \). Since \(S = 0x \) by Lemma 1.4(4), \(S \) is a maximal left ideal. Then \(S = J \) as \(S \leq J \) and the result follows.

Proposition 1.10. Let \(R \) be a non-trivial right pseudo-semisimple ring. Then \(R/Z \) is right pseudo-semisimple with \(Z(R/Z) = 0 \). Moreover \(R/Z \) is semisimple if and only if \(R \) is a local ring with radical square zero.

Proof. Let \(T/Z \) be the right socle of \(R/Z \). Then it is obvious that \(S \leq T \). Moreover \(T/S \) is contained in the right socle of \(R/S \). Since \(R/S \) is a domain by Lemma 1.3, \(T = S \) or \(T = R \).

(i) Consider the case \(T = S \). Let \(A/Z \) be a right ideal of \(R/Z \) such that \(A/Z \notin S/Z \). Then \(A \notin S \) and hence \(A = aR \) for some \(a \in R \) with \(a^2 = 0 \). Since \(Z = aZ \) by Lemma 1.4(6), we obtain \(R/Z \cong aR/aZ = A/Z \).

Thus \(R/Z \) is right pseudo-semisimple.

Next we prove that \(Z(R/Z) = 0 \). If \(Z = S \), then \(R/Z \) is a domain by Lemma 1.3, and the result holds trivially. So, assume that \(Z \neq S \). Then by Lemma 1.4(3), \(S = Z \oplus I \) for a non-zero ideal \(I \) of \(R \). Consider \(x + Z \in Z(R/Z) \). Then \(xS \leq Z \), and hence \(xI \leq Z \cap I = 0 \). Consequently \(xR \not\cong R \), and therefore \(x \in S \). Then \(xZ = 0 \) by Lemma 1.4(6), and \(xS = x(Z \oplus I) = 0 \). Thus \(x \in Z \).

(ii) Now, assume that \(T = R \). Then \(R/Z \) is semisimple, and clearly \(Z(R/Z) = 0 \). We claim that \(Z \) is a maximal ideal. Let \(u \) be a central idempotent in \(R/Z \). Since \(Z \) is a nil ideal by Lemma 1.4(2), we may assume that \(u = e + Z \) for some idempotent \(e \in R \). According to Lemma 1.1, \(e \in S \) or \((1 - e) \in S \); we may assume that \(e \in S \). Then \(Z \cap eR = 0 \). Since \(eR(1 - e) \leq Z \), \(eR(1 - e) = 0 \). It then follows by Corollary 1.2(2) that \(e = 0 \) or \(e = 1 \). Thus \(R/Z \) has no non-trivial central idempotents, and is therefore simple artinian. This proves our claim. Since \(Z \leq S \cap J \) by Lemma 1.4(2), we obtain \(S = J = Z \). It then follows by Lemma 1.3 that
\(R/J \) is a division ring. Hence \(R \) is a local ring with \(J^2 = 0 \). The rest is obvious.

2. Maximal socle

We turn to the second type in Lemma 1.5. Here we do not know of an effective criterion for pseudo-simplicity. However, right pseudo-semisimple rings \(R \) of this type are characterized in the special case where \(S \) is a maximal right ideal. In view of Lemma 1.3, this additional assumption is automatically satisfied if \(R \) is regular.

We start by listing some properties of rings \(R \) with maximal socle. Note that such rings are local if and only if \(S^2 = 0 \). The proofs are straightforward, and hence are omitted.

Lemma 2.1. Let \(R \) be a non-local ring with maximal socle (that is, \(R/S \) is a division ring and \(S^2 \neq 0 \)). Then \(R \) has the following properties:

1. \(S \) is the only proper essential right ideal;
2. every right ideal is semisimple or a direct summand;
3. if \(R = A \oplus B \) for right ideals \(A \) and \(B \), then precisely one of them is semisimple;
4. \(0^S = Z \leq J < S \), and \(J^2 = 0 \);
5. \(J \leq A \) for every right ideal \(A \) not contained in \(S \);
6. \(R \) is regular if and only if \(J = 0 \) if and only if \(R \) is semiprime.

Consider an idempotent \(g \) in the socle of an arbitrary ring \(R \). It is well known that \((1 - g)R \cong R\) holds if and only if \(R \cong R \oplus gR \) if and only if there exist \(t, t^* \in R \) such that \(t^* t = 1 \) and \(t t^* = 1 - g \) (hence \(R(1 - g) \cong R \) also holds). We call \(t \) a shift for \(g \).

Now assume that for every isomorphism type of indecomposable idempotents \(f \) in \(S \), there is a representative \(f' \) for which there exists a shift. Then \(R \oplus fR \cong R \oplus f'R \cong R \). It follows that \(R \) has a shift for every idempotent \(e \in S \). Indeed, \(eR = \bigoplus_{i=1}^n e_i R \) with \(e_i \) indecomposable, and hence

\[
R \oplus eR = R \oplus e_1 R \oplus \cdots \oplus e_n R \cong R.
\]

Such a ring \(R \) is said to have enough shifts.

Theorem 2.2. Let \(R \) be a non-local ring with maximal socle. Then \(R \) is right pseudo-semisimple if and only if \(R \) has enough shifts.

Proof. From (1) and (2) of Lemma 2.1, the proof is obvious.
COROLLARY 2.3. Let R be a ring with maximal socle. The following are equivalent:

1. R is right and left pseudo-semisimple and regular;
2. R is right pseudo-semisimple and $J = 0$;
3. R is semiprime and has enough shifts.

PROOF. That (1) implies (2) and that (2) implies (3) are obvious.
Assume (3). Since R is semiprime, $S^2 \neq 0$ and therefore R is non-local. Then (3) implies (1) follows from Lemma 2.1(6) and Theorem 2.2.

The next proposition effectively reduces the study of pseudo-simplicity for rings with maximal socle to the non-singular case.

PROPOSITION 2.4. Let R be a non-local ring with maximal socle. Then R/Z is right pseudo-semisimple if and only if R is right pseudo-semisimple or $R = A \oplus B$, where A is a local ring with radical square zero and B is semisimple.

PROOF. It is clear that R/Z is semisimple for any ring $R = A \oplus B$ as described above; the ‘if’ part then follows from Proposition 1.10. Conversely, assume that $\overline{R} = R/Z$ is right pseudo-semisimple. The right socle of \overline{R} can either be \overline{S} or \overline{R}.

In the first case, for any right ideal $C \notin S$ we have $\overline{C} = c\overline{R}$ with $c^0 \leq Z$. Since $Z \leq C$ by Lemma 2.1 ((4) and (5)), we obtain $C = cR$. Also C is a direct summand of R, and hence is projective. Thus c^0 is a direct summand of R, and consequently $c^0 = 0$. Therefore $C \cong R$, and R is right pseudo-semisimple.

In the second case, we have $Z = J$ and $J^2 = 0$. Since \overline{R} is semisimple, $\overline{R} = \bigoplus_{i=1}^n T_i$, where each T_i is a simple artinian ring. Then $1 = \sum_{i=1}^n e_i$ where the e_i are orthogonal idempotents of R, $\overline{e_i}$ is central in \overline{R} and $\overline{e_i} \overline{R} = T_i$. Since for $i \neq j$, $e_i e_j = 0$ and R/S is a domain, all the e_i, except possibly one, are in S. We denote the exceptional one by e. By Lemma 2.1(3), $(1 - e)R \leq S$ and therefore $(1 - e)Re \leq Z \cap (1 - e)R = 0$. Also $eR(1 - e) \leq Z = 0S \leq (1 - e)R = e$, and hence $eR(1 - e) = 0$. Thus e is a central idempotent in R. Let $A = eRe$ and $B = (1 - e)R(1 - e)$. Then B is semisimple. As $A/J(A) = e\overline{R}$ is simple artinian, $J(A)$ is a maximal ideal in A. However $J(A) = A \cap J \leq A \cap S$; and so $J(A) = A \cap S$. Now $A/J(A) = A/(A \cap S) \cong A + S/S = R/S$, a division ring. It is obvious that $J(A) \neq 0$ and $J(A)^2 = 0$. Hence A is a local ring with radical-square zero.
Corollary 2.5. Let R be a non-local ring with homogeneous maximal socle. Then R is right pseudo-semisimple if and only if R/Z is.

We end this section by showing that any non-trivial right pseudo-semisimple ring R with $Z = 0$ can be embedded in one with maximal socle.

Proposition 2.6. Let R be a non-trivial right pseudo-semisimple ring with $Z = 0$. Then R is isomorphic to a subring of a right pseudo-semisimple ring R_* with $Z(R_*) = 0$ and $S(R_*)$ maximal.

Proof. Let $\Sigma = \{c \in R : c^0 = 0$ and $cS = S\}$. Clearly Σ is multiplicatively closed and $1 \in \Sigma$. If $xc = 0$ for $x \in R$ and $c \in \Sigma$, then $xS = xcS = 0$; hence $x \in Z = 0$. Thus Σ consists of regular elements. Now we prove that Σ is a right Ore set. Let $c \in \Sigma$ and $r \in R$. If $r \in S$, then $r \in cS$; consequently $r1 = cr'$ with $r' \in R$. Assume that $r \notin S$, and let $B = \{b \in R : rb \in cR\}$. It is clear that $S \leq B$. If $S = B$, then $cR \cap rR = rB \leq S$. This implies $\overline{cR} \cap \overline{rR} = 0$ in \overline{R}, in contradiction of the fact that \overline{R} is a principal right ideal domain. Thus $S < B$, and therefore $B = c' R$ with $c' \in \Sigma$ (see Lemma 1.4(5)). Then $rc' R \leq cR$, and hence $rc' = cr'$ for $r' \in R$.

Let $R_* = R_\Sigma$, the localization of R with respect to Σ, and identify R with its image in R_*. One can easily check that S_* is an essential right ideal in R_*, and is semisimple as a right R_*-module. Thus S_* is the right socle of R_*. We prove that S_* is a maximal right ideal. Clearly $S_* \neq R_*$. If $S_* < M$ for some right ideal M of R_*, then $M = DR_*$ for a right ideal D of R with $S < D$. Hence $D = dR$ with $d \in \Sigma$, and $M = dRR_* = dR_* = R_*$. Next we prove that R_* is right pseudo-semisimple. Let A be a right ideal of R. Then $A \leq S$ or $A = aR$ with $a^0 = 0$. Thus $AR_* \leq S_*$ or $AR_* = aRR_* = aR_*$.

Let $x \in Z(R_*)$. Then $xS_* = 0$, and hence $xS = 0$. Since $x = rc^{-1}$ for some $c \in \Sigma$, $rS = xcS = xS = 0$. Thus $r \in Z = 0$, and hence $x = 0$.

Remark. We note that in Proposition 2.6, Σ is actually the largest right Ore set of R, and hence R_* is the maximal right classical ring of fractions of R.

3. Subrings of full linear rings

If R is a ring with $Z = 0$, then the maximal right quotient ring of R is a regular right self-injective ring having R as a subring. Moreover if S is
essential in R, then $Q = \text{End } S_R$, and is therefore a product of full linear rings (compare [5, Chapter 12]); it is just one full linear ring if and only if S is homogeneous.

In this section we discuss the existence of pseudo-semisimple rings which are subrings of full linear rings; in view of Lemma 1.5(2), non-trivial examples can only occur with linear rings of infinite dimensional vector spaces.

Throughout this section, Q will stand for the endomorphism ring of a vector space V of infinite dimension over a division ring D. We shall call an element $t \in Q$ a shift endomorphism if it is an isomorphism onto a subspace of codimension one. For such t we choose a complement U of tV, so that $V = tV \oplus U$ and $\dim U = 1$. We define $t^* = t^{-1}$ on tV and $t^* = 0$ on U. Let $e = 1 - tt^*$. Then e is the projection onto U along tV, and hence is of rank one. A subring R of Q is said to contain a shift, if $t, t^* \in R$ for some shift t; it is clear that $e \in R$ and $(1 - e)R \cong R$ (also $R(1 - e) \cong R$).

Lemma 3.1. Let L be a non-zero left ideal of Q consisting of linear transformations of finite rank, and let T be a subring of Q having L as a two sided ideal. If T contains a shift and T/L is a division ring, then T is a right pseudo-semisimple ring with $S(T) = L$ and $Z(T) = 0$; moreover T is regular if and only if $\bigcap \{\ker x : x \in L\} = 0$.

Proof. Let f be an indecomposable idempotent in L. Since L is a left ideal in Q, f stays indecomposable in Q, and therefore fQ is a minimal right ideal. Let $ft \neq 0$ for some $t \in T$. Then there exists $q \in Q$ with $ftq = f$. Consequently $ftqf = f$ and $qf \in L \leq T$. This proves that fT is a minimal right ideal in T.

Given $x \in L$, there exists $p \in Q$ such that $xp = x$. Then $g = px$ is an idempotent in L, and $xT = xgT \cong gT$. One may write $g = g_1 + \cdots + g_n$ where the $g_i \in Q$ are orthogonal idempotents of rank one. However $g_i = g_i g \in L$, and it follows by the preceding argument that $g_i T$ is a minimal right ideal. Therefore $xT \cong gT$ is semisimple. Hence L is contained in the right socle of T. Since T contains a shift, T is not semisimple. Then T/L is a division ring implies that L is the right socle of T.

Our argument also shows that any minimal right ideal in L is generated by a rank one idempotent. Since rank one idempotents are isomorphic in Q, they are also isomorphic in T (again since L is a left ideal in Q). Thus L is homogeneous. Let t be the given shift in T. Then it is clear that the rank one idempotent $e = 1 - tt^*$ is in L, and hence all rank one idempotents in L are isomorphic to e. Then T is right pseudo-semisimple by Theorem 2.2.
Given \(0 \neq y \in Q \), then \(0 \neq yQe \leq L \leq T \) and \(Qe \leq L \leq T \). Hence \(T \) is essential in \(Q_T \), and therefore \(Z(T) = 0 \). (This also proves that \(Q \) is the maximal quotient ring of \(T \).)

Now we prove the last statement of the theorem. In view of Lemma 1.5(2) and Lemma 2.1(6), \(T \) is regular if and only if \(L^0 = 0 \). Let \(W = \bigcap \{ \ker x : x \in L \} \). If \(W \neq 0 \), then there exists \(q \in Q \) such that \(0 \neq qeV \leq W \) (since \(QeV = V \)), and therefore \(0 \neq qe \in L^0 \); thus \(L^0 \neq 0 \). Conversely, assume that \(W = 0 \) and let \(r \in L^0 \). Then \(rV \leq \ker x \) for every \(x \in L \), and therefore \(r = 0 \). This proves that \(L^0 = 0 \) holds if and only if \(W = 0 \).

At this point it is convenient to discuss some examples. We start with [2, Example 4.26], which is originally due to G. M. Bergman, and represents a regular, but not unit-regular ring, in which perspectivity is transitive. This example was suggested to us by K. R. Goodearl through a communication by K. M. Rangaswami. Similar examples can be obtained from the more general construction to be discussed in Proposition 3.5.

Example 3.2. (A regular right and left pseudo-semisimple ring which is not semisimple.) Let \(V = F[[t]] \), the power series ring over a field \(F \) considered as an \(F \)-space, \(Q = \text{End } V_F \), and \(F((t)) \) the Laurent series ring, that is, the quotient field of \(F[[t]] \). Let

\[
L = \{ x \in Q : \exists n \in \mathbb{N} \ (xt^nV = 0) \}, \\
T = \{ x \in Q : \exists n \in \mathbb{N}, \ a \in F((t)) \ (x - a) t^nV = 0) \}.
\]

It is obvious that \(t \) is a shift and \(t^* \in T \). One can verify that \(L \) is a left ideal of \(Q \) consisting of linear transformations of finite rank, \(T \) is a subring of \(Q \) having \(L \) as a two sided ideal and \(T/L \cong F((t)) \). Moreover \(\bigcap \{ \ker x : x \in L \} = \bigcap_{n \in \mathbb{N}} t^nV = 0 \). Thus \(T \) is right pseudo-semisimple and regular by Lemma 3.1. According to Corollary 2.3, \(T \) is also left pseudo-semisimple.

Example 3.3. (A non-singular right pseudo-semisimple ring which is not left pseudo-semisimple.) Modifying the above example by taking \(V = F[[t]] \oplus F((t)) \), one obtains a right pseudo-semisimple ring \(T \) with \(Z(T) = 0 \). However

\[
J(T) = \bigcap \{ \ker x : x \in L \} = F((t))
\]

Thus \(T \) is not left pseudo-semisimple in view of Corollary 2.3.

A right pseudo-semisimple ring \(R \) in which \(Z \neq S \) satisfies \(0 \leq Z \leq J < S \). Examples 3.2 and 3.3 correspond to the cases \(0 = Z = J \) and \(0 = Z < J \), respectively. Examples of the other two cases can be obtained using split extensions.
Let A be any right pseudo-semisimple ring with $Z(A) = 0$ and $A/S(A)$ a division ring. Let $R = A \times A/S(A)$. Then R has right singular ideal $0 \times A/S(A)$, right socle $S(A) \times A/S(A)$ and Jacobson radical $J(A) \times A/S(A)$; and R is right pseudo-semisimple by Proposition 2.4.

For the case $0 < Z = J$ (respectively $0 < Z < J$), take $R = T \times T/L$ where T is the ring of Example 3.2 (respectively 3.3).

Lemma 3.4. Let $t \in Q = \text{End} V_D$ be a shift. If q is a non-zero polynomial over the centre of D, then $q(t)$ has infinite rank.

Proof. Let $q = a_m X^m + \cdots + a_n X^n$ where $m \leq n$ and $a_m \neq 0$. Without loss of generality we may assume that $a_m = 1$. Let $K = \ker q(t)$. Then clearly $t^i K \leq K$ for every $i \in \mathbb{N}$. Now

$$0 = t^m q(t) K = (1 + a_{m+1} t + \cdots + a_n t^{n-m}) K,$$

and so $K \leq tK$. Thus $K = t^i K \leq t^i V$ for every $i \in \mathbb{N}$. Writing $V = tV \oplus U$, we get

$$V = t^i V \oplus t^{i-1} U \oplus \cdots \oplus tU \oplus U.$$

Therefore $K \cap \bigoplus_{i=0}^{\infty} t^i U = 0$, and hence K has infinite codimension. Thus $q(t)$ is of infinite rank.

Let A denote the prime subring of D, that is, the subring of D generated by the identity element. We shall say that the pair (t, L) is permissible if t is a shift endomorphism and L a non-zero left ideal of Q consisting of linear transformations of finite rank such that:

(P_1) $\forall 0 \neq q \in A[X] \forall x \in Q \ (x \in L \Leftrightarrow xq(t) \in L)$;

(P_2) $\forall 0 \neq q \in A[X] \exists y \in L \ (\ker q(t) \cap \ker y = 0)$.

Remark. One particular choice of L is the ideal consisting of all linear transformations of finite rank. For this choice, a shift $t \in Q$ is such that (t, L) is permissible if and only if $\ker q(t)$ has finite dimension and $\text{Im} q(t)$ has finite codimension for all $0 \neq q \in A[X]$.

A shift t satisfying the above requirements exists in every full linear ring $Q = \text{End} V_D$. Indeed $A[X]$ is countable, and therefore the central localization $D[X, X^{-1}]_\alpha$ at the non-zero elements of $A[X]$ is a countable dimensional D-space. Consequently $V \cong D[X] \oplus D[X, X^{-1}]^{(\dim V)}$. Define t as componentwise multiplication by X. This yields a shift with $\ker q(t) = 0$ for every $0 \neq q \in A[X]$. Moreover, if q is of degree n, then by the Euclidean Algorithm

$$D[X] = q(X) D[X] \oplus D \oplus DX \oplus \cdots \oplus DX^{n-1}.$$
Clearly $q[X]D[X, X^{-1}] = D[X, X^{-1}]$. Therefore $\text{Im} q(t)$ has finite codimension.

The following proposition ensures that subrings as described in Lemma 3.1 exist in every infinite-dimensional full linear ring.

Proposition 3.5. Let (t, L) be a permissible pair. Then
\[T = \{ x \in Q : \exists p, 0 \neq q \in A[X] \ (xq(t) - p(t) \in L) \} \]
is a non-singular right pseudo-semisimple ring with L as its right socle and $T/L \cong A(X)$, the quotient field of $A[X]$.

Proof. From Lemma 3.4 and condition (P_1), a routine verification establishes that T is a subring of Q, and $\varphi: x \rightarrow p/q$ is a well defined ring homomorphism of T into $A(X)$. To show that φ is surjective consider any $p/q \in A(X)$. By (P_2) we have $y \in L$ such that $\ker q(t) \cap \ker y = 0$. Hence $q(t)|_{\ker y}$ is one-to-one. Let $V = q(t)\ker y \oplus C$. Then the mapping x given by
\[x(q(t)v) = p(t)v, \quad v \in \ker y; \quad x|_{C} = 0 \]
is a well defined element in Q. Let $\alpha = xq(t) - p(t)$. Then $\alpha|_{\ker y} = 0$. Write $V = \ker y \oplus W$. Since $yW \cong W$, there exists $\beta \in Q$ such that $\beta y|_{W} = 1$. It then follows that $\alpha = \alpha \beta y \in L$. This shows that $x \in T$ as well as $\varphi(x) = p/q$.

It is clear that $\ker \varphi = \{ x \in Q : \exists 0 \neq q \in A[X] \ (xq(t) \in L) \}$. Then by (P_1), $L = \ker \varphi$. Hence L is an ideal in T and $T/L \cong A(X)$. Now $t1 - t = 0$ and $t^*t - 1 = 0$ imply that $t, t^* \in T$. The result now follows from Lemma 3.1.

Theorem 3.6. A ring R is a non-singular right pseudo-semisimple ring with homogeneous maximal socle if and only if

1. R is a subring of a full linear ring Q,
2. there exists a permissible pair (t, L) in Q with L an ideal in R and $R/L \cong A(X)$, and
3. the ring T corresponding to (t, L), as in Proposition 3.5, is a subring of R.

Proof. The 'if' part follows from Lemma 3.1 as $t, t^* \in T \leq R$.

'Only if'. Since R is right non-singular and S is homogeneous, the maximal quotient ring Q of R is a full linear ring; $Q = \text{End} \ V_D$. Also $Q \cong \text{End} S_R$, and hence S is a left ideal of Q consisting of linear transformations of finite rank. By Theorem 2.2, R has a shift for some indecomposable idempotent $e \in S$. As e is a rank one projection, t is a shift.
endomorphism in Q. We verify conditions (P_1) and (P_2) for the pair (t, S).

Let $0 \neq q \in A[X]$. Then $q(t)$ is not of finite rank by Lemma 3.4 and hence not in S. It follows by Lemma 2.1 ((2) and (3)) that $R = fR \oplus (1 - f)R$ such that $q(t)R = fR$ and $1 - f \in S$. Let $f = q(t)r$, $r \in R$. Then $rq(t)$ is also an idempotent, and $rq(t) \notin S$; otherwise $q(t) = fq(t) = q(t)rq(t) \in S$, a contradiction.

For the non-trivial implication of (P_1), assume that $xq(t) \in S$ for some $x \in Q$. Then $xf = xq(t)r \in S$. Also $x(1 - f) \in S$. Thus $x \in S$.

To prove (P_2), note that $1 - rq(t) \in S$ by Lemma 2.1(3). Clearly $\ker q(t) \cap \ker (1 - rq(t)) = 0$.

Now (P_1) and (P_2) being established, we may form the subring T of Q according to Proposition 3.5. Let $x \in T$. Then $xq(t) - p(t) = s \in S$, for some p, $0 \neq q \in A[X]$. With f and r as before, we obtain

$$xf = xq(t)r = (p(t) + s)r \in R,$$

and $x(1 - f) \in S \subseteq R$. Hence $x \in R$.

Added in Proof

Using Lemma 3.1, the referee suggested the following example of a regular pseudo-semisimple ring which is not semisimple (a similar example was suggested by Mark L. Teply). Let Q be the ring of $\mathbb{N}_0 \times \mathbb{N}_0$ column-finite matrices over a field F, let $L = \text{Socle } Q$ (set of matrices with a finite number of non-zero rows), and let M be the subset of Q consisting of all matrices of the form.

$$
\begin{bmatrix}
 a_0 & a_1 & a_2 \\
 b_1 & a_0 & a_1 & a_2 & \cdots \\
 b_2 & b_1 & a_0 & a_1 & a_2 \\
 \vdots & \ddots & \ddots & \ddots & \ddots \\
 b_2 & b_2 & b_1 & \cdots & a_0
\end{bmatrix},
$$

where only a finite number of the b_i are non-zero. Let $T = L + M$. It is clear that T is a ring which contains the standard shift

$$
\begin{bmatrix}
 0 \\
 1 \\
 \vdots
\end{bmatrix},
$$

$\theta = \begin{bmatrix}
 1 \\
 \vdots
\end{bmatrix},$
L is a two sided ideal in T, and $T/L \cong F((t^*))$ where

$$t^* = \begin{bmatrix}
0 & 1 \\
1 & 1 \\
1 & 0 \\
& & \ddots
\end{bmatrix}.$$

The authors are thankful to the referee for other comments and suggestions.

References