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A THEOREM FOR ENUMERATING CERTAIN TYPES 
OF COLLECTIONS 

LEON OSTERWEIL 

Introduction. In this paper, we are concerned with proving a formula for 
the computation of what is variously called the pattern inventory (e.g., see 
De Bruijn [2]) or the configuration counting series (e.g., see Harary [3]). 
Rather than redeveloping a large number of definitions, we shall assume the 
reader is already familiar with the terminology used by De Bruijn [2]. 

Polya, in a celebrated paper [4], proved a formula for computing the pattern 
inventory for all functions / defined on a set D (where D is acted on by a 
permutation group G), and mapping into a set R (which is called the store) 
for which the "store enumerator" in known. Polya's result assumes that the 
weight of one of these functions is given by J2deD w(f(d)) where w is the weight 
defined on the objects in the store. 

Polya's basic theorem has been adapted and extended in many ways. For 
example, Polya himself [4] describes a formula for computing the pattern 
inventory for all one-to-one functions defined on a set D (acted upon by a permu
tation group G), and mapping into R. De Bruijn [1] has proved a theorem 
specifying a formula for computing the pattern inventory for all functions 
from D into R where D is acted on by the permutation group G, and R is 
acted upon by the permutation group H. 

In this paper we present another "Polya like" result. We assume that 
D is {1, 2, . . . , i\, and consider the class of all one-to-one functions defined 
on D and mapping into a store R, for which the inventory, or store enumerator, 
is known. We hypothesize a /-tuple (ni, n2, . . . , nt), and use it to define the 
weight of a function to be £f=i UiW{f{i)) (where w is the weight defined on 
the objects in the store). We stipulate that G, the permutation group defined 
on {1, 2, . . . , t], be isomorphic to Scl X SC2 X . . . X SCM where ct = 
\{r\nr = i}\, M = max(»i, n2, . . . , nt) and Sk is the symmetric group on k 
letters. Based on these hypotheses, we prove a formula for computing the 
pattern inventory for this class of functions. This pattern inventory proves 
useful in solving an interesting class of enumeration problems. 

As an example of the type of problem which can be solved using this result, 
consider the following. Suppose R, the store, is literally a retail store (or more 
precisely the collection of items sold in a particular retail store). Let C(x) = 
X?=i CiX1 be the store inventory, defined such that ct is the number of items in 
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the store priced at i cents per unit. A one-to-one function from {1, 2, . . . , t] 
into R would thus correspond to a shopper's selection of t distinct items. 
Specifying the /-tuple (»i, n2, . . . , nt) and using it to compute the weight of 
such a function, we see that this weight must correspond to the cost of buying 
n\ units of item 1, n2 units of item 2, . . . . Hence the pattern inventory for 
this class of functions tells us the number of ways in which the cost of buying 
U\ units of one item, n2 units of a different item, . . . , nt units of a /th item, will 
come to i cents, for all values of i. 

1. In order to state our theorem and some subsequent results precisely, we 
develop some notation and definitions of our own. 

1.1. Definition. Let p(x) be a polynomial in x. The notation Sij[p(x)] is 
defined by st

j[p(x)] = p^x*), and is referred to as the composition of st
j over 

p(x). Moreover, the composition is extended to polynomials in the variables 
Si, $2, $z, • • . with rational coefficients by requiring it to be left distributive 
over addition and multiplication. Thus 

(astl'i + bsi2
j*si3

j*)[p(x)] = astl'i[p(x)] + bsi2
j*[p(x)]su

j*[p(x)] 
= apiifr'1) + bpj2(xiz)pj3(xis). 

In general we shall be interested in performing compositions over counting 
polynomials. Hence we now carefully define what a counting polynomial is. 

1.2. Definition. A weight function, w : C —* Z+ , is a function mapping C, a 
class of objects, into Z+ , the positive integers, such that 

jz = {c G C\w(c) = z} 

if finite, for all z G Z+ . If c G C, then we often refer to w(c) as the weight 
of c. 

1.3. Definition. A weighted class K, is defined to be a class of objects C, 
together with a weight function on C. 

Thus we see that a store is an example of a weighted class. 

1.4. Definition. Let K be a weighted class with w its weight function; p{x), 
the counting polynomial for K, is defined by p(x) = S7=i ajX*> where 

a, = \{ce C\w(c) =j}\. 

1.5. Definition. Let K be the weighted class consisting of C, a store, along 
with its weight function. Suppose t G Z+ . We shall call / a t-function into K 
if/ is one-to-one and maps {1, 2, . . . , t) into C. 

Our goal is to compute the pattern inventory for the /-functions into K. 
We define the weight of/, a /-function into K, as follows. Let (nu n2j . . . , nt) 
be a finite sequence of positive integers. Then W(f), the weight of/, is defined 

byW(/) * EÏ-m<w(/(*)). 
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We now need one more definition. 

1.6. Definition. Let K be a weighted class with weight function w, and let 
(»i, n2, . . . ,nt) be a /-tuple of non-negative integers. The class of functions 
into K of type (n\, n2, . . . , nt) is defined to be a weighted class whose objects 
are all the /-functions into K, and whose weight function is given by 

W(f) = Z n<«;{/(«)}. 

2. We can now state our first enumeration theorem: 

2.1. THEOREM. Let K be a weighted class whose counting polynomial is p{x). 
If we denote the function inventory for the class of functions into K of type 
(nu n2, . . . , nt) by Q(nu n2} . . . , nt), then 

Q(nh n2j . . . nt) = z n (-Dm-\\B\ - D\SAB \P(x)], 

where <j>(t) denotes the set of all partitions of {1, 2, . . . , /}, P(P) the set of all 
blocks of any such partition, and AB = J^^B n^ 

Proof. In this proof we shall talk about functions into K of type (ni, . . . , nt). 
Technically, these are just /-functions; intuitively, they represent possible 
ways of choosing an ordered sequence of t distinct objects from K, then 
repeating the ith one nt times. In this proof we refer, unambiguously, to 
functions into K of type (wi, n2, . . . , nt) as functions of type («i, n2, . . . , nt). 

The proof is by induction on t. Assume / = 1. We wish to determine Q(n), 
the function inventory for functions/ of type (n), where the store enumerator 
for the store C is given by p{x). There is a clear one-to-one correspondence 
between the objects in C and all possible functions of type in). For if c G C, 
then we associate the function of type (n) for which/( l ) = c. For this function, 
W(f) = X)î=i niw(f(i)) = nw(c). Hence it is clear that Q(n) = p(xn). 

According to the statement of the theorem, 

Q(n) = ( - l V - H l - l)!sn[p(x)] = l-sn[p(x)] = p(xn). 

Hence the assertion is true for / = 1. 
Now assume the assertion is correct for t — 1. We wish to verify it for t. 
We recall that if / is a function of type (wi, n2, • . . , nt), then it must be 

one-to-one. If this is so, then: 

(2.1.1) Q(nh n2, . . . , nt) = snlsn2 . . . snt[p(x)] -

JL Q ( H nelti, X) nc2,i, • • • , Z) nckti) 
P£t(t) \ci,ieCi C2,i£C2 ck,i€Ck / 

where \p(t) denotes the set of all partitions {Ci, C2, . . . , Cu, . . . , Ck] of 
{1, 2, . . . , t) which are not the discrete partition {!}, {2}, . . . , {t}. 
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Each term of the summation computes the weight of a different non-one-
to-one function mapping {1, 2, . . . , t] into the objects enumerated by p(x). 
The snlsn2 . . . snt[p(x)] term computes the sum of the weights of all functions 
from {1, 2, . . . , t\ into the objects enumerated by p(x). Thus, since the 
summation includes all such non-one-to-one functions, the expression indeed 
represents the effects of all one-to-one functions from {1, . . . , t] into C, and 
hence computes the sum of the weights of all functions of type (wi, . . . , nt). 
Since no P of the summation in (2.1.1) is the discrete one, k ^ t — 1. Hence 
by our inductive assumption, the assertion of the theorem is true for the 
summands, and we can write: 

(2.1.2) Q[ £ nelti, £ nC2ti, . . . , £ n, 

where 0(C\, C2, . . . , Ck) denotes the set of all partitions {Bi, . . . , Be] of 
{Ci, . . . , Cfc}, P(R) the set of all blocks of any such partition, and 

Ci£B j£Ci 

Using (2.1.2) we can rewrite (2.1.1) as: 

(2.1.3) Q(nh n2, . . . , nt) = \snisn2 . . . snt -

D Z 11 (-l)m-\\B\ - l)\srB) [p(x)]. 
pent) Ree(ci,C2 Ck) BZP(R) / 

We must now verify that the coefficients of all terms to the right of the equal 
sign equal coefficients yielded by the assertion of the theorem. 

The theorem asserts that the coefficient of snisn2 . . . snt is 111=1 (—1)°(0) ! = 
1* = 1. We note that on the right of the equality snisn2 . . . snt appears only 
once, as the result of the discrete partition, and has coefficient 1. So the 
equality holds for the snisn2 . . . snt term. 

We now show that the equality also holds for the sni+n2+...+nt term. The 
assertion of the theorem is that the sni+n2+...+nt term of the polynomial 
Q(ni, n2, . . . , nt) arises only from the partition C\ (where G = {1, 2, . . . , /} ). 
Hence we are interested in the value: 

(?(»i + n2 + . . . + nt) = ( - l ) ' - 1 ^ - l)fc»i+...+»i[>(*)]. 

We must thus verify that the coefficient of the sni+n2+,..+nt[p(x)] term yielded 
by the summation on the right of the equal sign in (2.1.3) is (—1)'_1(£ — 1)! 

Clearly the only sources of sni+n2+...+nt[p(x)] terms in (2.1.3) result from the 
cases where R = {^ij. Hence, any non-discrete partition P = {G, . . . , Ck] 
of {1, 2, . . . , t) followed by the partition R = {£1} of the {G, C2, . . . , Ck} 

-
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will yield an 5ni+n2+ . . .+nt term. Hence the sum of the coefficients of these 
terms is: 

£ E (-ir\k-i)\ 
fc=l v(t,k) 

where v(t, k) denotes all the ways of dividing / objects into k non-void subsets. 
We recognize that the number of ways of partitioning / objects into k non-

void subsets is given by S2(t, k), the Stirling number of type 2. Moreover, 
(k — 1)! = Si(k, 1), the Stirling number of type 1. Hence the coefficient of 
sni+n2+...nt[p(x)l yielded by the right side of (2.1.3) is now seen to be 

/ f c = l 

A famous combinatorial identity (see, for example, [5]) is 

i (-Dk-is2(t,k)s1(k, i) = {j'Hj > \ 

We began the proof by showing that the theorem is true for / = 1. Hence 
we need only consider the case where t > 1. In this case 

- £ \ - i ) * ~ ^ 2 M ) S i ( M ^ = 

- [ 0 - ( - l ) ' - ^ ^ * ) ^ , 1)] = ( - l ) ' - x ( ; - 1)! 
as required. 

Let us now consider whether the equality in (2.1.3) holds for the general 
term 
(2.1.4) sQl Sa2 . . . sQf 

where 0^ = £#,*€Gi ngjti and the Gj are disjoint with Uy=i Gj = {1, 2, . . . , t]. 
Clearly terms such as (2.1.4) can arise only from those terms of the sum

mation on the right side of (2.1.3) for which R = {Blf B2l . . . , Bf}} where 
each Bt — {A ix, A i2, . . . , A iz\ and the A tj are such that U*=i A ij = Gt. 

The sum of the coefficients of all terms described above can be seen, by 
reasoning analogous to the above, to be 

\Gi\ \Gi\ \Gf\ 

(2.1.5) - £ £ . . . . £ ( ( - l )* 1 _ 1 5 , ( |G i | , *i)Si(*x, 1) • • • • 

+ ( - l ) , f f l , - 1 5 I ( | G i | , | G i | ) 5 i ( | G 1 | , l ) . . . 
(-l)to/iS2(\G,\, iCDSidG,!, 1). 

Note that the /-fold summation in (2.1.5) takes into account all partitions, 
including the discrete partition, of { 1 , . . . / } which are subsequently sub
partitioned into {J3i, B2, . . . , Bf\. The additive term is included to exclude 
the effect of the {Bly B2, . . . , Bf} partition of the discrete partition of 
{ 1 , 2 , . . . / } . 
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We rewrite (2.1.5) as 

(2.1.6) - £ ( - l )* 1 - 1 5 s ( |Gi | , *i)Si(Jfei, 1) . . . . 
ki=l 

I 0/1 
£ (-l)kf-1S2(\Gf\tkf)S1(kfil) 

kf=l 

+ ( - l ) I O l , - 1 5 s ( |Gi | , | G i | ) 5 i ( | G i | , l ) . . . . 

(-lyo'^SiQGrllGfDSiQGrll) 

= —ô(|C?i|, 1) • • • • H\Gf\, 1) + i-iy^-Wd] - 1 ) ! . . . . 

(-1)|CM|G/| - D! 

where d(i,j) is the "Kronecker Delta" defined by à(i,j) = 

We need only consider the case where \Gt\ > 1 for some 1 g Î g / , for if 
\Gi\ = 1 for all i, 1 ^ i ^ / , then {Gi, G2, . . . , G,} would represent the dis
crete partition of {1, 2, . . . , t), and we would be considering the term sni . . . swt, 
for which the equality in (2.1.3) was already verified. Hence, assuming 
\Gi\ > 1 for some i, 1 ^ i ^ / , then I I {=i e>(|Gi|, 1) = 0, and the sum of the 
coefficients of all terms such as described in (2.1.4) which arise from the 
summation on the right side of (2.1.3) is seen to be 

É ( - l ) , 0 l l _ 1 ( | G ! i | - l ) ! . 

This is seen to be the assertion made by the theorem. Hence (2.1.3) is verified 
to be an equality. The coefficient of each term in the righthand summation is 
equal to the coefficient yielded by applying the assertion of the theorem. 
Hence the induction has been verified. 

Thus we have now established a formula for the computation of the function 
inventory for the class of functions into K of type (ni, n2, . . . , nt). We seek 
a formula for the pattern inventory. 

The pattern inventory is an enumeration of the equivalence classes of the 
functions enumerated by the function inventory. Hence a pattern inventory 
is always relative to a particular equivalence relation on the functions. It is 
usual for the equivalence relation to be induced by a permutation group on 
the elements of the domain D in the following way. 

Let G be a permutation group acting on the elements of D. L e t / i , / 2 be two 
functions denned on D. We say t h a t / i is equivalent t o / 2 provided that there 
exists g € G such that / i (g(d)) = Md) for all d G D. 

Hence in our case it would seem that we could allow G to be any permutation 
group on t symbols, and compute the pattern inventory for the induced 
equivalence classes of functions. A problem arises, however, due to our choice 
of weight for the functions of type (wi, n2} . . . , nt) into K. If we allow G to 

0 if i 9± j 
1 if i = j-
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be any group of /-permutations, then it is conceivable that equivalent functions 
might have different weights. It is difficult to see what meaning the pattern 
inventory might have under such circumstances. 

For this reason, we shall take G to be SC1 X SC2 X . . . X SCM the product 
of the symmetric groups on Ci, c2, . . . , cM elements, where the ct are defined 
by 

Ci = \{r\nr = i}\, and M = max{wi, n2j . . . , nt}. 

Thus two functions cannot be equivalent unless their weights are equivalent. 
We shall now compute the pattern inventory of the (wi, n2, . . . , nt) functions 
into K relative to the permutation group 5C1 X SC2 X SCM. We suggest what 
these patterns intuitively represent by the following definition. 

2.2. Definition. A collection of K of type (wi, n2, . . . , nt) is an equivalence 
class of functions into K of type (#1, n2, . . . , nt), where the equivalence 
relation on the functions is induced by the permutation group Scl X 
SC2 X . . . X SCM acting on {1, 2, . . . , t). 

2.3. THEOREM. Let N(rii, n2, . . . , nt) be the counting polynomial for the 
collections of K of type (ni, n2, . . . , nt). Then 

N(nu n2f . . . , nt) = (ci!c2! • • • ^ M ! ) _ 1 0 ( ^ I , n2l . . . , nt) 

where ct = \{r\nr = i}\, M = max(^i, n2, . . . , nt). 

Proof. The proof easily follows from the observation that each equivalence 
class must consist of exactly C\\c2\ . . . cM\ functions. 

3. A fairly immediate and straightforward application of 2.3 is the following: 
A tree is commonly defined to be a connected graph containing no circuits. 

The term forest is often used to denote a collection of trees. We now define a 
forest of type (wi, n2, . . . , nt), or more simply a (n1} n2} . . . , ^)-iorest , to be 
a forest consisting of n± isomorphic copies of some tree, n2 isomorphic copies of 
a different tree, . . . , and nt isomorphic copies of still another tree. 

The application of this theorem to the problem of enumerating (wi, . . . , nt)-
forests is clear. We take C to be the collection of all trees, and w to be the 
function which assigns to each tree the number of points it contains; p(x) is 
taken to be the corresponding counting polynomial for trees. 

This counting polynomial for trees is known to be given by 

t(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 + . . . . 

According to 2.3, the counting polynomial for (ni, n2, . . . , nt)-forests is 
given by N(nu n2} . . . , nt). 

Hence, as an illustration, let us enumerate (1, 1, 2)-forests: 

^ ( 1 , 1 , 2 ) = (2!l!0!)-1((- l)22!/(x4) + {(-iy(l)\(-l)°(0)\}{t(x*)t(x) 

+ t2(x2) + t(x)t(x*)} + {(-l)o(0)l}H(x2)t2(x)) 

= è(2*(x4) - 2t(x*)t(x) - t2(x2) + t(x2)t2{x)). 
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We compute: 

t(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 

t(x2) = x2 + x4 + x6 + 
t(xz) = xz + x6 + . . . . 
/(x4) = x4 + 

t(xz)t(x) = x4 + x5 + x6 + 3x7 + 4x8 + 7x9 

t2(x2) = x4 + 2x6 + 3x8 + 
t(x2)t2{x) = x4 + 2x5 + 4x6 + 8x7 + 15x8 + 

Hence: 
iV(l, 1, 2) = K2x7 + 6x8 + 16x9 + . . . 

= x7 + 3x8 + 8x9 + 

As a check, we show the eight (1,1, 2)-forests on nine 

+ .... 

+ .... 

30x9 + 

.) 

points: 

/ 
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