Can. J. Math., Vol. XXVIII, No. 5, 1976, pp. 986-991

A COMMUTATIVITY CONDITION FOR RINGS

HOWARD E. BELL

The object of this paper is to prove the following theorem, a special case of which was previously explored in [1].

THEOREM. Let R be any associative ring with the property that

(†) for each $x, y \in R$, there exist integers $m, n \ge 1$ for which $xy = y^m x^n$.

Then R is commutative.

Proof of the Theorem. We note at once that any ring R satisfying (\dagger) is a duo ring and hence has its idempotents in the center (see [7]). Moreover, if $a, b \in R$ are such that ab = 0, then ba = 0 also, so that all annihilators are two-sided and there is no distinction between right and left zero divisors. We shall denote the annihilator of a subset T of R by A(T), and the set of zero divisors of R (including 0) by D.

LEMMA 1. If R is a division ring satisfying (\dagger) , then R is commutative.

Proof. Suppose that R is a counterexample, and let a and b be a pair of noncommuting elements. Then $ab = b^m a^n = (a^n)^s (b^m)^t$, where at least one of n and m is greater than 1. If ns = 1, then mt > 1 and $b^{mt-1} = e$, the identity element of R; similarly, if mt = 1, $a^{ns-1} = e$. The only other possibility is that ns > 1 and mt > 1, in which case $a^{ns-1}b^{mt-1} = e$. Thus, R has the property that

(*) for each $x, y \in R$, there exist positive integers i, j with $x^i y^j = y^j x^i$.

For each $y \in R$, define $K_y = \{x \in R | xy^i = y^i x \text{ for some positive integer } i\}$. If there exists $y \in R$ for which $K_y \neq R$, then (*) implies that R is radical over a proper subring and is thus commutative by a theorem of Faith [4; 6]; on the other hand, if $K_y = R$ for all $y \in R$, commutativity of R follows from Theorem 1 of [5]. This completes the proof of Lemma 1.

LEMMA 2. Let R be any ring satisfying (\dagger) . If $a, b \in R$ are elements such that a(ab - ba) = b(ab - ba) = 0, then a and b commute. Moreover, a(ab - ba)x = b(ab - ba)x = 0 implies (ab - ba)x = 0.

Proof. Since $a^{2}b = aba = ba^{2}$ and $b^{2}a = bab = ab^{2}$, we have $a^{i}b = ba^{i}$ and $ab^{i} = b^{i}a$ for all $i \ge 2$. Thus, if $ab = b^{m}a^{n}$ and $ba = a^{j}b^{k}$, we get $ab = a^{n}b^{m}$ and $ba = b^{k}a^{j}$; and it follows that $ab = b^{m}a^{n} = b^{m-1}a^{j}b^{k}a^{n-1} = b^{m+k-1}a^{n+j-1} = b^{m+k-1}a^{n+j-1}$

Received September 5, 1975 and in revised form, June 4, 1976.

 $a^{n+j-1}b^{m+k-1} = a^{j-1}a^nb^mb^{k-1} = a^jb^k = ba$. The second assertion of the lemma is obtained by applying the same argument to the ring R/A(x).

Of course, it will suffice to show that subdirectly irreducible rings satisfying (†) are commutative. Since subdirectly irreducible duo rings with no non-zero divisors of zero are division rings, we may assume that D is non-trivial. In this case, D = A(S), where S denotes the heart of R (the unique minimal ideal); furthermore, if $R \neq D$, then S = A(D) and R/D is a division ring. (These results are all contained in the proof of Theorem 4 of [7].)

LEMMA 3. Let R be a subdirectly irreducible ring satisfying (†) and having a non-trivial set D of zero divisors. Then each of the following properties holds in R: (i) D is a commutative subring.

- (ii) If $a \in D$ fails to commute with $b \in R$, there exists an integer s > 1 for which $a(b^s b) = 0$. Thus, $b^s b \in D$ and $ab^{s-1} = b^{s-1}a$.
- (iii) If $a \in D$ and $b \in R$, then ab ba belongs to the heart S of R.
- (iv) If D is not contained in the center Z of R, then there exists a prime p for which R^+ is a p-group and p(ab ba) = 0 for all $a \in D$, $b \in R$.

Proof. (i) Suppose $a, b \in D$ and $ab - ba \neq 0$. The first conclusion of Lemma 2 guarantees that (ab - ba)R is a non-zero ideal of R; hence, if $0 \neq s \in S$, we have s = (ab - ba)x for some $x \in R$. However, the fact that DS = 0 yields 0 = as = bs = a(ab - ba)x = b(ab - ba)x; and by the second part of Lemma 2, we get s = 0— a contradiction.

(ii) Suppose $a \in D$ and $b \in R$ fail to commute. Then there exist m, n, k, and j such that $ab = b^m a^n$ and $ba = a^k b^j$. We show first that n = 1 and k = 1.

Observe that for all $v \ge 1$, $w \ge 0$, $a^{v}b^{w}$ and $b^{w}a^{v}$ belong to D and hence commute with a. If n > 1, we obtain $ab = b^{m}a^{n} = a^{n-1}b^{m}a = a^{n-1}b^{m-1}a^{k}b^{j} = a^{k+n-1}b^{m+j-1} = a^{n+k-2}b^{m}ab^{j-1} = a^{k-1}b^{m}aa^{n-1}b^{j-1} = a^{k-1}ab^{j-1} = a^{k}b^{j} = ba$, which is a contradiction. Similarly, the assumption that k > 1 yields a contradiction.

Continuing with the same notation, we have $ab = b^{m-1}ba = b^{m-1}ab^j = b^{m-2}bab^j = \ldots = ab^{m_j}$; letting s = mj, we get $a(b^s - b) = 0 = (b^s - b)a$. Since $b \notin D$, it follows that $a = ab^{s-1} = b^{s-1}a$, and all the conclusions of (ii) are established.

(iii) If D = R, ab - ba = 0. If $D \neq R$, in which case S = A(D), let $a, c \in D$ and $b \in R$ and note that (ab - ba)c = a(bc) - b(ac) = (bc)a - b(ca) = 0. Thus $ab - ba \in A(D) = S$.

(iv) Suppose $a \in D$ and $b \in R$ do not commute. Then there exists an integer k > 1 for which kb also fails to commute with a; thus there exist integers s, t > 1 for which $a(b^s - b) = 0 = a((kb)^t - kb)$. Letting q = (s - 1)(t - 1) + 1, we have $a(b^q - b) = 0 = a(k^q b^q - kb)$ and therefore

(1)
$$(k^q - k)ab = 0$$

Since $b \notin D$, this yields $(k^{q} - k)a = 0$. We now know $D \setminus Z$ is contained in the ideal T of elements of finite additive order; and since $a \in D \setminus Z$ and $c \in D \cap Z$ implies $a + c \notin Z$, we get $D \subseteq T$.

Next, consider any element b which does not commute elementwise with D. Since b satisfies Equation (1) for some k, q > 1 and some $a \in D$, we have $(k^q - k)b \in D \subseteq T$ and hence $b \in T$. Thus, all elements of $R \setminus T$ commute elementwise with D.

Suppose now that $R \setminus T \neq \phi$, and let *c* denote any element of $R \setminus T$. For arbitrary $t \in T$ and $a \in D$, both *c* and c + t commute with *a*, and therefore *t* commutes with *a*. Hence $R = (R \setminus T) \cup T$ commutes elementwise with *D*, contradicting the hypothesis that $D \not\subseteq Z$; thus, R = T, and since the subdirect irreducibility of *R* rules out the possibility that R^+ has nontrivial *p*-primary components for more than one prime *p*, R^+ must be a *p*-group for some prime *p*. It follows at once that the division ring R/D is of characteristic *p*, so that for all $b \in R$, $pb \in D$ and hence commutes with all $a \in D$ by part (*i*).

The following lemma, used several times in the remainder of the paper, has an easy proof, which we omit.

LEMMA 4. Let R be any ring. For fixed $r \in R$, define the mapping $\delta_r : R \to R$ by

$$\delta_r(x) = xr - rx$$
 for all $x \in R$.

Then δ_{τ} is a derivation—that is, $\delta_{\tau}(xy) = x\delta_{\tau}(y) + \delta_{\tau}(x)y$ for all $x, y \in R$. Moreover, if x commutes with xr - rx, then $\delta_{\tau}(x^n) = nx^{n-1}\delta_{\tau}(x)$ for all positive integers n.

LEMMA 5. Let R be a subdirectly irreducible ring satisfying (\dagger) and having $D \neq \{0\}$. Then $D \subseteq Z$.

Proof. By (i) of Lemma 3, we may assume that $R \neq D$. Lemma 3, part (i), also implies that if $a_1, a_2 \in D$, then $a_1a_2R \subseteq Z$; thus, if there exist $a_1, a_2 \in D$ for which $a_1a_2 \neq 0$, part (iii) of Lemma 3 guarantees that $ab - ba \in Z$ for all $a \in D$, $b \in R$. Under these circumstances, suppose $a \in D$ and $b \in R$ fail to commute. Then by Lemma 4 and (iv) of Lemma 3 we have $\delta_a(b^p) = pb^{p-1}(ba - ab) = 0$, so that b^p commutes with a, where p is the prime of Lemma 3 (iv). Since R/D has characteristic p and $b^s - b \in D$ for some s > 1, the subring of R/D generated by b + D is a finite field of characteristic p; and there exists $k \ge 1$ such that $b^{pk} - b$ belongs to D, hence commutes with a. But this result, together with the observation that b^p commutes with a, contradicts our original assumption about a and b; therefore, we proceed under the assumption that $D \nsubseteq Z$ and the product of any two zero divisors is zero.

Since px, $py \in D$ for all $x, y \in R$, we have $p^2xy = 0$ for all $x, y \in R$; moreover, since A(D) = S, we have S = D. By Lemma 1, R/D is commutative, so that all commutators of elements in R belong to S. Suppose now that $pR \neq 0$, and let $px \neq 0$ and $y \in R$. The ideal pxR is non-trivial, so there exists $r \in R$ such that xy - yx = pxr; hence, $p(xy - yx) = p^2xr = 0$ and $pR \subseteq Z$. But $D = S \subseteq pR$, so we are finished in the case that $pR \neq 0$.

Assume now that $pR = D^2 = 0$ and $a \in D$ fails to commute with $b \in R$. By

988

Lemma 3 (ii), there exists s > 1 for which $b^s - b \in D$; in fact, $b^s = b$, for otherwise it follows from D = S that $a = (b^s - b)r$ for some $r \in R$ and that $ab - ba = (b^s - b)rb - b(b^s - b)r = (b^s - b)(rb - br) = 0$. This observation, together with (†) and the fact that pR = 0, shows that the subring R_0 generated by a and b is finite; moreover, since b^{s-1} is a non-zero central idempotent of a subdirectly irreducible ring R, it must be a multiplicative identity for R and therefore for R_0 . Thus, if there exists a subdirectly irreducible ring R_0 with identity which satisfies (†) and has $pR_0 = 0$. Furthermore, R_0 is a subdirect sum of subdirectly irreducible homomorphic images, so we may assume R_0 is subdirectly irreducible as well. The proof of Lemma 5 will be complete once we establish the following lemma.

LEMMA 6. Let R be a finite subdirectly irreducible ring with identity; suppose that R satisfies (\dagger) and that pR = 0 for some prime p. Then R is commutative.

Proof. If zero divisors are central (hence commutators are central), then an application of Lemma 4 shows that $x^p \in Z$ for all $x \in R$; and since $x \notin D$ implies that x + D generates a finite field, $x^{pk} - x \in D \subseteq Z$ for some $k \ge 1$ and therefore R is commutative. Thus, we may assume that $D \nsubseteq Z$ and conclude from the argument of Lemma 5 that $D^2 = 0$.

Now finite rings having identity and having $D^2 = 0$ were studied by Corbas in [3]; under the hypothesis that pR = 0, the additive group of R is a direct sum $K \oplus D$, where K is a finite field and D is a left vector space over K. Every one-dimensional subspace of D is a left ideal; and since our example R is a subdirectly irreducible duo ring, D must be one-dimensional. Thus, the number of elements in R is the square of the number in D; and by an earlier result of Corbas [2], there exists a finite field K such that $R \cong K \times K$ with addition being componentwise and multiplication according to the rule

(2)
$$(a, b)(c, d) = (ac, ad + b\phi(c)),$$

where ϕ is an automorphism of K. Such a ring is commutative if and only if ϕ is the identity map, so it will be sufficient to show that a choice of ϕ different from the identity is not compatible with (†).

Let $K = GF(p^k)$, $t = p^k - 1$, and $\phi : x \to x^{p^r}$ $(1 \le r < k)$ a non-identity automorphism of K. If $a, b \in K$, if e is the identity element of K and n is an arbitrary positive integer, it follows from (2) that

$$(a, b)^{n} = (a^{n}, a^{n-1}b + a^{n-2}\phi(a)b + a^{n-3}(\phi(a))^{2}b + \ldots + (\phi(a))^{n-1}b).$$

In particular, for any $a, v \in K$, the condition that $(e, v)(a, e) = (a, e)^n (e, v)^m$ for some $n, m \ge 1$ becomes

$$(a, e + \phi(a)v) = (a^{n}, a^{n-1} + a^{n-2}\phi(a) + a^{n-3}(\phi(a))^{2} + \dots + (\phi(a))^{n-1})(e, mv)$$

= $(a^{n}, ma^{n}v + a^{n-1} + a^{n-2}\phi(a) + \dots + (\phi(a))^{n-1}).$

Equating components and substituting for $\phi(a)$ then yields

(3) $a^n = a$ and $e + a^{p^r}v = mav + a^{n-1} + a^{n-2}a^{p^r} + \ldots + a^{p^r(n-1)}$.

Now each non-zero element a of K satisfies the equation $x^t - e = (x - e)$ $(x^{t-1} + x^{t-2} + \ldots + x + e) = 0$; substituting a^s for a shows that if $a^s \neq e$, then any sum of the form $a^{s_1} + a^{s_{1+s}} + \ldots + a^{s_{1+(t-1)s}}$ must be zero. Thus, if we choose a to be a generator of the multiplicative group of K, v an arbitrary non-zero element of K and $s = p^r - 1$, then (3) reduces to the condition that t|n - 1 and a satisfies the equation

(4)
$$a^{pr} = ma$$
.

Clearly, *a* cannot satisfy (4) for any integer $m \equiv 0 \pmod{p}$; if $m \not\equiv 0 \pmod{p}$, raising both sides of (4) to the exponent p - 1 and applying Fermat's theorem shows that *a* satisfies $a^{p^r(p-1)} = a^{p-1}$ or $a^{(p^r-1)(p-1)} = e$ —an impossibility since $(p^r - 1)(p - 1) < p^k - 1$. Thus, condition (3) cannot be satisfied for the given choice of *a* and *v* and the proof of Lemma 6 is finished.

Completion of proof of theorem. We now need to establish commutativity for subdirectly irreducible R satisfying (\dagger) and having $\{0\} \neq D \subseteq Z$.

Assume first that R/D has characteristic 0, and suppose $a, b \in R$ do not commute. By essentially the argument used in Lemma 1, there will exist positive integers i, j for which $a^i b^j = b^j a^i$; and we may assume that i > 1. Letting $c = b^j$ and applying Lemma 4, we get $0 = \delta_c(a^i) = ia^{i-1}\delta_c(a)$; and since $ia^{i-1} \notin D$, $\delta_c(a) = 0$, so that a commutes with b^j . Applying the same argument again if j > 1, we get ab = ba—a contradiction.

Now consider R with R/D of characteristic p. For all $x \in R$, $px \in D$ and hence p(xy - yx) = 0 for all $x, y \in R$; it follows from Lemma 4 that $x^p \in Z$ for all $x \in R$. Suppose that there exist non-commuting elements $a, b \in R$ and let $ab = b^n a^m$. If either n or m is 1, say n = 1, let [a] = a + D and [b] = b + Dand apply the commutativity of $\overline{R} = R/D$ to get $[a]^m = [a]$; as before, [a] will generate a finite subfield of \overline{R} , and it follows that $a^{pk} - a \in D \subseteq Z$ for some $k \ge 1$ —a result which is incompatible with non-commutativity of a and b.

We now proceed on the assumption that a and b do not commute and $ab = b^n a^m$ with n, m > 1. Again operating in the factor ring $\overline{R} = R/D$, we get $[a]^{m-1}$ $[b]^{n-1} = [e]$, where [e] = e + D is the identity of R/D. Since $e^p \in Z$ and $e^p - e \in D \subseteq Z$, we see that $e \in Z$, so that $a^{m-1}b^{n-1} \in Z$ and a^{m-1} commutes with b. Applying Lemma 4 again shows that p divides m - 1 and, of course, n - 1 as well. It follows (since $a^p, b^p \in Z$) that $ab = bab^{op}a^{hp}$ for some $g, h \ge 1$; and since the same arguments yield $ba = aba^{*p}b^{*p}$, for $v, w \ge 1$, we get $ab = aba^{*p}b^{*p}$ for some $j, k \ge 1$. Consequently $a^{*p}b^{*p}$ is a non-zero central idempotent, necessarily a multiplicative identity for R; hence a and b are invertible and there are positive integers J = jp and K = kp such that $a^J = b^{-K}$. Applying the same argument to a and b^{-1} yields positive integers S, T such that $a^S = b^T$; and it follows that $a^{JS} = b^{-KS} = b^{JT}$, so that $b^N = b$ for

some N > 1. Once again, we can conclude that $b^{p^k} - b \in D \subseteq Z$ for some $k \ge 1$, thereby contradicting the assumption that $ab \ne ba$. The proof of the theorem is now complete.

References

- 1. H. E. Bell, Some commutativity results for rings with two-variable constraints, Proc. Amer. Math. Soc. 53 (1975), 280-284.
- 2. B. Corbas, Rings with few zero divisors, Math. Ann. 181 (1969), 1-7.
- 3. ——— Finite rings in which the product of any two zero divisors is zero, Arch. Math. 21 (1970), 466–469.
- 4. C. Faith, Algebraic division ring extensions, Proc. Amer. Math. Soc. 11 (1960), 43-53.
- 5. I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411-412.
- 6. On a result of Faith, Canadian Math. Bull. 18 (1975), 609.
- 7. G. Thierrin, On duo rings, Canadian Math. Bull. 3 (1960), 167-172.

Brock University, St. Catharines, Ontario