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A COMMUTATIVITY CONDITION FOR RINGS

HOWARD E. BELL

The object of this paper is to prove the following theorem, a special case of
which was previously explored in [1].

THEOREM. Let R be any associative ring with the property that
(f) foreachx,y € R, there exist integers m, n = 1 for which xy = y™x".
Then R 1s commutative.

Proof of the Theorem. We note at once that any ring R satisfying (1) is a duo
ring and hence has its idempotents in the center (see [7]). Moreover, if a,b € R
are such that ab = 0, then ba = 0 also, so that all annihilators are two-sided
and there is no distinction between right and left zero divisors. We shall denote
the annihilator of a subset 7" of R by A (7"), and the set of zero divisors of R
(including 0) by D.

LeEmMmA 1. If R is a division ring satisfying (1), then R is commutative.

Proof. Suppose that R is a counterexample, and let ¢ and b be a pair of non-
commuting elements. Then ab = b™a" = (a")*(b™)", where at least one of n
and m is greater than 1. If ns = 1, then mt > 1 and v™'~! = ¢, the identity
element of R; similarly, if mt = 1, a®*~! = e. The only other possibility is that
ns > 1and mt > 1, in which case a*—1h)™!*=! = ¢. Thus, R has the property that

(*) for each x,y € R, there exist positive integers 7, j with x’y? = yix?.

For each y € R, define K, = {x € Rlxy! = y% for some positive integer 1}.
If there exists y € R for which K, # R, then (*) implies that R is radical
over a proper subring and is thus commutative by a theorem of Faith [4; 6]; on
the other hand, if K, = R for all y € R, commutativity of R follows from
Theorem 1 of [5]. This completes the proof of Lemma 1.

LEMMA 2. Let R be any ring satisfying (). If a, b € R are elements such that
a(ab — ba) = b(ab — ba) = 0, then a and b commute. Moreover, a(ab — ba)x =
b(ab — ba)x = 0 implies (ab — ba)x = 0.

Proof. Since a?h = aba = ba? and b% = bab = ab?, we have a'b = ba® and
ab® = biaforall7 = 2. Thus, if ab = b™a™ and ba = a’b*, we get ab = a"b™ and
ba = b*a?; and it follows that ab = b™a® = b™la’bra™! = pmti-lgn+ti-1 =
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QIR = g i-lgrpmpE-l = gIipE = ba. The second assertion of the lemma is
obtained by applying the same argument to the ring R/A4 (x).

Of course, it will suffice to show that subdirectly irreducible rings satisfying
(f) are commutative. Since subdirectly irreducible duo rings with no non-zero
divisors of zero are division rings, we may assume that D is non-trivial. In this
case, D = A(S), where S denotes the heart of R (the unique minimal ideal);
furthermore, if R # D, then S = A(D) and R/D is a division ring. (These
results are all contained in the proof of Theorem 4 of [7].)

LEMMA 3. Let R be a subdirectly 1rreducible ring satisfying (f) and having a
non-trivial set D of zero divisors. Then each of the following properties holds in R:
(1) D 1s a commulative subring.

(1) If a € D fails to commute with b € R, there exists an integer s > 1 for
which a(b® — b) = 0. Thus, b* — b € D and ab*~' = b*la.

(iii) If a € D and b € R, then ab — ba belongs to the heart S of R.

(iv) If D is not contained in the center Z of R, then there exists a prime p for
which R* is a p-group and p(ab — ba) = 0 for alla € D, b € R.

Proof. (i) Suppose a, b € D and ab — ba # 0. The first conclusion of Lemma 2
guarantees that (ab — ba)R is a non-zero ideal of R; hence, if 0 % s € S, we
have s = (ab — ba)x for some x € R. However, the fact that DS = 0 yields
0 = as = bs = alab — ba)x = b(ab — ba)x; and by the second part of
Lemma 2, we get s = 0—a contradiction.

(ii) Suppose a € D and b € R fail to commute. Then there exist m, n, k, and
j such that ab = b™a” and ba = a*b?. We show first that z = 1 and & = 1.

Observe that for all v 2 1, w = 0, ¢%® and b¥a® belong to D and hence
commute with a. If # > 1, we obtain ab = d™a” = a" ™ = a" " "’ =
aktrm1pmti=l = grtk=2pmahi=l = gk-lpmgar-1pi-l = oF=1ghhi-1 = aFb? = ba, which

is a contradiction. Similarly, the assumption that £ > 1 yields a contradiction.

Continuing with the same notation, we have ab = b™ba = bd™lab! =
o™ 2bab? = ... = ab™;letting s = mj, wegeta(b* — b) = 0 = (b* — b)a. Since
b ¢ D, it follows that a = ab*~! = b*1a, and all the conclusions of (ii) are
established.

({ii) f D = R,ab — ba = 0.If D ¢ R, in whichcase S = A(D),leta,c € D
and b € R and note that (ab — ba)c = a(bc) — b(ac) = (bc)a — b(ca) = 0.
Thus ab — ba € A(D) = S.

(iv) Suppose @ € D and b € R do not commute. Then there exists an integer
k > 1 for which kb also fails to commute with a; thus there exist integerss, t > 1
for which a(b®* — b) = 0 = a((kb)! — kb). Letting ¢ = (s — 1)(t — 1) + 1,
we have a(b? — b) = 0 = a(k%? — kb) and therefore

(1) (k* — Ek)ab = 0.

Since b ¢ D, this yields (k? — k)a = 0. We now know D\Z is contained in the
ideal T" of elements of finite additive order; and since ¢« € D\Zandc¢ € DN Z
impliesa + ¢ ¢ Z, weget D C T.
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Next, consider any element b which does not commute elementwise with D.
Since b satisfies Equation (1) for some %, ¢ > 1 and some ¢ € D, we have
(k* — k)b € D C T and hence b € T. Thus, all elements of R\7 commute
elementwise with D.

Suppose now that R\T # ¢, and let ¢ denote any element of R\7. For
arbitrary ¢t € T and a € D, both ¢ and ¢ + ¢ commute with @, and therefore ¢
commutes with a. Hence R = (R\7) U T" commutes elementwise with D,
contradicting the hypothesis that D & Z; thus, R = T, and since the subdirect
irreducibility of R rules out the possibility that R+ has nontrivial p-primary
components for more than one prime p, Rt must be a p-group for some prime p.
It follows at once that the division ring R/D is of characteristic p, so that for all
b € R, pb € D and hence commutes with all ¢ € D by part (z).

The following lemma, used several times in the remainder of the paper, has
an easy proof, which we omit.

LEMMA 4. Let R be any ring. For fixed v € R, define the mapping 6, : R — R
by
8,(x) = xr —rx forall x € R.

Then 8, 1s a derivation—that 1s, §,(xy) = x8,(y) + 8,(x)y for all x,y € R.
Moreover, if x commutes with xr — rx, then §,(x") = nx""18,(x) for all positive
integers n.

LEMMA 5. Let R be a subdirectly irreducible ring satisfying (1) and having
D # {0}. Then D C Z.

Proof. By (i) of Lemma 3, we may assume that R % D. Lemma 3, part (i),
also implies that if a1, a2 € D, then a1a2.R C Z; thus, if there exist a;, as € D
for which aiae # 0, part (iii) of Lemma 3 guarantees that ab — ba € Z for all
a € D, b € R. Under these circumstances, suppose ¢ € D and b € R fail to
commute. Then by Lemma 4 and (iv) of Lemma 3 we have §,(b?) = pb?~1(ba —
ab) = 0, so that b commutes with a, where p is the prime of Lemma 3 (iv).
Since R/D has characteristic p and b* — b € D for some s > 1, the subring
of R/D generated by b + D is a finite field of characteristic p; and there exists
k = 1 such that 5 — b belongs to D, hence commutes with a. But this result,
together with the observation that 6* commutes with ¢, contradicts our original
assumption about ¢ and b; therefore, we proceed under the assumption that
D & Z and the product of any two zero divisors is zero.

Since px, py € D for all x, y € R, we have p2xy = 0 for all x, y € R; more-
over, since 4 (D) = S, we have S = D. By Lemma 1, R/D is commutative, so
that all commutators of elements in R belong to S. Suppose now that pR # 0,
and let px # 0 and y € R. The ideal pxR is non-trivial, so there exists r € R
such that xy — yx = pxr; hence, p(xy — yx) = p2xr = 0 and pR C Z. But
D = S C pR, so we are finished in the case that pR 5 0.

Assume now that pR = D? = 0 and a € D fails to commute with b € R. By
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Lemma 3 (ii), there exists s > 1 for which b* — b € D; in fact, b° = b, for
otherwise it follows from D = S that a = (b° — b)r for some r € R and that
ab — ba = (b — b)rb — b(b* — b)r = (b®* — b)(rb — br) = 0. This observa-
tion, together with (f) and the fact that pR = 0, shows that the subring R,
generated by a and b is finite; moreover, since b°~! is a non-zero central idem-
potent of a subdirectly irreducible ring R, it must be a multiplicative identity
for R and therefore for R,. Thus, if there exists a subdirectly irreducible ring R
satisfying (f) for which D &€ Z, there exists a finite non-commutative ring R,
with identity which satisfies (f) and has pR, = 0. Furthermore, R, is a sub-
direct sum of subdirectly irreducible homomorphic images, so we may assume
R, is subdirectly irreducible as well. The proof of Lemma 5 will be complete
once we establish the following lemma.

LEMMA 6. Let R be a finite subdivectly irreducible ring with identity; suppose
that R satisfies (1) and that pR = O for some prime p. Then R 1is commutative.

Proof. If zero divisors are central (hence commutators are central), then an
application of Lemma 4 shows that x? € Z for all x € R; and since x ¢ D
implies that x + D generates a finite field, x* — x ¢ D C Z for some k = 1
and therefore R is commutative. Thus, we may assume that D & Z and con-
clude from the argument of Lemma 5 that D? = 0.

Now finite rings having identity and having D? = 0 were studied by Corbas
in [3]; under the hypothesis that pR = 0, the additive group of R is a direct
sum K @ D, where K is a finite field and D is a left vector space over K. Every
one-dimensional subspace of D is a left ideal; and since our example R is a
subdirectly irreducible duo ring, D must be one-dimensional. Thus, the number
of elements in R is the square of the number in D; and by an earlier result of
Corbas [2], there exists a finite field K such that R = K X K with addition
being componentwise and multiplication according to the rule

(2) (a,0)(c,d) = (ac, ad + bo(c)),

where ¢ is an automorphism of K. Such a ring is commutative if and only if ¢
is the identity map, so it will be sufficient to show that a choice of ¢ different
from the identity is not compatible with (7).

Let K = GF(p*), t = p¥* — 1, and ¢ : x > x” (1 < r < k) a non-identity
automorphism of K. If ¢, b € K, if e is the identity element of K and # is an
arbitrary positive integer, it follows from (2) that

(@, b = (@, b + (@) + @@ + ... + ($@)h).
In particular, for any a, » € K, the condition that (¢, v) (e, e) = (a, e)"(e, v)™
for some n, m = 1 becomes
(a,e + ¢(a)v) = (a*, a™ '+ a"2p(a) + a3 (p(a))? + ...
+ (¢(a))"") (e, mv)
= (a",ma™ + a" '+ a"2¢(a) + ...+ (p(a))" ).
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Equating components and substituting for ¢ (a) then yields

(3) a*=a and e+ a"v=mav+ a4 a2 + ... F a7,

Now each non-zero element a of K satisfies the equation x! — e = (x — ¢)
(x=14x"2+ ...+ x + e) =0; substituting a* for ¢ shows that if
a® # e, then any sum of the form a®t 4 o+ 4 . .. 4 a*FU=Ds must be zero.

Thus, if we choose a to be a generator of the multiplicative group of K, v an
arbitrary non-zero element of K and s = p™ — 1, then (3) reduces to the condi-
tion that {jn — 1 and a satisfies the equation

4) o = ma.

Clearly, a cannot satisfy (4) for any integer m = 0(mod p); if m = 0(mod p),
raising both sides of (4) to the exponent p — 1 and applying Fermat’s theorem
shows that ¢ satisfies a?”®=V = ¢?~! or ¢@"—D®-1) = ¢—an impossibility since
" — 1) (p — 1) < p¥ — 1. Thus, condition (3) cannot be satisfied for the
given choice of ¢ and v and the proof of Lemma 6 is finished.

Completion of proof of theorem. We now need to establish commutativity for
subdirectly irreducible R satisfying (1) and having {0} # D C Z.

Assume first that R/D has characteristic 0, and suppose a, b € R do not
commute. By essentially the argument used in Lemma 1, there will exist
positive integers 7, j for which ¢%? = b’a’; and we may assume that z > 1.
Letting ¢ = b7 and applying Lemma 4, we get 0 = §,(a?) = 1a*8,(a); and
since 1a*™1 ¢ D, §.(a) = 0, so that a commutes with b’. Applying the same
argument again if j > 1, we get ab = ba—a contradiction.

Now consider R with R/D of characteristic p. For all x € R, px € D and
hence p(xy — yx) = 0 for all x, y € R; it follows from Lemma 4 that x*» € Z
for all x € R. Suppose that there exist non-commuting elements a, b € R and
letab = b"a™. lf eithernormisl,sayn = 1,let[¢] = a + Dand [b] = b+ D
and apply the commutativity of R = R/D to get [a]™ = [a]; as before, [a] will
generate a finite subfield of R, and it follows that ¢ — a € D C Z for some
k = 1—a result which is incompatible with non-commutativity of ¢ and b.

We now proceed on the assumption that ¢ and b do not commute and
ab = b"a™ with n, m > 1. Again operating in the factor ring R = R/D, we get
[a]™! [b]*! = [e], where [¢] = ¢ + D is the identity of R/D. Since
e € Zande? — e € D C Z, we see that e € Z, so that a™ " ! € Z and a™!
commutes with b. Applying Lemma 4 again shows that p divides m — 1 and,
of course, n — 1 as well. It follows (since a?, b* € Z) that ab = bab*?a for some
g, b = 1; and since the same arguments yield ba = abab*?, for v, w = 1, we
get ab = aba’b* for some j, £ = 1. Consequently a?b*” is a non-zero central
idempotent, necessarily a multiplicative identity for R; hence a and b are
invertible and there are positive integers J = jp and K = kp such that
a’ = b—K. Applying the same argument to a and b~ yields positive integers .S, T’
such that a5 = b7; and it follows that a/% = b=%5 = p/7, so that bY = b for
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some N > 1. Once again, we can conclude that b* — b € D C Z for some
k = 1, thereby contradicting the assumption that ab # ba. The proof of the
theorem is now complete.
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