A COMMUTATIVITY CONDITION FOR RINGS

HOWARD E. BELL

The object of this paper is to prove the following theorem, a special case of which was previously explored in [1].

Theorem. Let R be any associative ring with the property that
(\dagger) for each $x, y \in R$, there exist integers $m, n \geqq 1$ for which $x y=y^{m} x^{n}$.
Then R is commutative.
Proof of the Theorem. We note at once that any ring R satisfying (\dagger) is a duo ring and hence has its idempotents in the center (see [7]). Moreover, if $a, b \in R$ are such that $a b=0$, then $b a=0$ also, so that all annihilators are two-sided and there is no distinction between right and left zero divisors. We shall denote the annihilator of a subset T of R by $A(T)$, and the set of zero divisors of R (including 0) by D.

Lemma 1. If R is a division ring satisfying (\dagger), then R is commutative.
Proof. Suppose that R is a counterexample, and let a and b be a pair of noncommuting elements. Then $a b=b^{m} a^{n}=\left(a^{n}\right)^{s}\left(b^{m}\right)^{t}$, where at least one of n and m is greater than 1 . If $n s=1$, then $m t>1$ and $b^{m t-1}=e$, the identity element of R; similarly, if $m t=1, a^{n s-1}=e$. The only other possibility is that $n s>1$ and $m t>1$, in which case $a^{n s-1} b^{m t-1}=e$. Thus, R has the property that
$\left({ }^{*}\right)$ for each $x, y \in R$, there exist positive integers i, j with $x^{i} y^{j}=y^{j} x^{i}$.
For each $y \in R$, define $K_{y}=\left\{x \in R \mid x y^{i}=y^{i} x\right.$ for some positive integer $\left.i\right\}$. If there exists $y \in R$ for which $K_{y} \neq R$, then $\left(^{*}\right)$ implies that R is radical over a proper subring and is thus commutative by a theorem of Faith $[\mathbf{4 ; 6}]$; on the other hand, if $K_{y}=R$ for all $y \in R$, commutativity of R follows from Theorem 1 of [5]. This completes the proof of Lemma 1.

Lemma 2. Let R be any ring satisfying (\dagger). If $a, b \in R$ are elements such that $a(a b-b a)=b(a b-b a)=0$, then a and b commute. Moreover, $a(a b-b a) x=$ $b(a b-b a) x=0$ implies $(a b-b a) x=0$.

Proof. Since $a^{2} b=a b a=b a^{2}$ and $b^{2} a=b a b=a b^{2}$, we have $a^{i} b=b a^{i}$ and $a b^{i}=b^{i} a$ for all $i \geqq 2$. Thus, if $a b=b^{m} a^{n}$ and $b a=a^{j} b^{k}$, we get $a b=a^{n} b^{m}$ and $b a=b^{k} a^{j}$; and it follows that $a b=b^{m} a^{n}=b^{m-1} a^{j} b^{k} a^{n-1}=b^{m+k-1} a^{n+j-1}=$

[^0]$a^{n+j-1} b^{m+k-1}=a^{j-1} a^{n} b^{m} b^{k-1}=a^{j} b^{k}=b a$. The second assertion of the lemma is obtained by applying the same argument to the ring $R / A(x)$.

Of course, it will suffice to show that subdirectly irreducible rings satisfying (\dagger) are commutative. Since subdirectly irreducible duo rings with no non-zero divisors of zero are division rings, we may assume that D is non-trivial. In this case, $D=A(S)$, where S denotes the heart of R (the unique minimal ideal); furthermore, if $R \neq D$, then $S=A(D)$ and R / D is a division ring. (These results are all contained in the proof of Theorem 4 of [7].)

Lemma 3. Let R be a subdirectly irreducible ring satisfying (\dagger) and having a non-trivial set D of zero divisors. Then each of the following properties holds in R :
(i) D is a commutative subring.
(ii) If $a \in D$ fails to commute with $b \in R$, there exists an integer $s>1$ for which $a\left(b^{s}-b\right)=0$. Thus, $b^{s}-b \in D$ and $a b^{s-1}=b^{s-1} a$.
(iii) If $a \in D$ and $b \in R$, then $a b-b a$ belongs to the heart S of R.
(iv) If D is not contained in the center Z of R, then there exists a prime p for which R^{+}is a p-group and $p(a b-b a)=0$ for all $a \in D, b \in R$.
Proof. (i) Suppose $a, b \in D$ and $a b-b a \neq 0$. The first conclusion of Lemma 2 guarantees that $(a b-b a) R$ is a non-zero ideal of R; hence, if $0 \neq s \in S$, we have $s=(a b-b a) x$ for some $x \in R$. However, the fact that $D S=0$ yields $0=a s=b s=a(a b-b a) x=b(a b-b a) x$; and by the second part of Lemma 2, we get $s=0$-a contradiction.
(ii) Suppose $a \in D$ and $b \in R$ fail to commute. Then there exist m, n, k, and j such that $a b=b^{m} a^{n}$ and $b a=a^{k} b^{j}$. We show first that $n=1$ and $k=1$.

Observe that for all $v \geqq 1, w \geqq 0, a^{v} b^{w}$ and $b^{w} a^{v}$ belong to D and hence commute with a. If $n>1$, we obtain $a b=b^{m} a^{n}=a^{n-1} b^{m} a=a^{n-1} b^{m-1} a^{k} b^{j}=$ $a^{k+n-1} b^{m+j-1}=a^{n+k-2} b^{m} a b^{j-1}=a^{k-1} b^{m} a a^{n-1} b^{j-1}=a^{k-1} a b b^{j-1}=a^{k} b^{j}=b a$, which is a contradiction. Similarly, the assumption that $k>1$ yields a contradiction.

Continuing with the same notation, we have $a b=b^{m-1} b a=b^{m-1} a b^{j}=$ $b^{m-2} b a b^{j}=\ldots=a b^{m j}$; letting $s=m j$, we get $a\left(b^{s}-b\right)=0=\left(b^{s}-b\right) a$. Since $b \notin D$, it follows that $a=a b^{s-1}=b^{s-1} a$, and all the conclusions of (ii) are established.
(iii) If $D=R, a b-b a=0$. If $D \neq R$, in which case $S=A(D)$, let $a, c \in D$ and $b \in R$ and note that $(a b-b a) c=a(b c)-b(a c)=(b c) a-b(c a)=0$. Thus $a b-b a \in A(D)=S$.
(iv) Suppose $a \in D$ and $b \in R$ do not commute. Then there exists an integer $k>1$ for which $k b$ also fails to commute with a; thus there exist integers $s, t>1$ for which $a\left(b^{s}-b\right)=0=a\left((k b)^{t}-k b\right)$. Letting $q=(s-1)(t-1)+1$, we have $a\left(b^{q}-b\right)=0=a\left(k^{q} b^{q}-k b\right)$ and therefore
(1) $\left(k^{q}-k\right) a b=0$.

Since $b \notin D$, this yields $\left(k^{q}-k\right) a=0$. We now know $D \backslash Z$ is contained in the ideal T of elements of finite additive order; and since $a \in D \backslash Z$ and $c \in D \cap Z$ implies $a+c \notin Z$, we get $D \subseteq T$.

Next, consider any element b which does not commute elementwise with D. Since b satisfies Equation (1) for some $k, q>1$ and some $a \in D$, we have $\left(k^{q}-k\right) b \in D \subseteq T$ and hence $b \in T$. Thus, all elements of $R \backslash T$ commute elementwise with D.

Suppose now that $R \backslash T \neq \phi$, and let c denote any element of $R \backslash T$. For arbitrary $t \in T$ and $a \in D$, both c and $c+t$ commute with a, and therefore t commutes with a. Hence $R=(R \backslash T) \cup T$ commutes elementwise with D, contradicting the hypothesis that $D \nsubseteq Z$; thus, $R=T$, and since the subdirect irreducibility of R rules out the possibility that R^{+}has nontrivial p-primary components for more than one prime p, R^{+}must be a p-group for some prime p. It follows at once that the division ring R / D is of characteristic p, so that for all $b \in R, p b \in D$ and hence commutes with all $a \in D$ by part (i).

The following lemma, used several times in the remainder of the paper, has an easy proof, which we omit.

Lemma 4. Let R be any ring. For fixed $r \in R$, define the mapping $\delta_{r}: R \rightarrow R$ by

$$
\delta_{r}(x)=x r-r x \quad \text { for all } x \in R .
$$

Then δ_{r} is a derivation-that is, $\delta_{r}(x y)=x \delta_{r}(y)+\delta_{r}(x) y$ for all $x, y \in R$. Moreover, if x commutes with $x r-r x$, then $\delta_{r}\left(x^{n}\right)=n x^{n-1} \delta_{r}(x)$ for all positive integers n.

Lemma 5. Let R be a subdirectly irreducible ring satisfying (\dagger) and having $D \neq\{0\}$. Then $D \subseteq Z$.

Proof. By (i) of Lemma 3, we may assume that $R \neq D$. Lemma 3, part (i), also implies that if $a_{1}, a_{2} \in D$, then $a_{1} a_{2} R \subseteq Z$; thus, if there exist $a_{1}, a_{2} \in D$ for which $a_{1} a_{2} \neq 0$, part (iii) of Lemma 3 guarantees that $a b-b a \in Z$ for all $a \in D, b \in R$. Under these circumstances, suppose $a \in D$ and $b \in R$ fail to commute. Then by Lemma 4 and (iv) of Lemma 3 we have $\delta_{a}\left(b^{p}\right)=p b^{p-1}(b a-$ $a b)=0$, so that b^{p} commutes with a, where p is the prime of Lemma 3 (iv). Since R / D has characteristic p and $b^{s}-b \in D$ for some $s>1$, the subring of R / D generated by $b+D$ is a finite field of characteristic p; and there exists $k \geqq 1$ such that $b^{p k}-b$ belongs to D, hence commutes with a. But this result, together with the observation that b^{p} commutes with a, contradicts our original assumption about a and b; therefore, we proceed under the assumption that $D \nsubseteq Z$ and the product of any two zero divisors is zero.

Since $p x, p y \in D$ for all $x, y \in R$, we have $p^{2} x y=0$ for all $x, y \in R$; moreover, since $A(D)=S$, we have $S=D$. By Lemma $1, R / D$ is commutative, so that all commutators of elements in R belong to S. Suppose now that $p R \neq 0$, and let $p x \neq 0$ and $y \in R$. The ideal $p x R$ is non-trivial, so there exists $r \in R$ such that $x y-y x=p x r$; hence, $p(x y-y x)=p^{2} x r=0$ and $p R \subseteq Z$. But $D=S \subseteq p R$, so we are finished in the case that $p R \neq 0$.

Assume now that $p R=D^{2}=0$ and $a \in D$ fails to commute with $b \in R$. By

Lemma 3 (ii), there exists $s>1$ for which $b^{s}-b \in D$; in fact, $b^{s}=b$, for otherwise it follows from $D=S$ that $a=\left(b^{s}-b\right) r$ for some $r \in R$ and that $a b-b a=\left(b^{s}-b\right) r b-b\left(b^{s}-b\right) r=\left(b^{s}-b\right)(r b-b r)=0$. This observation, together with (\dagger) and the fact that $p R=0$, shows that the subring R_{0} generated by a and b is finite; moreover, since b^{s-1} is a non-zero central idempotent of a subdirectly irreducible ring R, it must be a multiplicative identity for R and therefore for R_{0}. Thus, if there exists a subdirectly irreducible ring R satisfying (\dagger) for which $D \nsubseteq Z$, there exists a finite non-commutative ring R_{0} with identity which satisfies (\dagger) and has $p R_{0}=0$. Furthermore, R_{0} is a subdirect sum of subdirectly irreducible homomorphic images, so we may assume R_{0} is subdirectly irreducible as well. The proof of Lemma 5 will be complete once we establish the following lemma.

Lemma 6. Let R be a finite subdirectly irreducible ring with identity; suppose that R satisfies (\dagger) and that $p R=0$ for some prime p. Then R is commutative.

Proof. If zero divisors are central (hence commutators are central), then an application of Lemma 4 shows that $x^{p} \in Z$ for all $x \in R$; and since $x \notin D$ implies that $x+D$ generates a finite field, $x^{p k}-x \in D \subseteq Z$ for some $k \geqq 1$ and therefore R is commutative. Thus, we may assume that $D \nsubseteq Z$ and conclude from the argument of Lemma 5 that $D^{2}=0$.

Now finite rings having identity and having $D^{2}=0$ were studied by Corbas in [3]; under the hypothesis that $p R=0$, the additive group of R is a direct sum $K \oplus D$, where K is a finite field and D is a left vector space over K. Every one-dimensional subspace of D is a left ideal; and since our example R is a subdirectly irreducible duo ring, D must be one-dimensional. Thus, the number of elements in R is the square of the number in D; and by an earlier result of Corbas [2], there exists a finite field K such that $R \cong K \times K$ with addition being componentwise and multiplication according to the rule

$$
\begin{equation*}
(a, b)(c, d)=(a c, a d+b \phi(c)) \tag{2}
\end{equation*}
$$

where ϕ is an automorphism of K. Such a ring is commutative if and only if ϕ is the identity map, so it will be sufficient to show that a choice of ϕ different from the identity is not compatible with (\dagger).

Let $K=G F\left(p^{k}\right), t=p^{k}-1$, and $\phi: x \rightarrow x^{p^{r}}(1 \leqq r<k)$ a non-identity automorphism of K. If $a, b \in K$, if e is the identity element of K and n is an arbitrary positive integer, it follows from (2) that

$$
(a, b)^{n}=\left(a^{n}, a^{n-1} b+a^{n-2} \phi(a) b+a^{n-3}(\phi(a))^{2} b+\ldots+(\phi(a))^{n-1} b\right)
$$

In particular, for any $a, v \in K$, the condition that $(e, v)(a, e)=(a, e)^{n}(e, v)^{m}$ for some $n, m \geqq 1$ becomes

$$
\begin{aligned}
(a, e+\phi(a) v)= & \left(a^{n}, a^{n-1}+a^{n-2} \phi(a)+a^{n-3}(\phi(a))^{2}\right. \\
& +\ldots \\
& \left.+(\phi(a))^{n-1}\right)(e, m v) \\
= & \left(a^{n}, m a^{n} v+a^{n-1}+a^{n-2} \phi(a)+\ldots+(\phi(a))^{n-1}\right)
\end{aligned}
$$

Equating components and substituting for $\phi(a)$ then yields

$$
\begin{equation*}
a^{n}=a \quad \text { and } \quad e+a^{p r} v=m a v+a^{n-1}+a^{n-2} a^{p r}+\ldots+a^{p r(n-1)} \tag{3}
\end{equation*}
$$

Now each non-zero element a of K satisfies the equation $x^{t}-e=(x-e)$ $\left(x^{t-1}+x^{t-2}+\ldots+x+e\right)=0$; substituting a^{s} for a shows that if $a^{s} \neq e$, then any sum of the form $a^{s_{1}}+a^{s_{1}+s}+\ldots+a^{s_{1}+(t-1) s}$ must be zero. Thus, if we choose a to be a generator of the multiplicative group of K, v an arbitrary non-zero element of K and $s=p^{r}-1$, then (3) reduces to the condition that $t \mid n-1$ and a satisfies the equation

$$
\begin{equation*}
a^{p r}=m a . \tag{4}
\end{equation*}
$$

Clearly, a cannot satisfy (4) for any integer $m \equiv 0(\bmod p)$; if $m \not \equiv 0(\bmod p)$, raising both sides of (4) to the exponent $p-1$ and applying Fermat's theorem shows that a satisfies $a^{p r(p-1)}=a^{p-1}$ or $a^{(p r-1)(p-1)}=e$-an impossibility since ($p^{r}-1$) $(p-1)<p^{k}-1$. Thus, condition (3) cannot be satisfied for the given choice of a and v and the proof of Lemma 6 is finished.

Completion of proof of theorem. We now need to establish commutativity for subdirectly irreducible R satisfying (\dagger) and having $\{0\} \neq D \subseteq Z$.

Assume first that R / D has characteristic 0 , and suppose $a, b \in R$ do not commute. By essentially the argument used in Lemma 1, there will exist positive integers i, j for which $a^{i} b^{j}=b^{j} a^{i}$; and we may assume that $i>1$. Letting $c=b^{j}$ and applying Lemma 4, we get $0=\delta_{c}\left(a^{i}\right)=i a^{i-1} \delta_{c}(a)$; and since $i a^{i-1} \notin D, \delta_{c}(a)=0$, so that a commutes with b^{j}. Applying the same argument again if $j>1$, we get $a b=b a-$ a contradiction.

Now consider R with R / D of characteristic p. For all $x \in R, p x \in D$ and hence $p(x y-y x)=0$ for all $x, y \in R$; it follows from Lemma 4 that $x^{p} \in Z$ for all $x \in R$. Suppose that there exist non-commuting elements $a, b \in R$ and let $a b=b^{n} a^{m}$. If either n or m is 1 , say $n=1$, let $[a]=a+D$ and $[b]=b+D$ and apply the commutativity of $\bar{R}=R / D$ to get $[a]^{m}=[a]$; as before, $[a]$ will generate a finite subfield of \bar{R}, and it follows that $a^{p^{k}}-a \in D \subseteq Z$ for some $k \geqq 1$-a result which is incompatible with non-commutativity of a and b.

We now proceed on the assumption that a and b do not commute and $a b=b^{n} a^{m}$ with $n, m>1$. Again operating in the factor ring $\bar{R}=R / D$, we get $[a]^{m-1}[b]^{n-1}=[e]$, where $[e]=e+D$ is the identity of R / D. Since $e^{p} \in Z$ and $e^{p}-e \in D \subseteq Z$, we see that $e \in Z$, so that $a^{m-1} b^{n-1} \in Z$ and a^{m-1} commutes with b. Applying Lemma 4 again shows that p divides $m-1$ and, of course, $n-1$ as well. It follows (since $a^{p}, b^{p} \in Z$) that $a b=b a b^{o p} a^{h p}$ for some $g, h \geqq 1$; and since the same arguments yield $b a=a b a^{v p} b^{v p}$, for $v, w \geqq 1$, we get $a b=a b a^{j p} b^{k p}$ for some $j, k \geqq 1$. Consequently $a^{j p} b^{k p}$ is a non-zero central idempotent, necessarily a multiplicative identity for R; hence a and b are invertible and there are positive integers $J=j p$ and $K=k p$ such that $a^{J}=b^{-K}$. Applying the same argument to a and b^{-1} yields positive integers S, T such that $a^{S}=b^{T}$; and it follows that $a^{J S}=b^{-K S}=b^{J T}$, so that $b^{N}=b$ for
some $N>1$. Once again, we can conclude that $b^{p k}-b \in D \subseteq Z$ for some $k \geqq 1$, thereby contradicting the assumption that $a b \neq b a$. The proof of the theorem is now complete.

References

1. H. E. Bell, Some commutativity results for rings with two-variable constraints, Proc. Amer. Math. Soc. 53 (1975), 280-284.
2. B. Corbas, Rings with few zero divisors, Math. Ann. 181 (1969), 1-7.
3. -_Finite rings in which the product of any two zero divisors is zero, Arch. Math. 21 (1970), 466-469.
4. C. Faith, Algebraic division ring extensions, Proc. Amer. Math. Soc. 11 (1960), 43-53.
5. I. N. Herstein, Two remarks on the commutativity of rings, Canad. J. Math. 7 (1955), 411-412.
6. -On a result of Faith, Canadian Math. Bull. 18 (1975), 609.
7. G. Thierrin, On duo rings, Canadian Math. Bull. 3 (1960), 167-172.

Brock University, St. Catharines, Ontario

[^0]: Received September 5, 1975 and in revised form, June 4, 1976.

