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The theoretical limit for absorption of energy in monochromatic water waves of
wavelength λ by axisymmetric wave energy converters operating in rigid-body motion
was established in the 1970s. The maximum mean power generated by a device absorbing
due to heave motion is equivalent to that contained in λ/2π length of an incident wave
crest. For devices absorbing through surge and/or pitch motions the so-called capture
width doubles to λ/π. For devices absorbing in both heave and surge/pitch the capture
width increases further to 3λ/2π. In this paper it is demonstrated that it is theoretically
possible to extend the capture width for axisymmetric wave energy converters without
bound through the use of generalised (non-rigid-body) modes of motion. This concept is
applied to vertical cylinders whose surface is surrounded by an array of narrow vertical
absorbing paddles. A continuum approximation is made to the paddle motion which
simplifies the problem and allows strategies to be developed for setting the springs and
dampers that control the power absorption. Results demonstrate that a cylinder of fixed
size can absorb as much power as demanded from a plane incident wave although the
practical limitations of linear theory are rapidly breached as that demand increases unless
the size of the cylinder increases in proportion. In this paper we do not explore these limits
in detail or further practical design considerations, such as imposing motion constraints.
The continuum approximation is tested against a discrete paddle simulation for accuracy.
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1. Introduction

Ocean waves offer an abundant source of clean energy, but the reality of designing
and operating an economically viable, efficient and robust solution for harnessing that
energy has proved immensely challenging. There are many reasons for this which are well
documented (Cruz 2008; Garrad 2012; Yemm et al. 2012; Salter 2016). The biggest current
challenge to continued interest and investment in the development of ocean wave energy
renewables stems from the recent fall in the cost of production of energy from alternative
renewable sources, principally wind and solar, now the cheapest form of energy production
in many parts of the world. For example, wind and solar in the UK was 30 %–50 % cheaper
in 2020 than the UK government’s previous estimate made just four years earlier (UK
Department for Business, Energy & Industrial Strategy 2020). On the other hand, it has
been anticipated (UK Department of Energy & Climate Change 2011) that a carbon neutral
future will require renewable ocean energy to contribute a significant and vital part of the
energy mix. Thus, in addition to existing challenges there is an even sharper focus on
developing wave energy converters (WECs) which are underpinned by high efficiency.
Practically this requires developing WECs with the capacity to produce large amounts of
energy from a single installation.

This demand presents a fundamental problem since it has long been known that there
are theoretical limits on power absorption for certain types of WEC. For long so-called
terminator devices which are aligned broadside to the oncoming wave direction it is
theoretically possible, under classical linearised water wave theory, to absorb up to 100 %
of the incident wave energy along most of their length (e.g. Salter Duck, Bristol Cylinder;
see Cruz 2008). Once regarded as the most promising solution, the scaling up of capacity
requires additional device length with its associated costs.

However, for axisymmetric devices (which tend to be classified as point absorbers) it is
theoretically possible to absorb all of the wave energy from a length of incident wave crest
which exceeds the physical dimensions of the device. Specifically the power available to
a rigid axisymmetric wave absorber depends only on the wavelength, λ, in the manner
described in the abstract. Practically, it is hard to exploit since device motions increase
as the device size reduces and eventually must become constrained (Evans 1981; Pizer
1993). For attenuator devices aligned with the incoming wave direction (e.g. Pelamis)
theoretical limits are less clear, although a similar principle applies: it is possible to absorb
energy from a much greater length of incident wave crest than the slender width of the
device. There are sound arguments (see Mei 1983) that the amount of energy captured
can increase with the number of absorbing mechanisms placed along the length of the
attenuator (articulations between Pelamis raft sections, for example). Again there are
practical considerations which imply that attenuators either need to be of considerable
length and/or require constraints to be applied on the motion as in Newman (1979) and
Ancellin et al. (2020) to ensure predictions remain within the limitations of the underlying
theory.

A comprehensive study carried out by Babarit (2015) (see Babarit’s figure 16)
cataloguing many of the different types of WEC design highlights the role of these limits.

In this paper we return to axisymmetric devices and, instead of allowing them to operate
and absorb energy in the usual rigid-body modes of motion, consider devices which
operate in ‘generalised modes’ of motion, reminiscent of ideas developed in Newman
(1979) and Newman (1994). This involves allowing the surface of the device to move with
more degrees of freedom than would be afforded if the surface of the device were rigid.
In this paper we imagine that this effect is created by placing a large array of narrow
paddles around the surface of a vertical cylinder. There may be other approaches which
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Extending limits for wave power absorption

produce a similar effect through hydroelasticity, for example. Indeed, Garnaud & Mei
(2009) have previously shown that a compact array of floating buoys extracting power
in heave and distributed over a circular region of the surface can absorb more than the
equivalent size of a rigid cylinder. Zheng, Porter & Greaves (2020) have demonstrated
how a structured porous cylinder can be capable of exceeding the equivalent rigid-body
absorption limits. Very recently, Michele et al. (2020) have used a distributed power
take-off system connecting a floating elastic plate to the bed to generate power.

2. General theory and motivation

There are a number of different ways of developing the theoretical framework which
describes the capacity of a WEC to absorb power from an incoming plane wave. One
such approach (see Mei 1983) is summarised below. A plane monochromatic wave of
wavelength λ = 2π/k, angular frequency ω and amplitude A travelling in the positive x
direction on water of depth h is described by the velocity potential

φpw(x, y, z) = − iAg
ω

eikxψ0(z), (2.1)

where ω = √
gk tanh kh is the assumed radian frequency of motion, related to the

wavenumber k, and ψ0(z) = cosh k(z + h)/ cosh kh is the depth eigenfunction associated
with propagating waves. Thus, inviscid incompressible linearised water wave theory is in
operation and a time factor of e−iωt has been suppressed so that φpw is a solution of the
governing equations

∇2φ = 0, in the fluid, (2.2)

with
φz = 0, on z = −h, (2.3)

and
φz − (ω2/g)φ = 0, on z = 0. (2.4)

The mean (time-averaged over a period) flux of energy per unit length of wave crest
contained in the plane wave is calculated from

Ppw = 1
2 Re

{∫ 0

−h
iωρφpw

∂φ∗
pw

∂x
dx

}
= 1

2ρg|A|2cg, (2.5)

where the asterisk denotes complex conjugation and cg = dω/dk = 1
2(ω/k)(1 + 2kh/

sinh 2kh) is the group velocity.
The incident plane wave defined by (2.1) can be expressed as the sum of incoming and

outgoing circular waves by writing (e.g. Mei 1983)

φpw(r, θ, z) = φin(r, θ, z)+ φout(r, θ, z), (2.6)

where

φin = − iAg
2ω
ψ0(z)

∞∑
n=0

εninH(2)
n (kr) cos nθ (2.7)

and

φout = − iAg
2ω
ψ0(z)

∞∑
n=0

εninH(1)
n (kr) cos nθ, (2.8)
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where ε0 = 1 and εn = 2 for n ≥ 1. The mean flux of energy to/from infinity attributed to
the nth circular component of (2.8)/(2.7) has the value Pn = (εnλ/2π)Ppw. Contrasting
font styles indicate different dimensions of Ppw and Pn (units of kW m−1 and kW,
respectively).

Consider plane waves incident upon a device which we assume for simplicity is
symmetric with respect to the incident wave heading. Then far away from the device

φ(r, θ, z) ∼ φpw(r, θ, z)− iAg
ω
ψ0(z)

∞∑
n=0

εninan,0H(1)
n (kr) cos nθ, (2.9)

where an,0 are coefficients determined by the shape and dynamics of the device as well as
the wave frequency. When written as

φ = φin − igA
2ω
ψ0(z)

∞∑
n=0

εnin(2an,0 + 1)H(1)
n (kr) cos nθ, (2.10)

it can be seen that the power lost to the device is

P = Ppwλ

2π

∞∑
n=0

εn(1 − |2an,0 + 1|2). (2.11)

It follows that a non-absorbing device (including fixed, freely floating or constrained
to move with sprung mooring lines) must have scattering coefficients an,0 ≡ aS

n,0, say,
satisfying |2aS

n,0 + 1| = 1.
For example, consider a rigid vertical cylinder extending through the depth of the fluid

for which the potential everywhere in the fluid domain may be written (e.g. MacCamy &
Fuchs 1954)

φ(r, θ, z) = − iAg
ω
ψ0(z)

∞∑
n=0

εnin
(

Jn(kr)− J′
n(ka)

H(1)
n

′
(ka)

H(1)
n (kr)

)
cos nθ, (2.12)

wherein aS
n,0 = −J′

n(ka)/H(1)
n

′
(ka) and it is confirmed that |2aS

n,0 + 1| = 1.
More importantly, (2.11) tells us that a device with the capacity to absorb energy can

extract up to the maximum mean power, Pn, from the nth circular component of the wave
field if its dynamics can be orchestrated to meet the condition an,0 = −1

2 . For this is to
happen the device must have the capacity to radiate waves through motions responsible for
absorbing wave energy in the nth circular mode, i.e. in proportion to cos nθ . For example,
rigid-body heave motion of an axisymmetric device radiates waves in the zeroth circular
mode, and so its maximum power absorption is limited to Pmax = P0, whilst surge and
pitch motions radiate in the n = 1 circular mode giving rise to a maximum of Pmax = P1;
combined heave and surge/pitch provides a maximum of Pmax = P0 + P1. Thus we recover
the well-known theoretical limits derived independently by Newman (1976), Evans (1976)
and Budal & Falnes (1977) and summarised in the abstract.

The capacity to absorb energy in excess of these limits thus lies in the ability to radiate
in multiple circular modes. This is a well-understood concept, and approaches to exploit
this have been made by Newman (1979), Haren & Mei (1979) and Ancellin et al. (2020)
for elongated attenuator WEC devices and when WECs are comprised of multiple distinct
absorbers such as those of Garnaud & Mei (2009) and Wolgamot, Taylor & Eatock Taylor
(2012). In both cases the operation is characterised by multiple degrees of freedom.
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Figure 1. Sketch of an axisymmetric device: (a) bird’s-eye view of the device with hinged paddles;
(b) section of the device with hinged paddles; (c) section of the device with piston-like paddles.

In this paper we apply the principle to axisymmetric devices by imagining that a WEC
device is fitted with a large number (N, say) of narrow vertical paddles across its surface
which oscillate normal to that surface. These paddles could be hinged along a level below
the water surface or perhaps operate with a linear piston-like motion directed from the
vertical axis. We suppose the paddles have the capacity to convert hydrodynamic forces
into useful power.

The N paddles could be connected to their own springs and dampers and operate
independently from one another. However, for the moment, let us imagine that the paddle
operation can be designed to oscillate as a superposition of M + 1 (say) modes which,
when absorbing, radiate in the far field with a variation of cos nθ for 0 ≤ n ≤ M. For
example, the n = 0 mode corresponds to the paddles operating synchronously and, in the
n = 1 mode, the paddle oscillation is modulated by cos θ . Then it is possible, in principle
at least, to design the paddle springs and dampers such that

Pmax = Ppwλ

π

(
M + 1

2

)
. (2.13)

In this paper we focus on a circular cylinder extending through the depth covered
with narrow vertical paddles with the capacity to absorb, but do not suppose the type of
complicated engineering solutions or control theory suggested above is needed to operate
the paddles (see figure 1). Instead, each paddle is supposed to operate independently
with its own spring and damper and the paper explores strategies to design the springs
and damper characteristics with a view to developing power beyond that available to
an equivalent cylinder operating in rigid-body motion thereby showing that (2.13) is
theoretically attainable. This investigation is assisted by the development of a continuum
approximation to the arrangement of narrow paddles across the surface of the cylinder.
The accuracy of this approximation is assessed against an exact description of the
hydrodynamic/mechanical problem for a finite number of paddles.

The aim of the current work is to highlight the potential for a single axisymmetric
device fitted with multiple paddles to absorb power in excess of the power from rigid-body
motion. It does not, however, address the important issue of adding motion constraints in
order that the underlying linearised water wave framework is not compromised.
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3. A cylindrical WEC: governing equations

A vertical cylinder of radius a centred on the z axis extends through a fluid of density ρ and
depth h with a mean free surface on z = 0. An array of N � 1 identical narrow vertical
paddles are attached to the surface of the cylinder having width 2πa/N assumed to be
much smaller than their length c (no larger than the fluid depth, h) and the wavelength
λ. The angular coordinate of the centre of the nth paddle is denoted θn = (2n − 1)π/N,
n = 1, 2, . . . ,N. Each rigid paddle can move in a radial direction along its central axial
plane and the motion of the nth paddle is resisted by a linear spring with spring constant κn
and a linear damper with damping rate γn through which power is extracted. In motion, the
nth paddle oscillates through a small displacement (linear or angular) Sn(t) = Re{σn e−iωt}
where the time dependence of radian frequency ω has been assumed.

The motion of the fluid is governed by a potential φ(r, θ, z) which satisfies (2.2), (2.3)
and (2.4). Additionally, the kinematic condition connecting the velocity of the fluid to that
of the paddles normal to the cylinder surface is written

∂φ

∂r

∣∣∣∣
r=a

= −iωσn f (z) cos(θ − θn), −h < z < 0, θn − π/N < θ < θn + π/N, (3.1)

for n = 1, 2, . . . ,N and cos(θ − θn) is a geometric factor due to the curvature of the
paddle surface. In (3.1), f (z) encodes the spatial variation of the displacement along
the length of the paddle. For example, a paddle operating in a radial piston-like motion
along a submerged extent c ≤ h will be defined by f (z) = 1, −c < z < 0 and f (z) = 0,
−h < z < −c whereas a paddle operating as a hinged flap pivoted along its bottom edge
along z = −c (c < h) would be defined by

f (z) =
{

z + c, −c < z < 0,
0, −h < z < −c. (3.2)

The equation of motion for the nth paddle is expressed by

− ω2M(2πa/N)σn = −(κn + C(2πa/N))σn + iωγnσn + Xn, (3.3)

where M is the mass (or moment of inertia) per unit width, C accounts for any buoyancy
restoring force (or moment) per unit width present and

Xn = −iωρ
∫ 0

−h

∫ θn+π/N

θn−π/N
φ(a, θ, z) f (z) cos(θ − θn)a dθ dz (3.4)

is the hydrodynamic wave force (or moment). The cosine terms appearing in (3.1) and
(3.4) are geometrical factors arising from the component normal to the assumed curved
surface of the paddles.

When N is large and the width of the paddle, 2πa/N, is small with respect to the
wavelength λ and the length of the paddle c, we assume that σn may be replaced by discrete
evaluations, σ(θn), of a continuous function σ(θ) allowing (3.1) to be approximated by

∂φ

∂r

∣∣∣∣
r=a

= −iωσ(θ) f (z), −h < z < 0, 0 < θ ≤ 2π. (3.5)

Similarly, we let κn = κ(θn)(2πa/N) and γn = γ (θn)(2πa/N), where κ and γ are
continuous functions representing the spring force (or torque) and damping rate per unit
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Extending limits for wave power absorption

width, whilst (3.4) becomes

Xn = 2aπ

N
X(θn) ≈ −iωρ

2aπ

N

∫ 0

−h
φ(a, θn, z) f (z) dz. (3.6)

Then the N discrete equations of motion for the N paddles in (3.3) are approximated by
the θ -continuous equation of motion:

[κ(θ)+ C − ω2M − iωγ (θ)]σ(θ) = X(θ), 0 < θ ≤ 2π. (3.7)

It follows that the combined dynamic and kinematic boundary condition on r = a is

[κ(θ)+ C − ω2M − iωγ (θ)]
∂φ

∂r

∣∣∣∣
r=a

= −ω2ρ f (z)
∫ 0

−h
φ(a, θ, z) f (z) dz, (3.8)

for −h < z < 0 and 0 < θ ≤ 2π. We write this as

Λ(θ)ha
∂φ

∂r

∣∣∣∣
r=a

= f (z)
∫ 0

−h
φ(a, θ, z) f (z) dz, (3.9)

where

Λ(θ) = M − ω−2(κ(θ)+ C)+ iω−1γ (θ)

ρha
. (3.10)

4. Solution for narrow paddles

Following the description of the plane wave in (2.1) we can write the full depth-dependent
potential satisfying (2.2), (2.3) and (2.4) as the expansion

φ(r, θ, z) = − igA
ω

∞∑
m=0

ϕm(r, θ)ψm(z) (4.1)

over all depth eigenfunctions

ψm(z) = cos km(z + h)/ cos(kmh) (4.2)

that arise from separating variables: km are the increasing sequence of positive roots of
−ω2/g = km tan kmh (e.g. Mei 1983). The depth eigenfunctions defined in (4.2) alongside
ψ0(z) defined after (2.1) with k0 = −ik satisfy the orthogonality relation

1
h

∫ 0

−h
ψn(z)ψm(z) dz = Nnδmn, (4.3)

for all n,m = 0, 1, 2, . . ., where

Nn = 1
2(1 + sin(2knh)/(2knh))/ cos2(knh). (4.4)

The functions ϕm(r, θ) are given by

ϕ0(r, θ) =
∞∑

n=0

εnin(Jn(kr)+ an,0H(1)
n (kr)) cos nθ (4.5)

and

ϕm(r, θ) =
∞∑

n=0

εninan,mKn(kmr) cos nθ, (4.6)

for m ≥ 1, and Kn(·) are modified Bessel functions.
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We define

Fn = 1
h

∫ 0

−h
ψn(z) f (z) dz, n = 0, 1, . . . , (4.7)

as constants which can be calculated for a given f (z). Using (4.1) in (3.9) gives

Λ(θ)a
∞∑

m=0

∂ϕm

∂r
(a, θ)ψm(z) = f (z)G(θ), (4.8)

where

G(θ) = 1
h

∫ 0

−h

∞∑
m=0

ϕm(a, θ)ψm(z) f (z) dz =
∞∑

m=0

Fmϕm(a, θ). (4.9)

It follows after using (4.7) again that

Λ(θ)aNm
∂ϕm

∂r
(a, θ) = FmG(θ), 0 < θ ≤ 2π, (4.10)

for all m = 0, 1, . . . and so

∂ϕm

∂r
(a, θ) = N0Fm

NmF0

∂ϕ0

∂r
(a, θ). (4.11)

Application of this relation to (4.5) and (4.6) gives

an,m = kFmN0

kmF0NmK′
n(kma)

(J′
n(ka)+ an,0H(1)

n
′
(ka)), (4.12)

for m ≥ 1, after equating coefficients of cos nθ . This important relation illustrates that the
dependence of the fluid motion through the depth is set by the function f (z) describing the
vertical displacement of the paddle motion.

In particular, using (4.12) in (4.5) and (4.6) allows us to express the general solution
(4.1) in the form

φ(r, θ, z) = − igA
ω

∞∑
n=0

εninφn(r, z) cos nθ, (4.13)

where

φn(r, z) = (Jn(kr)+ an,0H(1)
n (kr))ψ0(z)

+ (J′
n(ka)+ an,0H(1)

n
′
(ka))

∞∑
m=1

kFmN0Kn(kmr)
kmF0NmK′

n(kma)
ψm(z) (4.14)

is expressed in terms of an,0 only.
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We will also find it convenient to write

G(θ) =
∞∑

n=0

εninGn cos nθ, (4.15)

where, from the definition implied by its introduction in (4.8),

Gn = F0(Jn(ka)+ an,0H(1)
n (ka))+ kaN0

F0
(J′

n(ka)+ an,0H(1)
n

′
(ka))En, (4.16)

and we have defined

En =
∞∑

m=1

F2
mKn(kma)

kmaNmK′
n(kma)

. (4.17)

4.1. Equal springs and dampers
We let κ(θ) = κ and γ (θ) = γ so that

Λ(θ) = M − (κ + C)/ω2 + iγ /ω
ρha

≡ Λ0, (4.18)

say, is a constant and it follows that the boundary condition (3.9) applies to each circular
wave component; thus,

Λ0ha
∂φn

∂r

∣∣∣∣
r=a

= f (z)
∫ 0

−h
φn(a, z) f (z) dz. (4.19)

Substituting in (4.14), multiplying through byψ0(z) and integrating over −h < z < 0 gives

kaΛ0(J′
n(ka)+ an,0H(1)

n
′
(ka))N0 = F0Gn, (4.20)

where Gn is given by (4.16). Note that integrating over −h < z < 0 with other depth
functions ψm(z) for m ≥ 1 does not provide any new information as the dependence on
the vertical has already been incorporated into the solution.

Thus we can calculate an,0 explicitly from substituting (4.16) into (4.20) and rearranging
to get

an,0 = − ΓnJ′
n(ka)− Jn(ka)

ΓnH(1)
n

′
(ka)− H(1)

n (ka)
, (4.21)

where

Γn = kaN0

F2
0
(Λ0 − En). (4.22)

The power generated by the paddles is subsequently calculated using (2.11). After some
lengthy but routine algebra requiring the use of the following Wronksian identity for Bessel
functions (Abramowitz & Stegun 1964, § 9.1.16):

Jn(x)Y ′
n(x)− J′

n(x)Yn(x) = 2/(πx), (4.23)

we find that

P = Ppwλ

2π

(
8N0γ

πωρhaF2
0

) ∞∑
n=0

εn

|ΓnH(1)
n

′
(ka)− H(1)

n (ka)|2
. (4.24)

Although explicit, the expression above for the power is not particularly informative. For
example, the maximum power available to each circular mode, Pn = εnλ/2π, is not evident
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in the form given in (4.24), nor is it easy to see how (4.24) could be used to optimise P
with respect to the spring and damping parameters κ and γ .

We can, however, derive expressions for κ and γ which maximise the power absorbed
in any individual circular mode. This can be done in one of two ways. The first is to isolate
the mth component, Pm, from the sum in (4.24) and then set ∂Pm/∂κ = ∂Pm/∂γ = 0.

It is easier, though, to use the theoretical framework developed in § 2 and impose am,0 =
−1

2 in (4.21) as a condition for maximum power absorption from the mth circular wave
component and this yields the expression

Γm = H(2)
m (ka)

H(2)
m

′
(ka)

= (Jm(ka)J′
m(ka)+ Ym(ka)Y ′

m(ka))+ 2i/(πka)

|H(2)
m

′
(ka)|2

, (4.25)

using (4.23) once again. The coefficients an,m for n /= m are subsequently defined by
(4.12).

Equating (4.25) with the definition of Γn in (4.22) implies a complex condition to be
satisfied by Λ0, defined here by (4.18) and equating real and imaginary parts gives the
conditions

γ

ωρha
= 2F2

0

πk2a2N0|H(2)
m

′
(ka)|2

(4.26)

and
M − ω−2(κ + C)

ρha
= F2

0(Jm(ka)J′
m(ka)+ Ym(ka)Y ′

m(ka))

kaN0|H(2)
m

′
(ka)|2

+ Em. (4.27)

These two equations define κ and γ for absorption of the maximum power, Pm, from the
mth circular wave component.

4.2. Unequal springs and dampers
Let us now assume that the springs and dampers can vary with position around the cylinder
so that the boundary condition (3.9) remains as

Λ(θ)ha
∂φ

∂r

∣∣∣∣
r=a

= f (z)
∫ 0

−h
φ(a, θ, z) f (z) dz, (4.28)

with

Λ(θ) = M − ω−2(κ(θ)+ C)+ iω−1γ (θ)

ρha
=

∞∑
m=0

εmΛm cos mθ, (4.29)

once expressed as a Fourier series. After substituting in the partial wave decomposition
(4.13), multiplying by cos pθ and integrating over 0 < θ ≤ 2π, the result can be expressed
either as

1
2

∞∑
m=0

εmΛma
[

i|p−m| ∂φ|p−m|
∂r

+ ip+m ∂φp+m

∂r

]
r=a

= f (z)ipGp, (4.30)

where Gp is defined by (4.16), or as

1
2

∞∑
n=0

εnin
∂φn

∂r

∣∣∣∣
r=a

a(Λ|p−n| +Λp+n) = f (z)ipGp, (4.31)

depending on how one chooses to eliminate the summation variables through the
orthogonality of the product of three cosines.
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Extending limits for wave power absorption

As in the previous section, there are two ways of proceeding. One is to imagine that
the settings for the springs and dampers have been made such that Λm are presumed
known and then use the system above to determine an,0 and, subsequently, the power
P. Substituting (4.14) and (4.16) into (4.31), multiplying by ψ0(z) and integrating over
−h < z < 0 gives the system of equations

ap,0

[
H(1)

p (ka)+ ip
kaN0

F2
0

EpH(1)
p

′
(ka)

]

− kaF2
0

2N0

∞∑
n=0

an,0εninH(1)
n

′
(ka)(Λ|p−n| +Λp+n)

= −
[

Jp(ka)+ ip
kaN0

F2
0

EpJ′
p(ka)

]
+ kaF2

0
2N0

∞∑
n=0

εninJ′
n(ka)(Λ|p−n| +Λp+n), (4.32)

for p = 0, 1, . . .. When Λn = 0 for n ≥ 1 and Λ(θ) = Λ0, a constant, (4.32) reduces to
(4.21).

However, we also have the opportunity to design the settings of springs and dampers to
control the device performance and so we treat Λm as unknown and proceed as if an,0 are
prescribed. Following the same procedure as above but with (4.30) replacing (4.31) leads
to

kaN0

2F2
0

∞∑
m=0

εmΛm(Q|p−m| + Qp+m) = ipGp

F0
p = 0, 1, . . . , (4.33)

where Qn = in(J′
n(ka)+ an,0H(1)

n
′
(ka)). With a view to reaching the limit (2.13) set out

in the introduction, albeit via a different route, we set an,0 = −1
2 for n ≤ M and an,0 =

−J′
n(ka)/H(1)

n
′
(ka) for n > M (corresponding to a non-absorbing cylinder; see § 2) so that

Qn =
{

1
2 inH(2)

n
′
(ka), n ≤ M,

0, n > M,
(4.34)

and the right-hand side of (4.33) is

ipGp

F0
=
{

1
2 ip(H(2)

p (ka)+ (kaN0/F2
0)EpH(2)

p
′
(ka)), p ≤ M,

2ip+1/(πkaH(1)
p

′
), p > M.

(4.35)

The infinite system of (4.33) is then subject, for numerical purposes, to truncation subject
to suitable convergence for a given M.

The process above describes how to fix the values of Λm by tuning for maximum power
from the first M + 1 circular modes at a specified frequency. At other frequencies an,0 will
need to be determined from (4.32) in terms of the fixed values of Λm.

Other design strategies could be adopted. For example, there may be benefits to
distributing the capacity to absorb the maximum power from different circular modes
across a range of frequencies. This might mitigate against overloading the device at a
single frequency and could improve its overall performance in real sea states. It is not yet
clear from the theory developed above how to design Λm for such an outcome, other than
perhaps by brute-force numerical optimisation.
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5. A discrete paddle calculation

The previous sections have concentrated on a continuum description of the paddle motion
and this has allowed us to develop particular strategies for selecting spring and damper
settings. It is possible to construct solutions for the original arrangement of N discrete
paddles. Although this does not lead to the same mathematical insight, it will allow the
accuracy of the continuum description of the absorbing cylinder to be assessed.

What follows is a standard linear decomposition method (e.g. Mei 1983) in which we
write

φ = φS +
N∑

q=1

(−iωσq)φ
(q)
R , (5.1)

where φS is the scattering problem, subject to an incident plane wave (2.1) and satisfying

∂φS

∂r

∣∣∣∣
r=a

= 0, 0 < θ ≤ 2π, −h < z < 0, (5.2)

whilst φ(q)R is the radiation potential associated with the forced motion of the qth paddle
and satisfying

∂φ
(q)
R
∂r

∣∣∣∣∣
r=a

=
{

f (z) cos(θ − θq), θq − π/N < θ < θq + π/N,
0, otherwise.

(5.3)

The solution to the scattering problem for φS is given in (2.12) with an,0 ≡ aS
n,0 =

−J′
n(ka)/H(1)

n (ka). We can take advantage of the earlier theory to write the general
expansion for the radiation potential as

φ
(q)
R =

∞∑
n=0

εninb(q)n,0

[
H(1)

n (kr)ψ0(z)+ H(1)
n

′
(ka)

∞∑
m=1

kN0FmKn(kmr)
kmNmF0K′

n(kma)
ψm(z)

]
cos nθ,

(5.4)

which takes account of the depth dependence f (z) of the paddle. Using (5.4) in (5.3) and
the orthogonality of cos nθ and ψm(z) determines the expansion coefficients as

b(q)n,0 = i−nF0Cqn

2πkN0H(1)
n

′
(ka)

, (5.5)

where

Cqn =
∫ θq+π/N

θq−π/N
cos(θ − θq) cos nθ dθ

=

⎧⎪⎨
⎪⎩
(1

2 sin(2π/N)+ π/N) cos θq, n = 1,(
sin((n + 1)π/N)

n + 1
+ sin((n − 1)π/N)

n − 1

)
cos(nθq), n /= 1.

(5.6)

The wave force upon the pth paddle is similarly decomposed as

Xp = XS,p +
N∑

q=1

(−iωσq)X
(q)
R,p, (5.7)
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Extending limits for wave power absorption

where

XS,p = −iωρ
∫ 0

−h

∫ θp+π/N

θp−π/N
φS(a, θ, z) cos(θ − θp) f (z) a dθ dz

= −2iρghAF0

πk

∞∑
n=0

εninCpn

H(1)
n

′
(ka)

, (5.8)

after use of a number of previous results. Similarly

X(q)R,p = −iωρ
∫ 0

−h

∫ θp+π/N

θp−π/N
φ
(q)
R (a, θ, z) cos(θ − θp) f (z) a dθ dz

= −iωhaρ
∞∑

n=0

εninb(q)n,0

[
H(1)

n (ka)F0 + H(1)
n

′
(ka)

∞∑
m=1

kN0F2
mKn(kma)

kmNmF0K′
n(kma)

]
Cpn.

(5.9)

It is common practice to decompose complex-valued radiation forces into real added
inertia and radiation damping components:

X(q)R,p = iωApq − Bpq. (5.10)

The equation of motion for the nth paddle in (3.3) is now written

(κn + C(2πa/N)− iωγn − ω2M(2πa/N))σn −
N∑

m=1

(ω2Anm + iωBnm)σm = XS,n,

(5.11)

for n = 1, 2, . . . ,N. This represents an N × N system of equations for the unknown
complex-valued paddle displacement amplitudes σn.

Subsequently, the power generated by the device can be calculated in at least two
independent ways. One is to see from (5.1) and (5.4) that the total radiated wave potential
is

φR ∼
N∑

q=1

(−iωσq)

∞∑
n=0

εninb(q)n,0H(1)
n (kr) cos nθ, as kr → ∞, (5.12)

and use this with φS to calculate the power in outgoing circular waves and subtract it from
that in the incoming circular waves:

φout ∼ ψ0(z)
∞∑

n=0

εnin

⎛
⎝ N∑

q=1

(−iωσq)b
(q)
n,0 + iAg

ω

J′
n(ka)

H(1)
n

′
(ka)

⎞
⎠H(1)

n (kr) cos nθ, (5.13)

as kr → ∞, and so we can use expression (2.11) for the power, where

an,0 = ω2

Ag

N∑
q=1

σqb(q)n,0 − J′
n(ka)

H(1)
n

′
(ka)

. (5.14)
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The other method is to calculate the power generated by each of the paddles and sum
over all N paddles, which results in

P = ω2

2

N∑
q=1

γq|σq|2. (5.15)

Both expressions are calculated numerically to check the accuracy of the numerical code
and produce graphically indistinguishable results.

6. Results

The power absorption of the cylinder is measured using the dimensionless capture factor,
defined as

η = 2πP
λPpw

. (6.1)

A value of η = 1 thus represents the maximum power capable of being absorbed by a
rigid axisymmetric device operating in heave; η = 3 is the maximum power that a rigid
body can absorb in any combination of all rigid-body motions. Values of η > 3 therefore
indicate that the cylinder is absorbing power in excess of the capacity of a traditional
axisymmetric wave-energy-absorbing device. Many of the results will involve plotting η
against dimensionless wavenumber ka (= 2πa/λ) and we have chosen to fix the depth
against the cylinder radius with a/h = 1 throughout the results (changing this value does
not alter the qualitative nature of results). This means ka � 1

2 represents long waves with
respect to both the cylinder diameter and the water depth, whereas ka � 5 implies a
wavelength comparable to the cylinder radius.

The paddles are given a uniform density, ρs, and thickness, d. For paddles hinged along
the centre of the bottom edge, M = 1

3ρsdc(c2 + d2/4) represents the moment of inertia
per unit width about the point of rotation and C = 1

12ρgd3 is the buoyancy moment per
unit width.

For paddles operating in piston-like motion we assign values to dimensionless
quantities:

M̄ = M/(ρah), C̄ = C/(ρga), κ̄ = κ/(ρga), γ̄ = γ /(ρag1/2h1/2). (6.2a–d)

For hinged paddles each right-hand side above is additionally divided by c2.
Numerically, we consider values of M̄ = 0.1, C̄ = 0 for piston-like operation; and

M̄ = 0.034, C̄ = 0.0003 for hinged motion. Whilst we are not trying to prescribe exact
engineering parameters, we have based these values on reasonable estimates of a = 10 m,
h = 10 m and ρ = 1025 kg m−3 and paddles with c = 5 m, d = 1 m and density ρs = 2ρ.

Our principal interest is in adjusting the spring and damper settings to assess the
performance of the device in relation to the theory we have developed.

We start by using the continuous paddle distribution approximation to assess the
performance for a range of spring and damper constants, κ̄ and γ̄ in figures 2 and 3. It
can be seen that the rigid-body limit of η = 3 is exceeded for values of ka � 1 and one
can see that generally softer springs provide better performance for lower values of ka and
vice versa.

Instead of fixing the springs and dampers, we implement the optimisation outlined in
§ 4.1 which provides a recipe for setting equal spring and damper settings to extract the
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Figure 2. Capture factor against dimensionless wavenumber for κ̄ = 0.3: (a) piston-like paddles; (b) hinged
paddles.
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(b)(a)

Figure 3. Capture factor against dimensionless wavenumber for γ̄ = 0.3: (a) piston-like paddles; (b) hinged
paddles.

maximum available power from any given circular mode component, m, in the incident
wave. Results are illustrated in figure 4. In figure 4(b,c) the variation of the optimal values
of κ̄ and γ̄ with frequency is shown alongside the resulting capture factor in figure 4(a).
According to the optimisation strategy, when m = 0 the capture factor is guaranteed to
exceed a value of unity and when m > 0 it must exceed η = 2. In practice, the amount
by which the capture factor exceeds these minimum values can be large, since power is
absorbed from circular wave components in the incident wave other than the one being
targeted. Indeed, the capture factor appears to grow linearly with ka, once ka � m, and
that growth is independent of the mode number, m.

The corresponding results for hinged paddles are shown in figure 5 and are qualitatively
very similar to those for piston-like paddle motion.

To provide additional insight into how the cylinder device is operating we have plotted,
in figure 6, a snapshot at an intermediate frequency, ka = 2, of the contribution of the
capture factor from different circular wave components (n along the horizontal axis)
when equal springs and dampers have been tuned to extract the maximum available in
a particular mode, m at this frequency. We can see that there is significant absorption
across multiple modes. Taken with the previously observed linear trend in figures 4 and 5,
it would appear that close to 100 % of the energy flux available is being absorbed by all
circular modes in the range 0 ≤ n � ka/m.

Figure 7 shows the maximum paddle amplitudes at ka = 2 under spring and damper
tuning optimised to take all the available power from the mth mode. Here we see clearly
that the paddles are having to work harder to absorb power from higher modes in terms of
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Figure 4. (a) Capture factor against dimensionless wavenumber for piston-like paddle motion, with (b,c)
corresponding damper and spring values optimised in order to capture all the available power in the mth circular
mode.
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Figure 5. (a) Capture factor against dimensionless wavenumber for hinged paddle motion, with (b,c)
corresponding damper and spring values optimised in order to capture all the available power in the mth circular
mode.
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Figure 6. The partition of capture factor into contributions from the nth circular mode (along the horizontal
axis) at ka = 2 for operation tuned to be optimal for mode m: (a) piston-like paddles; (b) hinged paddles.
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Figure 7. Dimensionless modal amplitudes of the paddles as a function of angle around the cylinder for springs
and dampers tuned to absorb optimally in circular mode m at ka = 2: (a) piston-like paddles; (b) hinged
paddles.

both the paddle amplitude and its variation around the cylinder. This is an indicator of the
practical limitations for such a device. Note also that the hinged paddle requires roughly
double the amplitude at the surface of the piston-like paddles. It can be seen that paddle
amplitudes in excess of four times the incident wave amplitude are predicted for m = 4
and this would certainly violate the underlying linear assumptions. Indeed, this example
serves to illustrate the important practical considerations which will impose quite severe
limitations on how much additional predicted theoretical power one can actually exploit.
The same comments apply to figure 12.

The maximum free surface elevation corresponding to the cases referenced in
figures 6(a) and 7(a) is shown in figure 8 where it can be seen again how the paddles
are working hard to absorb all of the available power for higher values of m where the
cos mθ variation in the field becomes increasingly visible.

In figure 9(a) we show the proportion of power absorbed by each circular mode when
paddles operating in piston-like motion are tuned to absorb 100 % of the power available
in the m = 0 mode. Each set of results comes from different values of ka. Of course 100 %
of power is taken from n = 0, but we again see that as ka increases, the device is taking
close to 100 % available power from modes n less than the integer part of ka. Figure 9(b)
indicates the distribution of paddle amplitudes around the cylinder for these four sets of
results. Optimising for total power absorption in mode m = 0 implies the paddle operation
is well behaved for larger values of ka even though a significant proportion of the available
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Figure 8. For piston-like paddle motion, the maximum free surface elevation at ka = 2 when springs and
dampers are optimised to absorb 100 % of the power available from modes: (a) m = 0; (b) m = 1; (c) m = 2;
(d) m = 3; (e) m = 4.
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Figure 9. For piston-like paddle motion: (a) the partition of capture factor into different circular wave modes
when springs and dampers are optimised to absorb 100 % in mode m = 0 at different wavenumbers; (b) the
corresponding distribution of paddle amplitudes around the cylinder.

power is being absorbed across a number of circular modes. For hinged paddle motion, the
results are similar with roughly double the amplitudes of the piston-like motion. Figure 10
shows the maximum surface elevation corresponding to the cases referenced in figure 9.

In all the previous results, the springs and dampers have been equal around the cylinder
and this means the device is omni-directional. We now consider the effect of tuning the
springs and dampers to different values around the cylinder where the device operation
becomes dependent on the wave heading. For simplicity, however, we only consider
operation under the designed wave heading. Following the recipe for selecting the spring
and damper settings in the main body of the paper, we set up the system to absorb all of
available power in the first M + 1 circular modes and nothing from higher modes.
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Figure 10. For piston-like paddle motion, the maximum free surface elevation for springs and dampers
optimised to absorb 100 % of the power available from the m = 0 mode: (a) ka = 1; (b) ka = 2; (c) ka = 3;
(d) ka = 4.

Figure 11 shows the maximum free surface amplitude at ka = 2 associated with this
system for M = 1 (η = 3) up to M = 4 (η = 9). For figure 11(d) the surface elevation
has exceeded the displayed vertical scale and has been top-sliced in the plot. In that case,
the paddles are working hard to absorb all the available power in the first M + 1 circular
modes and undergoing large-amplitude excursions dominated by a cos Mθ variation as
highlighted by figure 12. Negative springs, where they exceptionally occur, can be offset
to positive springs by an increase in paddle mass and this has been confirmed numerically.
The specific strategy of tuning paddles to absorb 100 % of the energy from the first M + 1
modes at a specific frequency has also led to the prescription of negative dampers. In
this case even though the net power is positive, some of the paddles must be driven
and consume power, rather than absorb power. As can be seen in figure 12(d) this has
undesirable consequences for fixed paddle parameters operating at wave frequencies for
which they were not optimised including a net loss of power (illustrated by the curve for
M = 4 dipping below 0).

The next set set of figures in this section consider optimising the distribution of springs
and dampers for M = 3 (η = 7) for ka = 2 up to ka = 4. In figures 13 and 14 it is illustrated
that the paddles are forced to work at amplitudes well in excess of practical limits to absorb
100 % of the power from the first four circular modes from low-frequency waves (ka small),
but becomes easier for higher-frequency waves.

The final part of the results section compares continuous paddle theory against a
discrete representation of the paddles. We show a single exemplary case in figure 15 in
which we fix γ̄ = κ̄ = 0.3 and show the convergence of the results for N paddles placed
around the cylinder towards the results from the continuum theory. As expected, as the
wavelength-to-diameter ratio reduces (ka increases), larger values of N are required to
resolve the variations around the cylinder captured by continuum theory. However, for the
range of values of ka in which we have been interested, we can see that the continuum
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Figure 11. For piston-like paddle motion, the maximum free surface elevation at ka = 2 when springs and
dampers are optimised to absorb 100 % of the power available from the first M + 1 modes: (a) M = 1;
(b) M = 2; (c) M = 3; (d) M = 4.

10

8

6

4

2

0 0.5 1.0 1.5 2.0

2.0

1.0

0

–1.0

–2.0
0 0.5 1.0 1.5 2.0

4.0

3.0

2.0

1.0

0

–1.0
0 0.5 1.0 1.5 2.0

12

10

8

6

4

2

0 1 2 3 4 5

γ–

κ– η

M = 1
M = 2
M = 3
M = 4

|σ
|/
A

θ/π ka

θ/π θ/π

(b)(a)

(d)(c)
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parameter γ̄ ; (c) spring constant κ̄; (d) the corresponding frequency response of capture factor.
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Figure 13. For piston-like paddle motion, the maximum free surface elevation when unequal springs and
dampers are optimised to absorb 100 % of the power available from the first four modes (M = 3, η = 7):
(a) ka = 2; (b) ka = 3; (c) ka = 4.
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theory provides a good approximation to a discrete representation of N ≈ 24 paddles. For
example, for a 10 m radius cylinder, a system of paddles of width 3 m would be accurately
predicted by the continuum description.

7. Conclusions

In this paper we have outlined a theoretical framework for extending rigid-body limits
on the capacity for an axisymmetric device to absorb power from a plane incident wave.
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Figure 15. Capture factor against dimensionless wavenumber for different number of paddles, N, with
γ̄ = κ̄ = 0.3: (a) piston-like paddles; (b) hinged paddles.

This extends established limits to wave absorption by axisymmetric devices undergoing
rigid-body motion by allowing a generalised motion of the surface of the device. This
general framework is developed into a WEC device by considering a circular cylinder
extending throughout the fluid depth and surrounded by narrow submerged vertical
paddles each attached to its own spring and damper. A continuum approximation for
narrow paddles is presented and the power generated by the cylinder is determined from
a system of equations which allow us to develop different strategies to determine spring
and damper settings. Specifically, when all the springs and dampers are identical we can
determine parameters allowing us to guarantee the absorption of 100 % of the energy flux
available in one circular component of the plane incident wave. Allowing the springs and
dampers to have different settings as a function of position around the cylinder means we
can extract 100 % of the available flux of energy in the first M + 1 circular modes, where M
is theoretically as large as we choose. In both cases, results have shown how it is possible
to achieve well in excess of the standard limit of a capture factor of η = 3 for rigid-body
motion and capture factors in excess of η = 8 have been reported in computations in this
paper.

Despite these claims, there are practical considerations which will limit the value of
results from this theory. Unless the cylinder is large compared to the wavelength, paddle
amplitudes exceed the limits of the underpinning linearised water wave theory as the
demand for power is increased leading to a compromise between power and size of device.
To fully investigate this, motion constraints such as those used by Evans (1981) could be
implemented.

The final part of the paper considers the exact description of N discrete paddles which
is used to confirm that the continuum description of the paddle motion is converged to as
N increases.

Paddles are just one means by which the general theory is implemented. Other practical
absorbing systems which provide the same effect such as distributing power absorption
across the internal surface of a permeable axisymmetric device may work just as well (e.g.
Zheng et al. 2020; Garnaud & Mei 2009).
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