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POLYNOMIALS DETERMINING DEDEKIND DOMAINS

JONATHAN A, HILLMAN

If A is a Dedekind domain and f generates a prime ideal of
A(X] which is not maximal, then the domain A[X]/(f) 1is
Dedekind if and only if f 1is not contained in the square of any
maximal ideal of A[X] . This criterion is used to find the ring
of integers of a cyclotomic field, and to determine when a plane

curve is normal.

If f 1is an irreducible monic polynomial in Z[X] then the ring
K = Q[X1/(f) is an algebraic number field (and conversely every algebraiec
number field may be thus realised, by the Primitive Element Theorem [Z,
page 185]). The ring Z[{X]/(f) 1is then contained in the ring of integers
of K and so we may ask "when is Z[X]/(f) the full ring of integers of
Q[X]/(f) 7" The related question "if f in k[T, X] determines an
irreducible plane curve V(f) over a perfect field k , when is V(f)
normal?" was answered by Zariski, who showed in [4] that this is so if and
only if the ideal (f, 9f/9T, 3f/3X) is the unit ideal. If k is
algebraically closed, then by the Nullstellensatz this is equivalent to "f

is not in m° for any maximal ideal m of k[T, X] ", and it is this last
criterion which suggests the answer to our question. As a consequence of
our main theorem we shall show that the ring of integers of a cyclotomic

field may be determined without first computing the discriminant of the
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field, and we shall reprove Zariski's result (in the case of plane curves).
Our method shall be to localize, so as to use Nakayama's lemma and the
characterization of a Dedekind domain as a Noetherian domain which is

everywhere locally a principal ideal domain.

We recall first some basic facts about localization and integral
closure. If R 1is an integral domain, with field of fractions X , and p
is a prime ideal of R , then the localization of R at p is the subring
Rp ={r/s inK | r in R, s in R\p} of K . It is a local ring, that is,

has an unique maximal ideal, generated by the image of p . The ring R is
integrally closed (or normal) if every element of KX which is a root of a
monic polynomial with coefficients in R is in R itself. An integral
domain is l-dimensional if every nonzero prime ideal is maximal; a
Noetherian domain S is Dedekind (integrally closed and 1-dimensional) if
and only if for each maximal ideal N of S the maximal ideal of the

localization Sn is principal [/, page 95]. (A local domain with maximal

ideal principal is called a discrete valuation ring.) If K is an algebraic
number <field (a finite algebraic extension of ¢ }, the ring of integers

of XK is

OK = {a in X | f(a) = O for some monic polynomial f in Z[X]} .

The ring OK has field of fractions X and is Dedekind, and is contained
in every such subring of K [1, page 96].

The following lemma is a special case of Nakayama's lemma [, page
21].

LEMMA. Let R be a local ring with maximal ideal m generated by 2
elements, m= (r, s) say. Suppose that I 1is an ideal of R such that

m=m2+I. Then I =m.

Proof. Since m = m2 + I , ve may find m, n, p, g in m and <, j

in I such that r=mr +ns +<1 and s =pr +gs +j . Since the
determinant (1-m){1-q) - (-n)(-p) is not in m , it is invertible in R ,
and so we may solve these two linear equations for r and 8 in terms of

7 and j . Hence mcC I ,andso I=m. //

In anticipation of our main result (Theorem 2), we shall determine
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when a polynomial with coefficients in a Dedekind domain generates a prime
ideal or a maximal ideal. It is a familiar consequence of Gauss' Content
Lemma that a nonconstant polynomial f with coefficients in a P.I.D. 4
generates a prime ideal of A[X] if and only if it is irreducible in

AO[X] and e(f) = (1) , where c(f) 1is the ideal generated by the

coefficients of f (that is, essentially their highest common factor) and

AO is the field of fractions of A [Z, page 127]. The Content Lemma, and

hence this result, may be proved for A any Dedekind domain, by localizing
at maximal ideals of 4 . (In fact it works also for A any Krull domain,
if we define c¢(f) as the intersection of all divisorial ideals of A4
which contain the coefficients of f , and localize at height one prime

ideals of 4 .)

If A is a P.I.D. then A[X] is factorial, and so f 1is irreducible
in A[X] if and only if (f) 1is a prime ideal of A[X] , and hence if and
only if f 1is irreducible in AO[X] and e(f) = (1) . If A is
integrally closed (in particular if A4 is Dedekind) then a monic
polynomial fFf in A[X] is irreducible in A[X] if and only if it is
irreducible in AO[X] , for any monic factor in AO[X] must have

coefficients which are sums of products of roots of f and so integral

over A . On the other hand A4 = Z[V-6] is Dedekind but not a P.I.D. and
f= —V—6.X2 + 5X + V-6 1is irreducible in A[X] (and e(f) =1 ) but
f= (V-8)™H20VB) (31+VB) in A[X] .

If the domain A has only finitely many prime ideals then A[X] has

principal maximal ideals. In fact A4 must then be a P.I.D. [3, page 24]
and if (pl), cens (pI) are the nonzero prime ideals of A , any

irreducible polynomial of the form f = py --- erg -1 (with g in

A[X] ) generates a maximal ideal of A[X] . However it follows from the

next result that these are essentially the only such examples.

THEOREM 1. Let 4 be a Dedekind domain with infinitely many prime

ideals, and let m be a maximal ideal of A[X] . Then mn A #0 .
Proof. If mn A4 =0 then my = mAO is a (proper) maximal ideal of

AO[X] , and so is principal. Therefore after localizing away from finitely
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many primes of A , we may assume M = (f) for some nonconstant polynomial
f . Let p be a nonzero prime of A , and let p in A generate the

maximal ideal of Ap . Then p maps to a nonzero element of the field

AlXY/(f) , so p.g-1=h.f forsome g, h in A[X) . Therefore f
maps to a unit in (Ap/(p))[x] and so the constant term of f is a unit

in Ap/(p) and all the other coefficients of f are in p . At least one

of these coefficients is nonzero and so is contained in only finitely many

prime ideals of the Dedekind domain A4 . This contraducts our hypothesis
and so we must have m n A # 0 . //
COROLLARY 1. WNo maximal ideal of A is principal. //

COROLLARY 2 (Nullstellensatz for two variables). Let F be an
algebraically closed field, and let m be a maximal ideal of F[T, X] .

Then m = (T-a, X-B) for some a, B in F .

Proof. Since F[T] has infinitely many primes, m n F[T] is a non-
zero prime ideal and so T - a is in m for some o . Similarly X - B

is in m for some B8 , and so (T-a, X-B) =m . //

THEOREM 2. Let A be a Dedekind domain and (f) < A[X] a principal
prime ideal which is not maximal. Then the domain S = A[X]/(f) <is

Dedekind if and only if [ 1is not in me for any maximal ideal m of
AlX] .

Proof. The maximal ideals m of A[X] which contain f correspond
bijectively to the maximal ideals n of S under the surjection of A[X]
onto S . Thus it will suffice to show that for such an n , the
localization Sn is a discrete valuation ring if and only if f 1is not in

m2 . Let gq=mnAd, B= Aq and R = A[X]m . Since 0c f.RC m.R is

a chain of distinct prime ideals, MR cannot be principal. Therefore ¢
is a nonzero prime ideal of A4 , for otherwise B would be a field and R
would be a principal ideal domain, as it is a localization of B[X] .

Hence B 1is a discrete valuation ring, with maximal ideal @B generated
by q say, and R 1is a local ring with maximal ideal mR generated by ¢
and g , for some g representing an irreducible factor of the image of f

in (A/q)[X) = (B/(q))[X] . Since mR is not principal, the quotient

2
mR/mR~ has dimension 2 as a vector space over the field R/mR , by
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Nakayama's lemma. The maximal ideal of Sn is mR/(f) and so is

principal if and only if there is some ¢ in R such that mR = (f, t) .
In this case the images of f and ¢t in mR/mR2 would form a basis, so
f is not in m2 . Conversely if f is not in m2 then there is some ¢

in R such that the images of f and ¢ generate mR/mR2 , and hence
mR = (f, t) by Nakayama's lemma again. The theorem follows. //

If f is in m2 , then f' dis in m , so f and f' map to 0O in
the field A[X]/m . (Here f' denotes the derivative of f .) Thus,
writing m = (q, g) as in the theorem, the images of f and f' in
(A/q)[X] have a common root in an extension field of A4/q . When this is
the case may be determined readily by computing the resultant of f and
f' . Recall that if € is an integral domain and f, g are in C[X] ,
the resultant of f and g is an element R(f, g) in C (expressible as
the determinant of a matrix whose entries are the coefficients of f and
g and zeros) which is 0 if and only if f and g have a common root in
a field containing C [2, page 135]. In particular R(f, f') = 0 if and
only if f has a repeated root. Moreover, if p is a prime ideal of C
and f and g denote the images of f and g in (C/p)[X] , then
R(f, g) is the image of R(f, g) in C/p (as is clear from the

definition of the resultant in [2]). Thus the condition "f is not in

m° " in the theorem is satisfied automatically unless m = (g, g) with g
containing R(f, f') . Since A is assumed Dedekind, there are only
finitely many such ¢ (and hence only finitely many such m ), provided
that R(f, f') # 0 . (An example in which f' = 0 although f is non-

constant is given below.)
A similar argument using that a local Noetherian domain R with

maximal ideal m 1is regular if and only if Krull dim R = dim m/m2 L1,

R/m
page 123], gives the following generalization: "if R is a regular

Noetherian domain and fi, ey fh in R are such that
p; = [fi, cees f;] for 1 <i sh defines a chain of h distinct prime

ideals, then R/ph is regular if and only if the images of fi, cees fh

in m/m2 are linearly independent over R/m , for each maximal ideal m
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of R which contains ph ." (In the 1-dimensional Noetherian case

"regular" is equivalent to "integrally closed”.) However the two most
interesting cases, namely A =Z or A = k[T] with k a field, fall

within the scope of the theorem as stated.

We shall now consider some examples. If A =Z and f is monic then

S =Z[X]/(f) is contained in the ring of integers OK of the algebraic

numberfield K = @[X]/(f) and Theorem 1 gives an effective method of

determining when S is all of OK . In this case OK is generated as an

abelian group by the powers of a single element, for if & is the image of
X in S then S =Z[£] . For instance, let Kn = Q[X]/[Qn] be the field

of nth roots of unity, where <I>n is the nth cyclotomic polynomial.

Since X' -1 (and hence ‘I’n ] has distinet roots over any field of

characteristic prime to #n , the only primes dividing R(Cbn, @7;} are

factors of n . If nm=mq with q=p and (m, p) =1 then
- /p $(q)
<I)n(x) B <I)m(xq] /ém(xq ) so <I)n e

modulo (p) . Let ¢, bea

primitive mth root of unity. Then @n(X) divides ({z/p) and so

(]
p
)2

@n[cm] divides <I>p(l) = p . Therefore <I>n is not in (6, p for any

@ which is an irreducible factor of ®m modulo (p) , and so

chn] =Z[X]/(<I>n) is the full ring of integers of X .

In general however it is not so easy to decide when the ring of
integers of an algebraic number field has such a "primitive" basis.
Although it is possible in principle to list the finitely many irreducible
monic polynomials in Z[X] with the same degree and smaller discriminant
than a given one f , and hence to decide whether there is one determining
the full ring of integers of the field @Q[X]/(f) , it is already an arduous

3

task for a pure cubic, f =X - m . Nevertheless the criterion of Theorem

1 suffices to show that if m is square free and neither of m - 1 nor
m+ 1 1is divisible by 9 , then Z[X]/(X3—m) is Dedekind. (Note also

that X3 - m2 determines the same number field, but does not satisfy the
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criterion of the theorem.]

One might ask instead what is the minimum number of elements needed to

generate O, as a ring. In particular do two suffice? See (51 and (461

for methods of effectively determining OK .

The case A = k[T] corresponds to the geometric question: "when is a

plane curve V(f) = {(a, b) in K2 | fla, b) = 0} nonsingular?". The word
"nonsingular" is here open to several interpretations. The classical one
is that f, 3f/3T and 29f/3X should generate the unit ideal, and thus
have no common zeros (with coefficients in any extension field of k ), so
that the curve has everywhere a well defined tangent line, while the one
more amenable to algebra is that the coordinate ring S = k[T, X1/(f)
should be a Dedekind domain. The latter is the more intrinsic notion, in
that it depends only on the coordinate ring of the curve, and not the
planar embedding. A curve V(f) whose coordinate ring is Dedekind is said

to be normal (over Kk ).

If V(f) 1is nonsingular in the classical sense, then it is certainly

normal. For otherwise, by the theorem there would be some maximal ideal m

of k[T, X] such that f is in e , and hence (f, 3f/3T, 3f/3X) would
be contained in M and so not be the unit ideal. Zariski showed that if
k is a perfect field (that is, if char Kk = 0 , or char kK = p and the

map : & > xp for all x in k is surjective) the two interpretations are
equivalent [4]. This may be seen as follows. If M is a maximal ideal of
k[T, X] , then a variation of the argument of Corollary 2 shows that

m = (¢(T), W, X)) for some ¢ and Y , and so if L = k[T, X]/m the
extension [L/k 1is finite. If k is perfect, L/k must be separable, and
so if k is an algebraic closure of X the ring k[T, X]/k =k ® L is a
direct sum of copies of Kk , indexed by the = = [L : k] imbeddings of L

in k [2, page 435]. Hence km= N m. where m. is a maximal ideal
1<=i<n
of k[T, X] , and the map from K ® L to ® (E[T, X1/m.) sending
1<i=n v

K® (g+m) to (Kg+mi) is an isomorphism. Therefore the map from

k® (m/m2) to @ (m./mi] sending K ® (g¢+h¢+m2] to (Kg¢+|<h¢+m§]

p 7
1=1=n

is onto, and s¢ alsoc an isomorphism, by a dimension count. HNow if [ is
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in k[T, X] and I = (f, 8f/3T, 3f/3X) € m , then kI cm for each
1 =4 <n . By the Nullstellensatz m, = (T_ti’ X—xi] for some t,, &,
in k and on considering the Taylor expansions of f at (ti’ xi) we see

2 R 2
that f must be in m. for each 1 =% =n . Hence f is in m . Thus

if V(f) 4is normal, (f, o8f/8T, 9f/3X) 1is contained in no maximal ideal

and so must be the unit ideal.

Zariski gave the following example to show that the assumption that k
be perfect is in general necessary. Suppose that k is not perfect and

that b is not a pth power in k (where p = char k ). Let
f= ® - b . Then 3f/3T = 3f/3X = 0 and so V(f) is singular everywhere
from the classical point of view, but T°¥ - b is irreducible in k[7] [Z2,

page 2221, so K = k[T}/(1P-b) is a field and k[T, X1/(f) = K[X] is a

principal ideal domain, and so V(f) is normal.
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