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A literature review suggests that the flows past simply connected bodies with aspect ratio
close to unity and symmetries aligned with the flow follow a consistent sequence of
regimes (steady, periodic, quasiperiodic) as the Reynolds number increases. However,
evidence is fragmented, and studies are rarely conducted using comparable numerical
or experimental set-ups. This paper investigates the wake dynamics of two canonical
bluff bodies with distinct symmetries: a cube (discrete) and a sphere (continuous).
Employing three-dimensional (3-D) global linear stability analysis and nonlinear
simulations within a unified numerical framework, we identify the bifurcation sequence
driving these regime transitions. The sequence: a pitchfork bifurcation breaks spatial
symmetry; a Hopf bifurcation introduces temporal periodicity (St1); a Neimark—Sacker
bifurcation destabilises the periodic orbit, leading to quasiperiodic dynamics with two
incommensurate frequencies (St, St2). A Newton—Krylov method computes the unstable
steady and periodic base flows without imposing symmetry constraints. Linear stability
reveals similarities between the cube and sphere in the spatial structure of the leading
eigenvectors and in the eigenvalue trajectories approaching instability. This study provides
the first confirmation of a Neimark—Sacker bifurcation to quasiperiodicity in these 3-D
wakes, using Floquet stability analysis of computed unstable periodic orbits and their
Floquet modes. The quasiperiodic regime is described in space and time by the Floquet
modes’ effects on the base flow and a spectrum dominated by the two incommensurate
frequencies and tones arising from nonlinear interactions. Although demonstrated for a
cube and a sphere, this bifurcation sequence, leading from steady state to quasiperiodic
dynamics, suggests broader applicability beyond these geometries.
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1. Introduction

The exploration of viscous fluid interactions with non-streamlined, three-dimensional
(3-D) bodies holds critical relevance for fluid dynamicists and engineers due to its diverse
practical applications, ranging from medicine and engineering to biology and hydrody-
namics. Bluff bodies, such as spheres and cubes, pose inherent challenges due to their
large-scale unsteadiness, which can induce increased drag and flow-induced vibrations.
Unsteadiness often leads to off-centre forces, complicating manoeuvrability. For example,
the persistence of large-scale unsteady coherent structures contributes significantly to the
fuel consumption of heavy vehicles such as trucks and buses (Choi, Lee & Park 2014).
The study of three-dimensional flow dynamics around canonical bluff bodies aids in
understanding transitional behaviour and instability development in these flows, which
is crucial for interpreting more complex configurations in the transportation industry.

A defining characteristic of bluff bodies is how the boundary layer separates from
the body’s surface, causing the flow to detach for a significant portion of the body’s
length. This detachment results in a larger wake, an incomplete pressure recovery and,
consequently, substantially higher drag values compared with streamlined bodies like
aerofoils, which are designed to minimise wake by confining flow separation to smaller
body sections. The classification of bluff bodies therefore largely depends on their
aerodynamic behaviour rather than on their intrinsic physical shape.

The interaction between a solid body and a moving fluid leads to the immediate
viscosity-induced formation of a boundary layer on the body surfaces and a resultant
pressure drop. Given a constant flow velocity U, and a constant kinematic viscosity v
across a bluff body of characteristic length L, the dimensionless Reynolds number, defined
as Re = Uy L /v, plays a major role in determining fluid dynamics. At very low Reynolds
numbers, where viscosity dominates, the flow adheres closely to the surfaces of the
bluff body. This adherence maintains flow symmetry in all characteristic dimensions,
namely streamwise, vertical, spanwise and temporal, resulting in continuous streamlines.
As the Reynolds number increases (e.g. Re > O (1—10)), convection mechanisms become
significant, changing the nature of the flow and allowing recirculation regions to form. To
the best of our knowledge, the onset of recirculation zones has not yet been interpreted as
a bifurcation, despite the evident loss of symmetry in the streamwise direction. However,
this question will not be addressed in this study, which focuses on bifurcations of detached
flows. When the Reynolds number is increased, the wake then undergoes successive
bifurcations until the emergence of chaotic behaviour, eventually leading to turbulence.
Bluff bodies are well-known flow oscillators subject to global instabilities and self-
sustaining dynamics. The study of the first bifurcations occurring in bluff-body flows has
long been, and still is, a subject of great interest for many geometries.

1.1. Infinite span bluff bodies

The canonical case of flow past a circular cylinder with infinite span has been studied since
Bénard and von Kédrmén in the early 1900s, and has become a benchmark in computational
fluid dynamics. After the generation of a steady-state wake for Re > 6, the flow past a cir-
cular cylinder undergoes a Hopf bifurcation and becomes unstable for Re > 46.6 (Jackson
1987; Frantz, Loiseau & Robinet 2023), leading to the development of the von Karman
vortex street and the loss of time invariance. At this point, the flow begins to oscillate with
a Strouhal number St = f D/ Uy =~ 0.122, where f is the vortex shedding frequency.
The flow then experiences a second (subcritical) pitchfork bifurcation at Re ~ 189
(Barkley & Henderson 1996; Barkley 2005; Blackburn, Marques & Lopez 2005;
Giannetti, Camarri & Luchini 2010; Frantz et al. 2023), where the destabilisation
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of mode A leads to a three-dimensional transition (loss of spanwise invariance);
the streamwise vorticity of mode A shows odd symmetry with respect to the wake
centreline (Blackburn & Lopez 2003). The seminal Floquet stability analysis conducted
by Barkley & Henderson (1996), and later extended by Blackburn & Lopez (2003), also
identified a secondary three-dimensional instability at Re =259 and 256, respectively,
corresponding to the mode B instability and for which the streamwise vorticity shows
even symmetry with respect to the wake centreline.

The flow scenario past a square cylinder has been shown to be very similar to that of the
circular cylinder by Kelkar & Patankar (1992) and Sohankar, Norberg & Davidson (1998)
for the first bifurcation (Hopf) (Re ~ 51—53) and by Robichaux, Balachandar & Vanka
(1999) for the mode A (150 < Re < 175) and mode B (175 < Re < 205) instabilities.

1.2. Finite span bluff bodies

In the present study, we use the finite span bluff body to refer to a body with a finite
span and thus a finite aspect ratio AR (which will later be defined as compact), such
as a sphere or cube, as opposed to infinite-span bodies such as the circular or square
cylinder. Although less extensive than its infinite span counterpart for the circular- and
square-cylinder cases, the literature on flows around finite span bluff bodies is informative
and includes experimental, theoretical and numerical works, highlighting similarities and
differences relative to their infinite span counterparts. A survey of the relevant literature
is presented here, with the support of Appendix A which provides a visual summary and
comparison across different bluff-body flows. In the Appendix, as well as in the following
subsections, we intentionally adhere to the original terminology used in the referenced
literature to describe the temporal dynamics and spatial symmetries. In particular, the
names, the nature and characteristics of the flow bifurcations are faithfully presented as
reported, without reinterpretation or modification. Concerning symmetries, ‘reflectional
symmetry’ (invariance under reflection across a plane) and ‘planar symmetry’ (symmetry
about the midplane) are used interchangeably.

1.2.1. Sphere

Flow studies on a sphere (solid and fixed) can be traced back to the experiments of
Taneda (1956) and others (Achenbach 1974; Nakamura 1976; Sakamoto & Haniu 1995;
Schouveiler & Provansal 2002), through theoretical works (Chester, Breach & Proudman
1969; Sano 1981), numerical simulations (Johnson & Patel 1999; Mittal 1999; Ghidersa &
Dusek 2000; Tomboulides & Orszag 2000; Thompson, Leweke & Provansal 2001;
Constantinescu & Squires 2004), and linear stability analyses in both the incompressible
(Bouchet, Mebarek & Dusek 2006; Pier 2008; Meliga et al. 2009b; Citro et al. 2017)
and compressible regimes (Sansica et al. 2018, 2020). Using the diameter of the sphere
to express the Reynolds number, steady-state axisymmetric flow is found for Re < 200
(regime T), while steady-state planar symmetric flow persists up to Re < 270 (regime II)
before time-periodic dynamics sets in, characterised by periodic vortex shedding, while
preserving the wake’s planar symmetry (regime III). In agreement with the critical
Reynolds numbers Re. at which the changes in flow regimes are observed in all the
above-mentioned references, the stability analyses carried out by Meliga et al. (2009b)
and Citro et al. (2017) identify the first two bifurcations of flow past a solid sphere: a
first destabilisation occurs for a stationary mode via a supercritical pitchfork bifurcation
at Re.1 =212.6 (Meliga et al. 2009b), Re..1 =212.4 (Citro et al. 2017) followed by a
second destabilisation for an oscillating mode through a supercritical Hopf bifurcation at
Re.» =280.7 (Meliga et al. 2009b), Re.» =271.8 (Citro et al. 2017).
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Experiments of Sakamoto & Haniu (1990), Chrust, Goujon-Durand & Wesfreid (2013)
and the direct numerical simulation (DNS) studies of Kalro & Tezduyar (1998), Mittal
(1999), Mittal & Najjar (1999), Lee (2000), Tomboulides & Orszag (2000), Bouchet et al.
(2006) report that, when increasing Re, the time-periodic dynamics of flow past a sphere
is followed by a new regime (IV) characterised by an ‘irregular shedding’ of the vortical
structures, associated with the measurement of two frequencies in the wake: St; (the
shedding frequency, close to the one identified after the onset of the Hopf bifurcation) and
a lower frequency St;. Based on the collective evidence from all references, this regime
transition is observed in a range 350 < Re. 3 < 480. Spatially, this new regime (IV) is also
associated in the literature with the loss of the planar symmetry. Actually, this question of
planar symmetry breaking will be particularly addressed and revisited in the present paper.
Finally, in what could be interpreted as a fifth regime, Sakamoto & Haniu (1990) and
Chrust et al. (2013) respectively reveal that at Re > 480 and Re = 430, the vortex shedding
direction oscillates intermittently from left to right and that the shedding plane undergoes
a periodic rotation about the downstream surface of the sphere. In the particular case of a
rotating rigid sphere, Sierra-Ausin et al. (2022) found a ‘quasiperiodic’ state. Refer to the
line ‘Sphere’ in table 3 of Appendix A for a summary of the first regimes and bifurcations
of flow past a sphere.

1.2.2. Flat and thick circular disks
Natarajan & Acrivos (1993), Kiya, Ishikawa & Sakamoto (2001) and Fabre, Auguste &
Magnaudet (2008) studied the similarities and differences between the flow past a sphere
and the flow past a very thin (AR « 1), almost flat, circular disk placed perpendicularly
to the main flow direction. Despite the discrepancy in the threshold for the change in
regime (respectively Re. 1 =212 and Re. 1 = 115 for the sphere and the flat disk), both
bluff bodies experience the sequence of a pitchfork followed by a Hopf bifurcation (at
Re. > = 121—123 for the flat disk). Considering a very thin disk with AR = 1/10, Shenoy &
Kleinstreuer (2008) observed an ‘irregular motion of the vortex shedding’ accompanied
by a loss of planar symmetry in the wake at Re, = 280. At Re = 300, they measured two
distinct frequencies, St; =0.122 and S, = 0.041. The authors relate the low frequency
Sty to the irregular motion of the vortex shedding location and to the ‘pumping motion’
of the recirculation zone. This sequence of regimes follows that reported for the sphere.
However, in contrast to the sphere case, the Hopf bifurcation (i.e. the second bifurcation)
in the flow past a flat disk is followed by the loss of the reflectional symmetry. DNS by
Fabre et al. (2008) and stability analysis performed by Meliga et al. (2009a) additionally
report another bifurcation on the flow past a flat disk at Re. =140 and Re. = 143.7,
respectively, making the flow switch from an RSB (reflectional symmetry breaking) to an
RSR (reflectional symmetry recovering) regime where the previously lost planar symmetry
is retrieved. According to the weakly nonlinear analysis of Meliga et al. (2009a), the
condition for this bifurcation to occur is that the development of the standing wave must re-
stabilise the stationary eigenmode. This (sub)bifurcation, characterised by the recovery of
the lost reflectional symmetry, and occurring between the Hopf bifurcation and the onset of
a second low frequency St;, was also observed by Kim & Choi (2003) in flow past a hemi-
sphere (where half of a sphere faces upstream and its flat surface faces downstream). This
phenomenon of symmetry recovery, as observed in the case of a flat disk and a hemisphere,
remains poorly understood (see the lines ‘Flat disk (AR < 1)’ and ‘Hemisphere’ in table 3).
Concerning flow past a thick circular disk (also placed perpendicularly to the flow
direction), the DNS studies performed by Auguste, Fabre & Magnaudet (2010) for a thick
disk of AR=1/3 and by Pierson et al. (2019) for a thick disk of AR =1 show that the
flow experiences the following sequence of bifurcations: a steady (pitchfork) bifurcation
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(Re.,1 =159.4 for AR=1/3 and Re. 1 =276 for AR =1), a Hopf bifurcation leading to
the time-periodic shedding of the planar symmetric wake (Re. > = 179.8 for AR = 1/3 and
Re.» =355 for AR = 1) and finally a third bifurcation (Re, 3 = 184—185 for AR =1/3 and
Re.3 =395 for AR = 1) leading to the occurrence of a secondary frequency, which breaks
the wake’s reflectional symmetry for AR = 1/3 but preserves it for AR = 1 (see the “Thick
disk lines’ in table 3).

1.2.3. Finite-span cylinder

Yang, Feng & Zhang (2022) performed direct simulations and global stability analysis of
the flow past a finite-span cylinder with two free flat ends, considering geometries with
different aspect ratios. For unity aspect ratio (AR = 1), the authors describe a sequence of
bifurcations with, first, a loss of spatial symmetry of the recirculation zone at Re. ; = 172.2
via a supercritical regular (i.e. pitchfork) bifurcation, then periodic unsteadiness through
a Hopf bifurcation at Re.> =282 and finally a ‘more chaotic’ flow from Re. 3~ 332
characterised by the onset of a new lower frequency St,, extracted from the power spectral
density (PSD) of the spanwise lift coefficient. It is interesting to note that the DNS and
the linear stability analysis performed by Yang er al. (2022) for the flow past a small
cylinder of AR=1.75 could not identify a pitchfork bifurcation. The authors explain
that for AR 2> 1.75, the flow never experiences the steady-planar symmetric wake and
directly transitions from the steady-axisymmetric regime to the periodic shedding of
planar symmetric hairpin vortices (like in the cylinder case), as reported in § 1.1. This
primary Hopf bifurcation is then followed by the transition identified by the appearance of
the new lower frequency St (see the lines ‘Small cylinder’ and ‘Infinite span cylinder’ in
table 3 for a summary).

1.2.4. Cube

When numerically investigating the flow past a solid cube, Saha (2004, 2006) and Khan
et al. (2020b) show that the transition sequence and flow structures closely match those of
a sphere. The first spatial and steady bifurcation occurs at 200 < Re. | < 215, transforming
the orthogonally symmetric flow into a planar symmetric one, and a second temporal
(Hopf) bifurcation occurs at 250 < Re. » < 276, maintaining the planar symmetry. Despite
a change in critical values (Re. 1 = 186 and Re. > = 285), these predictions were clearly
confirmed by the experiments of Klotz et al. (2014). More recently, the numerical study
of Meng et al. (2021) detailed the different regimes in the wake transition behind a
cube, confirming previous observations: First, a steady-symmetric regime (I) in which
the steady orthogonal symmetric wake transitions to a steady planar symmetry wake (II)
at Re. 1 ~207. Second, an alternating detachment of streamwise vortex tubes arises due
to a supercritical Hopf bifurcation at Re. > ~ 252, leading to a hairpin vortex shedding
regime. Then, this single-frequency hairpin vortex shedding (regime III) is followed by
a ‘quasiperiodic vortex shedding’ (regime IV) arising at Re, 3 & 281 with a ‘limit torus’
composed of ‘incommensurate’ (St /St ¢ Q) frequencies St; ~ 0.0982 and S, &~ 0.0281,
while preserving the planar symmetry (see the line ‘Cube’ in table 3 for a summary).

1.2.5. Polyhedron and ellipsoidal bodies

Torlak et al. (2019) analysed the low-Reynolds-number flow around polyhedron-shaped
bodies, specifically focusing on the cube, octahedron and dodecahedron. Despite not
presenting estimates of the regime thresholds, the figures indicate a loss of spatial
symmetry followed by a loss of temporal symmetry. Similar conclusions were also found
in the wake of ellipsoidal particle shapes (Richter & Nikrityuk 2012).
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1.2.6. Industrial-type bluff bodies

Concerning industrial applications of bluff bodies, one example is the flow past an Ahmed
body (Ahmed, Ramm & Faltin 1984), a prototypical simplification of a passenger-car
geometry. In the low Reynolds regime, the experimental works of Grandemange, Cadot &
Gohlke (2012) report a steady planar-symmetric state (indeed, the presence of the ground
induces a top-bottom asymmetry of the wake from the first regime) until the wake loses
this planar symmetry (while remaining steady) via a pitchfork bifurcation at Re. 1 = 340.
Then, a Hopf bifurcation leads to unsteadiness at Re. » = 410 (see the line ‘Ahmed body’
in table 3). As another industrial-type example, one can mention the case of a blunt-based
bluff body. The numerical work of Rigas, Esclapez & Magri (2017) investigated such non-
canonical geometry with AR &~ 6, using a combination of direct simulations and stability
analyses. They revealed that a first pitchfork bifurcation at Re. 1 =424 destabilises a
steady mode that breaks the axisymmetry of the wake. A steady reflectional symmetry
is preserved up to Re.» =605 when an eigenmode becomes unstable due to a Hopf
bifurcation, leading to a periodic regime of vortex shedding. An aperiodic, ‘presumably
quasiperiodic’, dynamics is reported for 675 < Re. 3 < 800 with two ‘incommensurate
frequencies’ (St =0.113 and St, =0.027 at Re = 800) and multiple other frequencies
in the PSD of the centre of pressure. During this presumably quasiperiodic regime, the
flow still maintains planar-symmetry while chaotic dynamics is observed for Re > 900.
Experimental and numerical studies were also performed by Bohorquez et al. (2011)
for blunt-based bluff bodies with different aspect ratios, in particular, with AR =1 and
AR = 2. In both cases, they highlight the exact same sequence of regimes as for the AR =6
geometry. (See the lines ‘Blunt-based bluff body’ in table 3 for a summary.)

1.3. Sequence of wake bifurcations

As the Reynolds number increases beyond single digits, a recirculation zone develops
behind bluff bodies, gradually extending in length. This zone, whose shape and size
depend on the body’s geometry, plays a crucial role in determining the flow dynamics. In
the case of infinite span geometries such as flat plates, circular cylinders, square cylinders
or axial (or transverse) cylinders with relatively large aspect ratios, the initial bifurcation
encountered is a Hopf bifurcation. This primary bifurcation transitions the wake from a
two-dimensional (2-D) steady state to a two-dimensional time-periodic (unsteady) state. It
is important to note that the transition to three-dimensional flow characteristics is observed
only during subsequent secondary bifurcations, through the loss of spanwise invariance, a
phenomenon well-documented by Barkley & Henderson (1996).

Conversely, for finite span bluff body geometries with small aspect ratios (AR < 2),
which are the focus of this study, the first bifurcation differs because the wake is three-
dimensional from the initial steady regime; unsteadiness then arises via a Hopf bifurcation,
which constitutes the second bifurcation in this sequence. Refer to the detailed works
of Marquet & Larsson (2015), Yang et al. (2022) and Chiarini & Boujo (2025) for
numerical studies on the linear destabilisation of three-dimensional steady wakes and the
transition towards two-dimensional behaviour when increasing the aspect ratio of a flat
plate, a circular cylinder and rectangular prisms, respectively. In particular, Chiarini &
Boujo (2025) studied the first bifurcations of flow past rectangular prisms by varying
body elongation in the spanwise or streamwise direction. They report changes in the
nature of the primary pitchfork bifurcation, observing subcritical and codimension-2
bifurcations, and even its complete replacement by a supercritical Hopf bifurcation for
higher width-to-height ratio.
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In this work, we focus on finite span bluff bodies with the following characteristics:
static, rigid, simply connected bodies with aspect ratio close to unity and symmetries
aligned with the main flow direction, simply referred to as compact-simplyconnected
bluff bodies (CSC-BB) for conciseness. Therefore, we do not consider bodies without
symmetries aligned with the flow direction or non-simply connected bodies (e.g. Sheard,
Thompson & Hourigan 2003). Our comprehensive literature review reveals that the CSC-
BB class follows a ubiquitous sequence of flow regimes. More precisely, this pattern
involves a sequential breaking of spatio-temporal symmetries that is consistent across
various geometries, including both axisymmetric bodies (e.g. spheres, flat disks, thick
disks, short cylinders) and bodies with reflectional symmetries (e.g. hemispheres, cubes,
Ahmed bodies, short flat plates). The first two bifurcations, namely a ‘supercritical
pitchfork’ followed by a ‘supercritical Hopf’, have already been clearly identified in
the literature for most canonical CSC-BB shapes (see table 3). However, despite the
large number of existing studies, to the knowledge of the authors, there is no explicit
characterisation of the bifurcations following the pitchfork and Hopf bifurcations. As
reported in our survey, after the unsteady time-periodic regime (III) triggered by the Hopf
bifurcation, different papers identified a fourth regime (IV). During this IVth regime, the
references observe two frequencies; some mention a ‘lower’ frequency qualitatively, while
others provide its quantitative value, and very few papers explicitly mention the words
‘incommensurate’ when comparing the two frequencies or ‘quasiperiodic’ to describe the
regime associated with this two-frequency oscillation (see Meng et al. 2021 (cube case)
and Rigas et al. 2017 (blunt-based bluff body)). This change in flow dynamics strongly
suggests a third bifurcation responsible for the emergence of quasiperiodic dynamics
(regime 1V) after single-frequency periodicity (regime III). According to dynamical
systems theory, for a periodic system to transition to quasiperiodic dynamics (associated
with the observation of two frequencies), a so-called Neimark—Sacker bifurcation is
needed (Neimark 1959, Sacker 1964, Arnold 2012). This bifurcation is analogous to the
Hopf bifurcation of a fixed point for periodic orbits, and is thus often referred to as a
secondary Hopf bifurcation.

Consequently, we can confidently extrapolate that CSC-BBs undergo the following
sequence of bifurcations:

(D pitchfork; (I) Hopf; and (IIT) Neimark—Sacker.

To support our conjectured sequence, this paper employs global linear stability analysis
of the wake of two canonical bluff-body flows: a cube and a sphere. These two geometries
cover the range of symmetry conditions from discrete (cube) to continuous (sphere).
The discrete symmetry stands for reflectional symmetry (i.e. invariance under reflection
across a specific plane), while continuous symmetry refers to axisymmetry (i.e. invariance
under rotation around a specific axis). As canonical examples of CSC-BBs, the cube and
the sphere provide well-defined baseline configurations for testing the generality of the
bifurcation sequence and for exploring how differences in surface curvature and symmetry
properties might influence the onset of successive instabilities.

The paper is structured as follows. In §2, we outline the overall methodology,
including the problem definition, the computational set-up and the global linear stability
methodology. Sections 3 and 4 detail the global linear stability analyses conducted to
identify respectively the primary (pitchfork) and secondary (Hopf) bifurcations for both
cube and sphere geometries. Then, § 5 focuses on the Floquet analysis performed to
identify the tertiary bifurcation (Neimark—Sacker) in the three-dimensional flows around
the cube and sphere, and § 6 presents a detailed analysis of the quasiperiodic regime using
nonlinear simulations. Conclusions and future perspectives are presented in § 7.
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2. Numerical methodology
2.1. Governing equations

The flow is modelled using the three-dimensional, incompressible Navier—Stokes equa-
tions, expressed in non-dimensional form. These equations describe the evolution of the
velocity field u = (u, v, w) and the pressure field p in the spatial coordinates x = (x, y, z),
corresponding to the streamwise, vertical and spanwise directions, respectively:

V.u=0 in$2, (2.1a)
du
at

Here, £2 represents the computational domain and Re = Uy, D/v is the Reynolds number,
our sole control parameter. It is defined using the characteristic length D of the bluff body
(that is, the side length for the cube and the diameter for the sphere), the velocity of the
free flow U, and the fluid kinematic viscosity v. The equations are non-dimensionalised
using D as the length scale, Uy, as the velocity scale and D/ U« as the time scale.

1
+(u.V)u=—Vp+R—V2u in £2. (2.1b)
e

2.2. Computational domain and boundary conditions

In our simulations, the bluff bodies under consideration, namely the cube and the sphere,
are centrally positioned within the computational domain 2 and have a characteristic
length D = 1. The computational domain is defined by dimensions of (In, Out, Sides) =
(10D, 50D, 10D), which means that the bluff body is located 10D downstream from the
inlet and 50D upstream from the outlet, with side boundaries 10D away from the centre
of the body in both vertical (y) and spanwise (z) directions. These domain dimensions are
chosen to balance accuracy and computational cost, while ensuring minimal influence of
domain boundaries on the wake dynamics. This set-up aligns with or improves on previous
reference studies, as discussed in Appendix B.1. By using the same domain size for both
the cube and the sphere, we maintain a consistent numerical environment, facilitating
direct comparisons of the flow dynamics between these two canonical bluff-body shapes
and also isolating the influence of body geometry on the wake dynamics and transition
phenomena.

We enforce a Dirichlet boundary condition with a uniform velocity field u =
(Uso, 0,0) = (1,0, 0), assuming steady freestream flow at the inlet. At the outlet, we
prescribe an open boundary condition with zero normal pressure gradient (Neumann
condition), allowing the flow to exit the domain without artificial reflections. A no-slip
condition is imposed on the body surface to model fluid—solid interactions. Free-slip
boundary conditions are imposed on all side boundaries (upper, lower and lateral),
allowing the use of a coarser mesh in regions far from the body, where high resolution
is not required. Figure 1 provides a detailed illustration of the computational domain,
including spatial configurations and boundary conditions.

2.3. Numerical approach and discretisation

Direct numerical simulation (DNS) studies are performed using Nek5000, an efficient
open-source spectral-element code for fluid dynamics (Fischer et al. 2008). It combines
the flexibility of finite elements with the fast convergence of spectral methods. The
computational domain, §2, is divided into E non-overlapping hexahedral elements, 2 =
Ule £2;, allowing for local mesh refinement and efficient parallelisation. Within each
element, high-order tensor-product Legendre polynomial bases of degree N are employed,
defined at Gauss—Lobatto—Legendre quadrature points, while the pressure is approximated
using discontinuous polynomials of degree N —2 at Gauss-Legendre points.
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Figure 1. Schematic representation of the computational domain for flow past a cube or sphere. The cube or
sphere is centrally positioned within the domain. Dashed lines indicate symmetry boundaries, while dotted
lines represent open boundary conditions at the inlet and outlet.

This staggered arrangement ensures compatibility between the velocity and pressure
spaces, enhancing numerical stability and enforcing the incompressibility condition
discretely. In this study, we use N = 7 for the velocity basis.

For the cube simulations, the mesh used in this study contains 49 176 elements,
maintaining symmetry in the vertical (y) and spanwise (z) directions, and the sphere
simulations involve a mesh with 63281 elements that accurately capture the sphere’s
curvature. This results in approximately 25 million and 32 million degrees of freedom for
the cube and the sphere meshes, respectively. These high-resolution meshes ensure that
geometric features and flow characteristics are accurately resolved. For details on mesh
sensitivity and spatial discretisation choices, see Appendix B.2.

Temporal discretisation is performed using a semi-implicit scheme. The viscous and
pressure terms are handled implicitly with a third-order backward differentiation formula
to ensure stability, while the nonlinear convective term is treated explicitly using third-
order extrapolation. The time step is dynamically adjusted to maintain a target Courant
number, Co < 0.5, satisfying the Courant-Friedrichs—Lewy (CFL) condition.

To remove potential spurious numerical artefacts associated with nonlinear terms, we
employ a combination of dealiasing and explicit filtering. Dealiasing employs a higher-
order quadrature for the nonlinear convective term, minimising aliasing errors that can
lead to spurious energy growth at high wavenumbers (Orszag 1971). Explicit filtering,
applied after each time step, selectively damps high-order modes akin to hyperviscosity,
further enhancing stability without impacting resolved scales (Fischer & Mullen 2001).

2.4. Linear stability analysis

We characterise the stability of flows around a bluff body at various Re using global
linear stability analysis, which assesses the evolution of small perturbations to a base
flow, and predicts the onset of instabilities and bifurcations. The base flow, computed
from the Navier—Stokes equations (2.1), is either a steady state (fixed point), Q =
(U, P)T,ora time-periodic solution (periodic orbit), Q(¢) = (U(¢), P@))T. We employ a
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matrix-free, time-stepping approach based on Krylov methods — specifically the Krylov—
Schur algorithm (Stewart 2001) — to solve large-scale eigenvalue problems. This method
supports both types of base flows, enabling a comprehensive stability analysis of fully
three-dimensional configurations.

We superimpose infinitesimal perturbations g (x, 1) = (u, p)T onto Q:

Q+eq=U+eu, P+ep)’, withe <1 2.2)

This applies to steady states and extends to periodic cases, Q(¢) + ¢, q(t), as is covered
in § 2.4.2. Substituting (2.2) into the evolution operator and linearising with respect to ¢
yields the linearised Navier—Stokes equations (LNSEs):

V.u=0 in$2, (2.3a)
ou
ot

where u is the velocity perturbation and p the pressure perturbation. The LNSE can be
further compactly represented in matrix form as

dgq

— =94, 24

o1 q (2.4)
where 2 = ((1, 0), (0, 0))T is the (singular) mass matrix due to incompressibility and .Z
is the Jacobian matrix. Assuming a normal mode decomposition via a Laplace transform
in time, the infinitesimal perturbation has the form

gx, ) =gx)et +cc., (2.5)

where ¢ (x) is the spatial eigenfunction of the perturbation, dependent on all three spatial
coordinates x = (x, y, z), and A is the complex eigenvalue of the considered normal
mode. Substituting (2.5) into (2.4) and neglecting higher-order terms yields the generalised
eigenvalue problem:

1
+(u-V)U+(U—V)u=—Vp+ITV2u, in £2, (2.3b)
e

ABq =£q, (2.6)

where the complex eigenvalue A=0 +iw governs the temporal behaviour of the
perturbation. The real part, o, represents the growth rate, dictating whether perturbations
amplify (o > 0) or decay (o < 0), while the imaginary part, w = 27 f, corresponds to the
frequency f. A base flow U is deemed globally unstable if the eigenvalue problem (2.6)
admits at least one solution with a positive growth rate. The corresponding eigenmode,
q(x), termed a global eigenmode, represents the spatial structure of the instability
throughout the domain. The emergence of global eigenmodes requires that at least one
area of the flow exhibits a synchronised, self-sustained oscillation described by a global
eigenfunction (Chomaz, Huerre & Redekopp 1988). In the opposite case, where all
eigenvalues have negative growth rates, the base flow is globally stable (not temporally
self-sustained).

The next two subsections address solving eigenvalue problem (2.6) for steady-state
(fixed point) and time-periodic (periodic orbit) base flows.

2.4.1. Fixed points

To solve the problem (2.6), building and storing the Jacobian matrix .’ is computationally
impractical due to the large number of degrees of freedom in three-dimensional
simulations. Instead, we employ a time-stepping approach, based on Krylov methods,
that leverages the linearity of the problem and computes the action of the Jacobian over
time. We approximate the action of the Jacobian . via the matrix exponential of the
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Figure 2. Schematic of bifurcations experienced by a steady-state solution (i.e. fixed point). This diagram
illustrates the two types of bifurcations that occur in steady-state flows as a parameter (e.g. Reynolds number)
is varied. The shaded region indicates the stable part of the spectrum, i.e. the lower complex half-plane Re{1} =
o < 0. Adapted from Frantz et al. (2023).

Lt

operator M; = e * over a finite sampling time 7. This leads to the large-scale eigenvalue

problem:
M.§ = ug, 2.7

where p are the eigenvalues of M, and ¢ are the corresponding eigenmodes. The
eigenvalues of . are then recovered with the natural logarithm transformation A=
In(u)/t.

Figure 2 illustrates common eigenspectrum structures and how the leading eigenvalue
governs the bifurcation type. If the leading eigenvalue crosses the imaginary axis (o > 0)
with zero imaginary part (w = 0) and symmetry breaking occurs, the system undergoes
a pitchfork bifurcation (figure 2a), resulting in a steady-state solution. If the leading
eigenvalue crosses into the unstable half-plane with w 7 0, an Hopf bifurcation occurs
(figure 2b), leading to periodic dynamics (periodic orbits). To efficiently solve (2.7), we
use the NekStab toolbox, which integrates the highly parallel time-stepping capabilities of
Nek5000 with Krylov methods. The effectiveness of this methodology in fixed point cases
has been demonstrated in several studies (Loiseau et al. 2014; Bucci et al. 2018; Picella
et al. 2018; Loiseau et al. 2019; Bucci et al. 2021).

2.4.2. Periodic orbits

Now, we assess the stability of a periodic orbit Q(t) = (U(t), P(¢))' by performing a
Floquet analysis. This method, designed for time-periodic systems, evaluates the net effect
of small perturbations over one full period t, determining whether they grow or decay. This
evolution is captured by the monodromy matrix M, which encapsulates the cumulative
effect of the linearised dynamics over the period 7. In practice, it is obtained by integrating
the linearised system:

M, = /‘f ZL(t)drt, (2.8)
0

where .Z is the linearised Jacobian operator around the periodic base flow Q(¢) from
which we can assess how perturbations behave over successive periods. The eigenvalue
problem to solve therefore writes

M.§ = ud, 2.9)

where ¢ denote the Floquet modes (i.e. the eigenvectors of the monodromy matrix M;)
and p are the corresponding Floquet multipliers (i.e. eigenvalues). The magnitude of the
Floquet multipliers indicates the stability of the periodic orbit: if || < 1 for all i in the
spectrum of My, perturbations decay over one period and the periodic orbit is stable to
small disturbances; if there exists at least one eigenvalue w such that || > 1, perturbations
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Figure 3. Schematic of bifurcations experienced by a time-periodic base flow (or periodic orbit). This figure
depicts three typical bifurcation types in time-periodic systems. The shaded region indicates the stable part of
the spectrum, i.e. the unit disk || = 1. Adapted from Frantz et al. (2023).

grow over one period, indicating that the periodic orbit is unstable. The Floquet multiplier
w is related to the Floquet exponent A by i = 7, where 1 = o + iw is a complex number.
Here, o represents the average growth rate per orbital period (real part) and @ corresponds
to an additional frequency component introduced by the perturbation (imaginary part).

Figure 3 illustrates common scenarios of how the leading Floquet multiplier governs the
type of bifurcation that the system may undergo.

(i) Pitchfork bifurcation (figure 3a) (|| > 1 and u € R*): new periodic solutions with
different amplitudes or phases emerge from the original orbit. This type of bifurcation
often occurs in systems with certain symmetries and can lead to multiple stable
periodic solutions coexisting.

(ii) Period-doubling bifurcation (figure 3b) (Jju| > 1 and u € R™): a period-doubling
or flip bifurcation occurs. Here, the Floquet multiplier moves through u = —1,
indicating that perturbations change sign every period. A new periodic solution with
twice the period of the original orbit emerges.

(iii) Neimark—Sacker bifurcation (figure 3c¢) (Ju|>1 and € C with a non-zero
imaginary part): a pair of complex conjugate Floquet multipliers move across the
unit circle, introducing a new frequency into the system. This bifurcation is thus
also known as a secondary Hopf bifurcation. The resulting motion is quasiperiodic,
characterised by oscillations with two incommensurate frequencies.

As in the fixed point methodology, we employ the matrix-free approach to circumvent
the computational impracticability of constructing the monodromy matrix M;. Instead
of forming M; explicitly, we compute its action on perturbation vectors by integrating
the linearised system over one period 7. Again, we employ the NekStab toolbox, which
uses Krylov methods to compute dominant Floquet multipliers and corresponding modes,
enabling the stability assessment of periodic orbits in large-scale three-dimensional flows;
for a comprehensive overview of Floquet analysis and its applications, we refer the reader
to the review by Frantz et al. (2023).

2.4.3. Numerical parameters

For the stability analysis of fixed points, the time-stepping approach is based on an
integration sampling period equal to t = 1.25. This value is determined by the product
of the number of iterations (n) required by the linear solver (i.e. (2.3)), and the time
step (df) used in both cube and sphere simulations (r =n x dt). This choice follows
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the recommendations of Frantz et al. (2023), which enables the efficient execution of
the eigenproblem within a single supercomputer run. For the Floquet analysis involving
periodic orbits, T is set to precisely match the period of the orbit, whose evaluation is
described in Appendix D.2. Despite the large domain size, sponge regions were used at the
inlet (one element) and outlet (five elements) to minimise potential boundary reflections,
acting to gradually zero perturbations, in line with best practices for stability analysis.
For the eigenvalue computations, a Krylov basis of size m = 100 was employed, with
convergence achieved when at least 20 eigenvalues reached an absolute residual of 1079,
while absolute tolerances of 10! were employed for the velocity and pressure solvers.

2.5. Base flow computation

Steady Q and periodic Q(¢) base flows are computed using the Jacobian-free Newton—
Krylov method, implemented within the open-source NekStab toolbox for Nek5000.
Appendix D details the computation of fixed points and the stabilisation of unstable
periodic orbits (UPOs). A generalised minimal residual (GMRES) algorithm is used
to solve the linear systems arising in both the fixed point and UPO algorithms. For
UPOs, the Newton method is extended to simultaneously compute the exact period t (see
Appendix D.2). Solver tolerances (for both velocity and pressure) and stopping criteria
are dynamically adjusted and bounded by the current residual estimate, ensuring that the
solver seeks corrections one order of magnitude smaller than the current residual. This
approach enables inexact steps during early iterations — reducing computational costs —
while progressively tightening convergence as the residual decreases. Specifically, all base
flows are computed until the absolute residual falls below an absolute tolerance of 10~ 1°.
Further details on the Newton—-GMRES method can be found from Frantz et al. (2023).

In §§3, 4 and 5, we present the identification of the primary, secondary and tertiary
bifurcations for both cube and sphere geometries, based on the global linear stability
methodology outlined previously.

3. Primary bifurcation

Cube. From nonlinear simulations, Meng et al. (2021) identified a primary bifurcation in
the flow past a static cube at a critical Reynolds number Re,. ; =~ 207. Our investigation,
which started with a DNS at Re = 200, confirmed the steady state of the flow and revealed,
as reported by Meng et al. (2021), an orthogonally symmetric recirculation zone directly
behind the cube.

Using the Newton—Krylov solver described in Appendix D.1, we meticulously traced
the evolution of the orthogonally symmetric flow solution from Re =200 to Re = 212.
This process unveiled a transition to an unstable base flow at Re =207, perfectly
orthogonally symmetric, as depicted in perpendicular cross-sections (z =0, y =0, x =0)
in figure 4(a,c,e). It is crucial to note that our analysis did not impose additional symmetry
constraints (such as half- or quarter-domain simulations), ensuring that the flow symmetry
emerges naturally from the governing equations.

Using a linear solver (discretising the LNSE around the present base flow solution),
the large-scale eigenvalue problem (2.7) is then solved, as described in §2.4.1. The
results are reported in figures 5(a) and 5(c). Figure 5(a) represents the eigenspectra in
the o—St% (where the superscript L denotes results obtained from linear analysis) plane
corresponding to three distinct Reynolds numbers and based on the orthogonal-symmetric
steady base flow shown in figure 4 (St and w are linked by the relation St = w/(27)).
These eigenspectra indicate the destabilisation of the base flow as a purely real eigenvalue
(St™ = 0) migrates into the positive o half-plane, uncovering a pitchfork bifurcation.
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(a) 2= 0 Cube — Re =207 (b) 2= 0 Sphere — Re =214
! ! ' !

Figure 4. Comparative visualisation of base flows at the onset of a primary pitchfork bifurcation.
(a,c,e) Orthogonallysymmetric steady base flow around a cube at a supercritical Re =207 > Re. 1. (b,d.f)
Axisymmetric steady base flow around a sphere at a supercritical Re = 214 > Re, 1. For each geometry, the
figure is extracted at perpendicular cross-sections z =0, y =0 and x =0. Streamwise velocity maps with
u € [—0.1, 1.1] are overlaid by white isolines for # =0, which delineate the recirculation regions indicative
of reverse flow, and black isolines for # = 1, highlighting the freestream flow.

Figure 5(c) illustrates the relationship between the amplification rate o and the Reynolds
number. We systematically sampled Reynolds numbers from Re =200 to Re = 212 with
increments Agr, = {3, 2, 1, 1, 2, 3}, ensuring a monotonically increasing sequence. This
sampling strategy reveals a clear linear trend in the amplification rates as the Reynolds
number increases. The monotonic nature of this relationship allows for reliable linear
interpolation, enabling us to estimate the primary bifurcation threshold with high accuracy.
Using this method, we determine that the critical Reynolds number is Re "1 =206.39. This
value is closely aligned with those reported in the literature (cf. § 1.2.4 and tables 3, 4).

Sphere. Adopting a similar analytical trajectory for the sphere, over Reynolds numbers
Re =207 to Re =219 with an identical Ag, step sequence, we identified an axisymmetric
yet unstable base flow at Re =214, shown in figure 4(b,d.f). From this base flow, the

1018 A30-14


https://doi.org/10.1017/jfm.2025.10469

https://doi.org/10.1017/jfm.2025.10469 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) Cube Re, | =206.39 (b) Sphere Re,, = 213 11
T T T T T T
oL © Re=212 ’ [ @ Re=219 ;
< Re=207 ; < Re=214
¢ Re=200 : ¢ Re=207 :
—0.08 | 1r 7
o ¢ e 9
—0.16 5 1 F 9 é q
¢ ¢
-0.24 f N L ]
-0.30 —0.15 0 0.15 -0.30 —0.15 0 0.15
Stk Stk
c d
( ) 0030 T T T T T ( l) T L] T T
1 1
1 1
Re,;=20639 ! Re, =213.11 |
0.015| ol | 1 F el | .
1 1
\): \)l
o 0 ; :
¢ Re=200 < Re=207 ¢ Re=207 <A Re=214
—0015L% O Re=203 > Re=209 1L O Re=210 D> Re=216
A Re=205 © Re=212 ARe=212 @ Re=219
v Re—206 Meng etal. (2021) V Re=213
70030 1 1 1 1 1
201 204 207 210 207 210 213 216 219
Re Re

Figure 5. Primary bifurcation for (a,c) the cube and (b,d) the sphere. (a,b) Eigenspectra in the ¢ — S L plane,
based on the steady symmetric base flow, evidencing a pitchfork bifurcation. (c,d) Trajectory of the leading
eigenvalue’s amplification rate o in relation to the Reynolds number Re. The vertical dashed line defines the
critical Reynolds number Rei 1| = 206.39 for the cube case, interpolated from the fitting linear equation o (Re) =

0.0019 -+ (Re — Rei 1) in panel (c) and Re(f | =213.11 for the sphere case, interpolated from the fitting linear
equation o (Re) =0.0028 - (Re — Rei 1) in panel (d).

eigenspectra analysis reported in figures S(b) and 5(d) determines the primary (pitchfork)
bifurcation threshold for the sphere at Re "1 =213.11. This threshold is in agreement with
the literature-reported value of Re. | ~ 212 (cf. § 1.2.1 and tables 3, 4).

Discussion and comparison. By comparing cube and sphere base flows (figure 4), it
can be observed that for an identical distance to Re o1 the recirculation length behind
the cube is longer than that of the sphere. This may be explained by the presence of the
secondary recirculation bubble formed along the lateral and top/bottom faces of the cube
(see the u =0 isolines in figure 4a,c,e), which participates in the elongation of the main
recirculation zone behind the cube (Klotz et al. 2014). In their study, Meng et al. (2021)
also evidenced the presence of four additional pairs of vortices generated on the lateral
faces of the cube, directly ‘feeding’ the main vortex core. This phenomenon does not exist
in the sphere case due to the curvature of the body, which prevents the formation of any
secondary recirculation bubble.

Concerning eigenanalysis, we observed that at the respective critical values Re 1> the
emergence of a positive real eigenvalue signals a pitchfork bifurcation for both geometrles
This bifurcation marks the destabilisation of spatial symmetry, heralding a transition
from a maximally symmetric wake to a planar symmetric state as the Reynolds number
surpasses Re ;- Furthermore, figure 6 shows the unstable mode of the primary (pitchfork)
mstablhty, capturmg its development in proximity to the steady symmetric fixed point (i.e.
at Re Z Re, 1) for both cube and sphere configurations. The isosurfaces of the components
of the perturbation velocity field show identical spatial symmetries in the (x, y) and
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Figure 6. Primary bifurcation. Three-dimensional view of isocontours of (a) streamwise (u”), (b) vertical (v')
and (c) spanwise (w’) perturbation velocities plotted for the levels £0.01 of the real part of the leading unstable
mode at Re = 207 for the cube case and Re = 214 for the sphere case.

(x, z) planes between the cube and the sphere case. These results therefore lead us to
the conclusion that the corner-induced vortices which induce secondary flows around the
cube surface do not impact the global dynamics, but act as an extra source making the main
recirculation bubble larger and therefore destabilising the flow faster. This is captured by
the lower critical Reynolds number in the cube case.

4. Secondary bifurcation

Our investigation of secondary bifurcations looks into the post-primary instability
dynamics in both cube and sphere configurations.

Cube. At Re =245, surpassing the primary instability threshold, a direct simulation
in the cube scenario revealed a transition to a non-orthogonal asymmetric steady wake.
We then performed a rigorous stability analysis, employing the Newton—Krylov solver to
compute new fixed points, uncovering a planar-symmetric base flow which is temporally
unstable at Re =252, delineated in figure 7(a,c,e). The corresponding eigenspectra,
depicted in figure 8(a), show a pair of complex conjugate eigenvalues (i.e. with St% # 0)
that become unstable as the Re increases from 245 to 257, exhibiting the emergence of
an Hopf bifurcation and a fundamental frequency StlL, responsible for periodic vortex
shedding in the wake region. Then, figure 8(c) gives the linear relation between o
and Re, for Reynolds numbers ranging from Re =245 to Re =257 with steps ARe
(3,2, 1,1, 2, 3}, allowing us to estimate the secondary bifurcation threshold at Re’ 0=
250.61. ThlS critical value aligns with the ranges reported in the literature, notably by
Khan et al. (2020b) (250 < Re.» < 276) and Meng et al. (2021) (Re.» ~ 252). Using
this 1nterpolated critical value, we can interpolate again and obtain the associated critical
frequency St ‘1 =0.0927, highlighted by the dash-dotted vertical line in figure 8(a). We
note that the estimated critical frequency is also in very good agreement with the frequency
St1 = 0.0975 found by Meng et al. (2021) in their nonlinear simulations at Re = 270.

Sphere. Similarly, the Newton—Krylov solver computes an unstable planar-symmetric
base flow for the sphere at Re = 275 (figure 7b,d.f) and the stability analysis, showcased in
figures 8(b) and 8(d) and spanning from Re = 268 to Re = 280, led to the interpolation of
the secondary bifurcation (Hopf) threshold at Re(ﬁ , =273.67 and to an estimated critical

fundamental frequency equal to Stclj | = 0.1282. These findings are in close agreement
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(@ 7=0 Cube — Re =252 (b) 7 =0 Sphere — Re =275
T

Figure 7. Comparative visualisation of base flows at the onset of a secondary Hopf bifurcation. (a,c,e) Planar-
symmetric steady base flow around a cube at a supercritical Re =252 > Re, ». (b,d.f) Planar-symmetric steady
base flow around a sphere at a supercritical Re =275 > Re.>. For each geometry, the figure is extracted
at perpendicular cross-sections z=0, y =0 and x =0. Streamwise velocity maps with u € [-0.1, 1.1] are
overlaid by white isolines for u = 0 and black isolines for u = 1.

with the thresholds found in the literature (Re.» =275 £ 6) (cf. § 1.2.1 and tables 3, 4)
and specifically with the stability analysis conducted by Citro et al. (2017) (Re.» =271.8
and St.1 = 0.129), emphasising the precision of the present methodology.

Discussion and comparison. This stability analysis first highlights striking similarities
between the cube and sphere base flows, as well as in the unstable global eigenmode
associated with the secondary bifurcation (Hopf), as shown in figure 9. In terms of
discrepancies between the two bluff bodies, one can notice from the base flow computation
(cf. figure 7), and for the same reason as that explained at the end of § 3, the recirculation
length L, for the cube is longer than the sphere’s counterpart L¢“P¢ > L)’ here  The
stability analysis then emphasises that the critical shedding frequency in the cube case is
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Figure 8. Secondary bifurcation for (a,c) the cube and (b,d) the sphere. (a,b) Eigenspectra in the o-Stt
plane, based on the bifurcated steady planar-symmetric base flow, evidencing a Hopf bifurcation. (c,d)
Evolution of the amplification rate with respect to the Reynolds number. The vertical dashed line defines
the critical Reynolds number Reé‘,2 =1250.61 for the cube case, interpolated from the fitting linear equation

o (Re) =0.0039 x (Re — Reéz) in panel (¢) and Reé‘.2 = 273.67 for the sphere case, interpolated from the fitting
linear equation o (Re) = 0.0037 x (Re — Rei ,) in panel (d).

(@)

Figure 9. Secondary bifurcation. Three-dimensional view of isocontours of (a) streamwise (u'), (b) vertical
(v") and (c) spanwise (w’) perturbation velocities plotted for the levels £0.01 of the real part of the periodic
leading unstable mode associated to the shedding frequency St;, at Re = 252 for the cube case and Re = 275
for the sphere case.
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Figure 10. Secondary bifurcation at Re =275 (sphere case only). £2, isocontours of: (a) ‘BF’, planar-
symmetric steady base flow; (b) ‘M’, secondary unstable global eigenmode; (¢) ‘BF + M’, linear combination
of the base flow and global eigenmode at an arbitrarily fixed amplitude; (d) ‘DNS’, nonlinear solution. The
top-left box shows a side view. [Movie 1] (cube), [Movie 2] (sphere).

lower than that of the sphere, St¢“?¢ < St (figure 8) and that the opposite relation
stands regarding the streamwise wave length A of the unstable mode, i.e. Acype >
Agphere (qualitatively observable in figure 9). The existence of a proportional dispersion
relation between A and St in the range of Reynolds numbers under consideration in
this study implies that Acupe > Asphere = Sreube — gpsphere and having the following

relation between the recirculation length and wave length LE“¢ > L7 " — Acube >
Agphere therefore makes the quantitative discrepancies between the cube and the sphere
cases in terms of L,, St and A values naturally correlated.

We now turn to examining the spatial mechanisms that drive the dynamical evolution
of the planar-symmetric base flow following the Hopf bifurcation. Figure 10 presents a
synchronised comparison of £2,-criterion isocontours for the sphere case, illustrating:
(a) the planar-symmetric base flow (BF); (b) the unstable global eigenmode (M);
(c) the linear superposition of base flow and eigenmode at a fixed amplitude (20 % of
the maximum streamwise velocity of BF) that clearly reveals the eigenmode s effect
(BF + M), and (d) the direct numerical simulation at Re =275 > Re o2 (DNS). The
§2,-criterion employed in figure 10 follows the Omega- Liutex/Rortex methodology
(Dong, Gao & Liu 2019), which identifies vortices by quantifying the ratio of local
rigid-rotation vorticity component to total vorticity (rotation + deformation). A distinctive
advantage of this criterion is its robust threshold value of £2, =0.52, which serves as
a case-independent demarcation for vortex boundaries. When 2, > 0.52, the rotational
component dominates the deformation component, effectively capturing both weak and
strong vortical structures within the same flow domain — an improvement over previous
criteria that relied on adhoc, flow-dependent thresholds.

We note that the fundamental mechanisms at play in the cube case are equivalent,
so for clarity and conciseness, the following explanation focuses on the sphere’s spatial
flow structures. The ‘DNS’ part of figure 10 clearly shows the well-known periodic
vortex-shedding process, featuring alternating hairpin-like structures. In our view, this
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phenomenon aligns with the minimal flow-elements model proposed by Cohen, Karp &
Mehta (2014), which provides a ‘recipe’ for generating packets of hairpin vortices in
shear flows. Their model — consisting of a shear flow, a counter-rotating vortex pair
(CVP) and a streamwise oscillation — explains the mechanics of the instability leading
to hairpin vortices and, more precisely, how the CVP modifies the base flow to create an
inflection point, thereby amplifying the wavy vortex sheet. This amplification, in turn,
destabilises the CVP, leading to its segmentation and the formation of hairpin vortex
packets. Analysing more precisely the vortex shedding process in the present case, and
as already observed in many numerical and experimental studies (Sakamoto & Haniu
1990; Johnson & Patel 1999; Kim & Choi 2002), the vortices shed from the sphere are
alternating in a non-symmetric fashion in the (x, y) plane, with the creation of hairpin
rings occurring in an apparently fixed orientation, namely, in the upper branch of the wake.
The present figure 10 provides more detail on this phenomenon by spatially representing
the eigenmode’s action on the base flow. In fact, in the part ‘(BF + M)’ of the figure,
a delayed spatial amplification of the structures formed in the lower branch of the wake
can be observed compared with their counterparts formed in the upper branch. This delay
in amplification is directly related to the asymmetry of the base flow in the (x, y) plane,
with a recirculation bubble shifted in the upper half (x, y) plane, implying different local
velocity gradients in the two half-planes. Due to nonlinear effects, the amplification delay
observed in the spatial structures of the eigenmode (M) and its linear superimposition
with the base flow (BF + M) manifests in the ‘DNS’ solution with the formation of non-
alternating hairpin rings (horseshoe-shaped). These rings are aligned with the orientation
of the asymmetric base flow recirculation zone.

Base flow asymmetry and hairpin formation. In other words, the formation of hairpin
vortices in the nonlinear flow can be traced back to the interplay between the asymmetric
base flow and the unstable eigenmode. Although the linear mode alone does not manifest
as a clear hairpin, it provides the initial ‘seed’ of vorticity perturbation. Because the
base flow is vertically asymmetric (due to the pitchfork bifurcation), amplification differs
between the upper and lower parts of the wake (i.e. local gradients), causing a noticeable
lag or phase shift in vortex roll-up. By visualising the superposition of the base flow and
the linear mode, one sees that the spatial evolution of the instability directly depends
on local velocity gradients; the upper region of the wake experiences earlier, stronger
amplification, while the lower region lags behind. In fully nonlinear simulations, this
asymmetry in amplification eventually leads to hairpin structures forming predominantly
on one side first, corroborating the linear predictions that spatial gradients in the base flow
drive an uneven — yet ultimately coherent — shedding pattern.

5. Tertiary bifurcation

As previously shown, a limit cycle associated with periodic dynamics is created in the
vicinity of the steady planar-symmetric fixed point when the secondary bifurcation (first
Hopf) occurs. The investigation of tertiary bifurcation through linear stability analysis thus
implies the computation and the stabilisation of the periodic base flow (a periodic orbit).
In this section, we present results of the stability characterisation of stabilised periodic
orbits based on Floquet theory. We present what we believe to be the first computation
of three-dimensional Floquet modes, which reveal instabilities within the limit cycle and
indicate the onset of tertiary bifurcations. To the best of our knowledge, the stability
analysis of tertiary bifurcations in the flow past a cube and a sphere has not been previously
reported. Therefore, in this section, we present the results not in terms of the ‘cube’ and
‘sphere’ cases sequentially, but by following the two main steps of the Floquet analysis:
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Figure 11. Residual deflation as a function of Newton—Krylov iterations (k) for the stabilisation of unstable
periodic orbits (UPOs) in the cube and sphere cases. The initial solutions correspond to solutions at Re = 280
for the cube and Re = 330 for the sphere. Due to the proximity of these initial solutions to the target solutions,
the initial residuals are of the order of 1074. The dotted line represents the specified tolerance level, while the
curves demonstrate the convergence of the residual norm (||7|)).
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Figure 12. Strouhal numbers (St) and periods (7) of the limit cycle computed using the Newton-GMRES
solver as functions of the Reynolds number (Re) in (a) the cube case and () the sphere case. The black dashed
lines represent second-order polynomial fits to the data points.

(i) computation of the periodic base flows for the cube and sphere; and (ii) computation of
the Floquet modes for both obstacles.

Computation and analysis of the UPO. Figure 11 illustrates, for both cube and
sphere cases, the residual reduction during the Newton—Krylov algorithm used for the
computation of periodic orbits (cf. Appendix D.2). Figure 12 delineates the variation
of the limit cycle frequency St and related period t against the Re, using the Newton—
Krylov solver to stabilise periodic orbits with naturally selected periods for both cases.
We used initial guesses for the orbit period based on the frequency peak from the lift
coefficient timeseries from preliminary simulations. The data highlight a discernible trend,
fitted with a second-order polynomial, along with the critical Re interpolated from linear
stability analysis results (presented hereafter). In particular, the critical frequency of the
periodic base flow is interpolated and depicted for comparative analysis. Preliminary DNS
at subcritical Re provided a robust initial estimate for the orbit period. This allowed a
gradual increment of the Re to supercritical values, ensuring proximity to the desired
solution branch and thus ensuring convergence of the Newton method.

A visualisation of the stabilised unstable limit cycle around the cube at supercritical
Reynolds number Re =281 > Re.3 =280.31 and around the sphere at supercritical
Reynolds number Re =332 > Re. 3 =330.75, is shown in figure 13. The stabilised orbit
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Figure 13. Comparative visualisation of the stabilised unstable limit cycle (i.e. periodic base flow) at the onset
of a tertiary Neimark—Sacker bifurcation, at Re = 281 > Re 3 for the cube case and Re =332 > Re, 3 for the
sphere case. (a and b) (u, v, dv/dt) phase-portrait of periodic base flow in cube and sphere case, respectively.
(c) Perspective view of §2, = 0.52 isocontours of the periodic base flow represented for every quarter period of
a shedding cycle. Green and purple arrows depict, in the cube and sphere case, respectively, the spatial location
of a given hairpin through a complete shedding period .

period 7 is here denoted as ;. The £2, =0.52 isocontours (figure 13¢) are plotted at
every quarter of the shedding period 71, showing the periodic shedding of the hairpin
vortical structures and their transport in the wake. Notably, there is a perfect match
between the snapshots of the UPO at t =0 and ¢ = t;. The time-periodic base flow of
flow past the cube and the sphere are also represented by the (u(¢), v(¢), d;v(¢)) phase-
portraits (figure 13a,b), depicting for both obstacles a clear limit cycle of period 7.
Figure 14 represents the stabilised UPO at ¢ = 0 in different perpendicular cross-sections,
highlighting the planar-symmetry of the periodic base flow for both the cube and the
sphere.

Computation and analysis of the Floquet modes. Figure 15 represents the results of the
Floquet stability analysis (cf. § 2.4.2) for the cube (panels a, c, ) and the sphere case
(panels b,d,f). Figures 15(a) and 15(b) display for each obstacle the eigenspectrum of
the Floquet multipliers u; (corresponding to the eigenvalues of the monodromy matrix
M;) relative to the unit disk || =1, where the inner grey area represents the stable
portion of the spectrum. For both cube and sphere, this eigenspectrum reveals the evolution
of a complex conjugate pair of multipliers, progressively leaving the unit circle out of
the Re(wn) axis as Re grows, indicating a Neimark—Sacker bifurcation (also called a
secondary Hopf bifurcation). As a result, the mode associated to a new frequency St»
(incommensurate with respect to the shedding frequency St; that arises after the onset
of the first Hopf bifurcation) becomes unstable, leading to quasiperiodic dynamics (the
quasiperiodic regime will be temporally and spatially analysed in § 6). Figures 15(c) and
15(d) give the mapping of the spectrum of the monodromy matrix (figure 154,b) towards
the corresponding spectrum in the o —St% plane of the Jacobian matrix, following the
relation 4; =In(w;)/t. Eventually, figures 15(e) and 15(f) portray the linear progression
of the growth rates o with respect to Re.
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Figure 14. (Complement to figure 13). Comparative visualisation of a single snapshot on the stabilised unstable
limit cycle in perpendicular cross-sections at ¢ = 0, at the onset of a tertiary Neimark—Sacker bifurcation. The
figure highlights the planar-symmetry of the cube and sphere’s stabilised periodic base flow.

Concerning the cube case, the tertiary bifurcation is identified at a critical Reynolds
number of Re’ -3 =280.31 (figure 15¢), aligning with DNS predictions of Re. 3 =282
given by Meng et al. (2021). The new frequency of the unstable leading modes is
interpolated from the critical value of Re® -3 and is estimated to S tL2 =0.0276 (see the
vertical dash-dotted line in figure 15¢), which matches the St = 0.0281 value reported by
Meng et al. (2021) in their nonlinear simulations at Re = 282.

Regarding the sphere case, the Neimark—Sacker bifurcation emerges at a critical
Reynolds number of Rel 3 =330.75 (figure 15f), which is slightly below the broad range
of 350 < Re. 3 <480 reported in the DNS results of Kalro & Tezduyar (1998), Mittal
(1999), Mittal & Najjar (1999), Lee (2000), Tomboulides & Orszag (2000). The new
lower frequency is estimated to St ;, =0.0385 (see figure 15d), which lies in a reasonable
range regarding the only avallable reference values reported at Re =500 by Mittal &
Najjar (1999) (St, = 0.05), Lee (2000) (St = 0.043) and Tomboulides & Orszag (2000)
(St =0.045). It is important to note that no hysteresis was observed. This was verified by
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Figure 15. Tertiary bifurcation for (a,c,e) the cube and (b,d.f) the sphere. (a,b) Eigenspectra of the Floquet
multipliers developing in the vicinity of the stabilised limit cycles at various Reynolds numbers, evidencing
a Neimark—Sacker bifurcation. (c,d) Elgenspectra in the o — St* plane, based on the stabilised limit cycles
at various Re, evidencing the new frequency St . Note that zero eigenvalues corresponding to the base flow
derivative are omitted from the plot. (e.f) Evolutlon of the amplification rate with respect to the Re. The vertical
dashed line defines the critical Reynolds number Re” 3 = 280.31 for the cube case, interpolated from the fitting

linear equation o (Re) = 0.0020 - (Re — Reﬁ 3) in panel (e) and Rei 3 =330.75 for the sphere case, interpolated
from the fitting linear equation o (Re) = 0.0011 - (Re — Reg‘,3) in panel (f).

performing nonlinear simulations at a supercritical Re, followed by a gradual reduction of
the control parameter. The system smoothly returned to the periodic state, confirming the
supercritical nature of the third bifurcation for both the cube and sphere flows.

Finally, figure 16 presents the 3-D isocontours of the leading unstable eigenvector
at Re =281 > Rek «3 for the cube and at Re =332 > ReL3 for the sphere. This mode is
associated to the new low- frequency St> and is therefore a periodic eigenfunction, of
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Figure 16. Tertiary bifurcation. Three-dimensional view of isocontours of (@) streamwise (u”), (b) vertical (v')
and (c) spanwise (w’) perturbation velocities plotted for the levels +0.01 of the real part of the periodic leading
unstable mode associated to the secondary low-frequency St,, at Re = 281 for the cube case and Re = 332 for
the sphere case.

Cube Sphere
Bifurcation Rek Stk Rek Stk
I - Pitchfork 206.39 — 213.11 —
II - Hopf 250.61 0.0927 273.67 0.1282
III- Neimark—Sacker 280.31 0.0276 330.75 0.0385

Table 1. Summary of the present linear stability analysis with critical Reynolds numbers (ReCL) and critical
Strouhal numbers (StCL). All bifurcations are of supercritical nature.

period 17, represented in figure 16 by a snapshot extracted at the beginning of this period.
This eigenvector, emerging in the vicinity of the UPO, leads to the Neimark—Sacker
bifurcation. It exhibits complex structures that are very comparable between the cube and
the sphere case.

As an overview of the linear stability analyses performed in §§3, 4 and 5, table 1
presents our linear predictions for the sequence of bifurcations, detailing the type, nature
and critical thresholds in the flow past a cube and a sphere (a consistency verification of
our critical frequencies for Hopf (II) and Neimark—Sacker (III) bifurcations is proposed
in Appendix C by comparing them with frequencies extracted from nonlinear DNS at
very similar values of Re). These results strongly support the conjectured sequence of:
(D pitchfork; (I) Hopf; and (IIT) Neimark—Sacker bifurcations in flows around CSC-BBs.

It should be noted that the critical values reported in this study are all based on the
body diameter D as the characteristic length scale. Normalising ReLL, and StCL using an
alternative reference length scale could potentially collapse these critical thresholds for the
cube and sphere cases, providing perhaps an even closer metric for flow behaviour across
different body shapes, as suggested by attempts such as those of Gennaro, Colaciti &
Medeiros (2013). However, upon closer inspection, it can easily be shown from table 1 that
this normalisation process cannot rely on the same length scale for Reﬁ and StCL values;
and despite the fact that a length based on the size of the recirculation bubble appears to
be a good candidate for such a normalisation procedure, our investigations found that it
does not allow such unification across all bifurcations.

1018 A30-25


https://doi.org/10.1017/jfm.2025.10469

https://doi.org/10.1017/jfm.2025.10469 Published online by Cambridge University Press

R.A. Schuh Frantz, C. Mimeau, M. Salihoglu, J.-C. Loiseau and J.-C. Robinet

6. Dynamics of the quasiperiodic regime

This final section provides a detailed temporal and spatial characterisation of the flow
dynamics in the quasiperiodic regime that emerges following the onset of the Neimark—
Sacker bifurcation in both the cube and sphere cases. All analyses are based on DNS.

6.1. Temporal description

As previously mentioned, the quasiperiodic motion is characterised by two incommen-
surate fundamental frequencies St#; and Sty (i.e. St;/St> ¢ Q), and the trajectory of the
quasiperiodic system is represented by a curve on a so-called T'2-torus that wraps around
the torus without ever exactly repeating itself. To investigate in detail the dynamic nature
of a quasiperiodic flow past a cube and a sphere, we use DNS. Our analysis focuses
on the vertical lift coefficient, Cy, examining its time signal, power spectral density
(PSD) and phase-space representation. This phase-space representation is augmented by
the incorporation of the time derivative, d;Cy, and the drag coefficient, Cy. The drag
coefficient and the vertical lift coefficient are defined as follows: C, = Fy/(qA), Cy =
Fy/(qA), where g = (1/2) ,oUgo with p being the fluid density, U, and D the freestream
velocity and the characteristic body length, and where F, and F), are the streamwise and
vertical forces on the surface of the body, respectively, and A the body reference area equal
to A = D? for the cube and to .A = 7 D?/4 for the sphere. Since the spanwise component
C, is effectively zero within machine precision in the range of Re studied in this paper, we
will therefore omit it from the visual representations.

It should be noted that our analysis relies on interpreting the temporal evolution
of surface-integrated quantities, which, on the one hand, are relevant with respect to
the global analysis performed in this work, and, on the other hand, correlate strongly
with spatial probe data (e.g. velocity probes located in the wake) whose spectra show
identical frequencies (see Appendix E for supporting results), thus indicating a robust
synchronisation between the energy injected by the body and its redistribution by the wake
for the considered Re.

Figures 17(a) and 17(b) depict the Cy, time signal, its PSD and the (Cy, Cy, 9,C}) phase-
space representation of the flow past a cube and past a sphere at a Reynolds number
slightly above the tertiary bifurcation point, that is, Re = 282 for the cube and Re = 332
for the sphere. Both signals span approximately 90 periods of the secondary frequency
Sty, ensuring fine precision in the identification of the PSD peak, and equivalent spectral
resolution between the cube and sphere cases. From the right-hand sides of figures 17(a)
and 17(b), one can first observe that the curves drawn by the phase space representations
clearly characterise a T'2-torus. Concerning the Fourier spectra, one can identify two high-
amplitude peaks corresponding to the fundamental frequencies St; and St, (St} =0.0975
and St =0.0281 for the cube at Re =282; St; = 0.1338 and St, = 0.0392 for the sphere
at Re = 332), as well as their respective harmonics.

The other well-defined peaks in the PSD constitute a frequency comb centred around
St1, with the constant offset St; and with peak intensities decreasing in the comb as |k|
increases (one refers to figure 17¢ for a sketch of a typical T2-torus Fourier spectrum).
These frequencies arise from nonlinear triadic interactions between the two fundamental
frequencies St; and St, which satisfy the relation of the form S#; + kSt, (with integer
k € Z). This process is accompanied by a corresponding nonlinear energy transfer from
the primary shedding mode to these newly formed frequencies.

This spectrum analysis aligns well with observations by Bohorquez et al. (2011), who
provided, in the context of flow past blunt-based bluff bodies, a rare analysis of the
secondary low-frequency arising in the quasiperiodic regime, stating that ‘the excitation
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Figure 17. T2-torus in the quasiperiodic (QP) regime. The C, time signal, its PSD and the (Cy, Cy, 9;C})
phase-space representation are shown for (a) the cube at Re =282 and (b) the sphere at Re =332. In each
PSD, the primary frequency St;, the secondary frequency St,, their harmonics and the frequencies resulting
from nonlinear triadic interactions are labelled. (¢) Schematic of the frequency decomposition (in linear scale),
showing how nonlinear triadic interactions generate frequency peaks of the form St| + kSt (k € Z), separated
by the constant offset St,. The fundamental frequencies St; and St, are incommensurate (i.e. St; /Sty ¢ Q).

of new frequencies in the wake (i.e. the low-frequency modulation and the harmonics
of the main frequency) leads to a decrease of the energy associated with the leading
velocity fluctuations due to the nonlinear energy transfer from the natural frequency
(S11) to the newly excited ones.” This redistribution of energy suggests that the Neimark—
Sacker bifurcation plays a crucial role in initiating the transition towards a more complex,
eventually turbulent, state by broadening the range of excited frequencies and slowly
breaking the energy balance in the wake.

6.2. Spatial description

An intuitive way to grasp the tertiary bifurcation and the ensuing quasiperiodic regime is
by examining the spatial flow structures associated with the unstable Floquet mode and
contrasting them with the fully nonlinear flow fields obtained from DNS. This subsection
discusses how the newly emerging low-frequency motion (St;) combines with the primary
shedding frequency (St;) to produce modulated vortex dynamics in the wake.

Floquet mode structure. Figure 18 illustrates, for both cube and sphere cases, the
three-dimensional Floquet mode (coloured in blue and red), that becomes unstable
at the tertiary bifurcation, for every quarter of its own period tp. The periodic base
flow superimposed here in grey — already shedding at frequency S#; — serves as the
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(b) Sphere Re = 332
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Figure 18. Superimposition of the streamwise velocity component of the periodic base flow, shedding at
frequency St (grey) with the real part of the leading unstable Floquet mode (streamwise component of velocity
perturbation coloured with the levels —0.01 (blue) and 0.01 (red)) represented for every quarter period of the
Floquet mode’s period 7. One notes that while the Floquet mode covered one period 7, the periodic base flow
covered St1/St, >~ 3.5 shedding cycles of period 7. (@) Cube case at Re =281 [Movie 3]. (b) Sphere case at
Re =332 [Movie 4].
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‘time-periodic equilibrium’. Spatially, one sees from the 3-D mode representation that
velocity perturbations appear downstream of the body and extend through the wake, con-
centrating mostly around the hairpin heads. Moreover, the videos given as Supplementary
material in figure 18’s caption allow one to notice that, for both obstacles, the Floquet
mode does not propagate at constant speed along the base flow; it accelerates between
two hairpins. The unstable mode therefore manifests as a gentle modulation or ‘waviness’
applied to the hairpin-like structures characteristic of the primary shedding. Since the
velocity perturbations preserve the planar symmetry of the base flow, the Floquet mode
does not disrupt the underlying reflectional symmetry. Instead, it introduces a slow, global
oscillation in phase, which, as supported hereafter by the nonlinear results, manifests itself
as a streamwise lag modulation between the heads of successive hairpin vortices.

Quasiperiodic dynamics. Figure 19 confirms the picture in figure 18 given by Floquet
theory through DNS snapshots of the wake in the supercritical regime, where both
frequencies S#; and St are excited. Unlike the single-frequency shedding observed
in the previous periodic regime (cf. figure 13), the flow now develops an additional
low-frequency modulation under the action of St,.

Exactly as observed by Meng et al. (2021) in the cube case, figures 19(c) and 19(d)
clearly show that over approximately 7 periods of vortex shedding (i.e. 771), the cube’s
and sphere’s wakes undergo approximately 2 cycles (i.e. 272) of shedding modulation.
This observation is perfectly corroborated by figures 19(a) and 19(b) depicting for cube
and sphere the time series of vertical velocity v along one quasiperiod. Additionally, the
time series reveal that the vortex shedding is modulated both in phase and amplitude.
This phase and amplitude modulation can be seen as a slow spatial drift which is due to
the superposition of two incommensurate frequencies (S#; from the original limit cycle,
plus S, from the Floquet mode). This interplay produces a quasiperiodic wake, whose
trajectory in phase space (e.g. lift Cy versus drag C,) wraps around a two-dimensional
torus rather than closing into a single cycle (see the phase portraits in figure 17). The
fact that the quasiperiodic pattern is completed within approximately 7 periods of vortex
shedding or 2 cycles of wake oscillation is directly linked to the St;/St, ~7/2 ratio.
In the present simulations, performed at supercritical Re close to the Neimark—Sacker
bifurcation, the phase oscillation of the hairpin shedding manifests solely in the (x, y)
plane (the flow remains planar-symmetric). However, one may hypothesise that as the Re
increases to values not explored in this work, the flow could potentially develop additional
three-dimensional shifts, perhaps showing a spanwise wobble in z, like that observed by
Sakamoto & Haniu (1990) and Chrust et al. (2013).

7. Conclusions

This study investigated the bifurcation sequence governing the transition from steady to
quasiperiodic dynamics in the wakes of compact-simplyconnected bluff bodies (CSC-
BBs), focusing on the canonical cube and sphere cases as representative examples.
Combining three-dimensional global linear stability analysis (LSA) and nonlinear
simulations within a unified framework, this work confirms a consistent sequence of
three supercritical bifurcations for these bodies: (I) a symmetry-breaking pitchfork; (II)
a Hopf leading to periodic shedding (Sf1); and (III) a Neimark—Sacker (S#;) leading
to quasiperiodicity (St;/St> ¢ Q). This analysis, performed within a cohesive numerical
set-up, helps reconcile fragmented findings from the diverse literature by providing a
systematic comparison and physical description.

Our findings clearly demonstrate that both cube and sphere flows, after losing initial
spatial symmetries, traverse a single-frequency periodic regime before evolving into
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Figure 19. Quasiperiodic wake states for (a,c) cube at Re = 282 and (b,d) sphere at Re = 332, illustrating the
interaction of two incommensurate frequencies. Panels (a) and (b) show timeseries of verticalvelocity v, where
the red markers indicate multiples of the primary period 71, and blue markers the secondary period 2. Panels
(c) and (d) display isosurfaces of £2, =0.52 at selected multiples of 7. The secondary frequency induces a
convective modulation of the hairpin structures shedding (materialised by the non-equispaced grey bands),
producing a quasiperiodic flow pattern that never repeats exactly. [Movie 5] (cube), [Movie 6] (sphere).

a quasiperiodic state characterised by two incommensurate frequencies, St; and St,,
signifying a Neimark—Sacker bifurcation. A crucial contribution is the first direct
identification of this bifurcation in fully three-dimensional bluff-body flows, achieved
through a Floquet stability analysis on stabilised unstable periodic orbits, where the spatial
structures of the unstable mode have been visualised and interpreted.

Furthermore, we characterise the quasiperiodic regime of cube and sphere wakes,
in time and space. Nonlinear simulations clearly show spectra dominated by the two
incommensurate frequencies (St, St;) and combination tones arising from nonlinear
interactions. Spatially, the analysis demonstrated how the unstable Floquet mode
(associated with low-frequency St) modulates the primary hairpin vortex shedding
pattern (driven by St1) through phase and amplitude variations, preserving the flow’s
planar symmetry.
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LSA and DNS revealed striking similarities for both cube and sphere flows, highlighting
common underlying mechanisms despite body geometry differences. The similar
bifurcation sequence for a flow past a cube (discrete symmetry) and a sphere (continuous
symmetry) strongly supports its relevance as a route towards quasiperiodic dynamics for
the broader CSC-BB class. These findings enhance the fundamental understanding of how
self-sustained unsteadiness originates and evolves in bluff-body wakes.

A further open question is whether a truly universal scaling exists for the critical thresh-
olds of all three bifurcations. Our preliminary investigations suggest that finding such a
universal scaling may be non-trivial. Future work could also explore sensitivity analysis to
external noise, ultimately guiding the design of more effective flow control strategies.

Another interesting avenue for future work would be to investigate the role of the CSC-
BB’s intrinsic symmetry in the flow dynamics when the Re increases after the onset of
quasiperiodicity. Is the route to chaos identical for the flow around a cube and around a
sphere? Elements in the literature seem to reveal that it is not the case. Meng et al. (2021)
found for the cube a scenario of a period-doubling cascade before chaos, whereas for the
sphere, Frantz (2022) and Sierra-Ausin et al. (2022) suggest a Ruelle-Takens—Newhouse
scenario with the appearance of a third incommensurate frequency.

Ultimately, this research highlights how computer power, combined with Floquet theory,
Krylov methods and dynamical systems concepts, can unlock insights into fluid dynamics,
transforming our perception of complex transitional flows, revealing the simple yet elegant
mechanisms that govern their behaviour.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10469.
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Appendix A. Overview of literature and symmetry classifications

Temporal dynamics

SS Steady state
TP Time periodic (single frequency vortex shedding)
QP Quasi-periodic (double-incommensurable frequencies vortex shedding)

Spatial symmetries

AS Axisymmetry

oS Orthogonal symmetry: symmetry in both vertical and spanwise planes
RS Reflectional symmetry: planar symmetry

RSP Reflectional symmetry preserving: preserves planar symmetry

RSB Reflectional symmetry breaking: no planar symmetry

RSR Reflectional symmetry recovering: recovers planar symmetry

Table 2. Summary of temporal dynamics and spatial symmetry used in this study.
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Bluff bodies Regime I Bifurcation I Regime IT Bifurcation II Regime IIT Bifurcation III Regime IV Bifurcation IV Regime V
AXISYMMETRIC
Sphere SS-AS Pitchfork SS-RS Hopf TP - RSP 350 < Rep < 375 Unsteady with | Re.> 480 [14] Unsteady -
- Re,=210%£2 Re.=275%10 [7,16] [17] two frequencies | Re. <430 [17] RSB with
[12] [3.456.7.89] [1,14,15,2] [4,5.6,7.8,9] Rec < 400 [18] o
Re =420 [14] -? periodic
Re.> 480 [19] rotation of
shedding
plane
Flat disk (AR < 1) SS - AS Pitchfork SS-RS Hopf TP - RSB Re.=140[20] TP - RSR Re.=280 (for Unsteady
Re.=115[20] Re.=121[20] Re.=143.7 AR = 1/10) [24] with  two
— Re.=116.5 Re.=125.6 frequencies
- Re.=117.1 Re.=123.7 -RSB
Re.=116.5(1 + AR) Re.=125.6(1 + AR)
[22]
Re.=115(1+ AR) [23]
Thick disk (AR = 1/3) [25]
SS - AS Re.=159.4 SS-RS Hopf TP - RSP Re.=184 - 185 Unsteady with
Re.=179.8 two frequencies
- -RSB
Thick disk (AR = 1) [26] i
SS - AS Pitchfork SS-RS Hopf TP - RSP Re.=395 Unsteady with
Re.=276 Re.= 355 two frequencies
" b
Falling Cone SS - AS Pitchfork SS-RS Hopf TP - RSP Re.=300(60°) [27] |?-RSB

-

Rec = 100 [27]

Re.= 160 (20°) [28]
Re,= 155 (40°) [28]
Req= 170 (60°) [27]

Table 3. For caption see next page.
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Bluff bodies ‘ Regime I Bifurcation T Regime IT Bifurcation IT ‘ Regime IIT Bifurcation IIT Regime IV Bifurcation IV | Regime V
Blunt-based bluff body (AR = 1) [29] | SS - AS Pitchfork SS-RS Hopf
Re. = 215 (for DNS Re. =254 (DNS)
— q and glob. lin. stab.) and Re. = 267.6 (expe)
Blunt-based bluff body (AR = 2) [29] X
SS - AS Pitchfork SS-RS Hopf TP - RSP 450 < Re; < 500 Unsteady with
Re. =319 (DNS) Re. = 413 (DNS and two frequencies
— and Re. = 327 (glob. expe) - RSP
— lin. stab.)
Blunt-based bluff body (AR = 6)
SS - AS Pitchfork SS-RS Hopf TP - RSP 650 < Re. < 675|QP-RSP
Re. =424 Re. = 605
- e
Small cylinder (AR = 1) SS - AS Pitchfork SS-RS Hopf TP - RSP Rep~ 332 Unsteady with
Re. =1722 Re. =282 two frequencies
Small cylinder (AR = 1.75)
SS - AS Hopf TP - RSP Re.~ 240 Unsteady with
i Rec~ 218 two frequencies
-?
Infinite cylinder (AR = c0) . .
SS-AS(2D | Hopf TP - RSP Secondary Pitchfork TP - RSB (3D | (supercritical - mode | Loss of spatio-
wake) Re. =46+ 1 (2D wake) (subcritical - mode A) wake) B) temporal sym-
[32] Recp ~ 188 Recp ~ 256 metry
Recp ~ 200 [38] Re.p ~ 259

Table 3. For caption see next page.
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Bluff bodies

Regime I Bifurcation I Regime II Bifurcation II Regime IIT Bifurcation III Regime IV Bifurcation IV Regime V
WITH REFLECTIONAL SYMMETRY
Hemisphere [39] SS - 0S8 Re. ~ 180 SS-RS Re. ~ 200 TP - RSB Re. ~ 220 TP - RSR Re. ~ 280 Unsteady
aperiodic -
e RSB
Cube SS - 08 216 < Re. < 218 [40] SS-RS Hopf TP - RSP 300 < Re. <339 QP - RSP [42]
e 200 < Ree < 215 [41] 265 < Re, < 270 [40] [41]
- Re, =207 [42] Re. =285 [43] Reo~ 281 [42]
- . Re. =186 [43] 250 < Re, < 276 [41]
Re. ~ 252 [42]
y /|
Square cylinder (AR = 00) SS-0S (2D | Hopf TP-RSP-? |Secondary Pitchfork |TP - RSP (3D |(mode B) TP - RSP
— wake) Re, =51.2[44] (2D wake) (mode A) wake) 175 < Re:p < 205
— Re. =53 150 <Recp< 175
Ahmed body (with ground)[47] | SS - RS Pitchfork SS - Asym- | Hopf Unsteady -
Re. =340 metric Re. ~ 410 Asymmetric

-

Table 3. (cntd). Bifurcations and regimes for flows past 3-D bluff bodies (see table 2 for the meaning of temporal and spatial dynamics in ‘Regime’ columns). Full
bibliographic references are provided at the end of the table. Colour code for the references: (blue) for experimental studies; (green) for DNS;
+ DNS; (purple) for stability analysis + DNS + experimental.

for stability analysis

[1] Magarvey & Bishop (1961) [2] Szaltys et al. (2012) [3] Natarajan & Acrivos (1993) [4] Tomboulides, Orszag & Karniadakis (1993) [5] Johnson & Patel (1999) [6] Ghidersa & Dusek (2000) [7] Mittal
(1999) [8] Thompson et al. (2001) [9] Constantinescu & Squires (2004) [10] Pier (2008) [11] Meliga et al. (2009b) [12] Citro et al. (2017) [13] Sansica et al. (2018) [14] Sakamoto & Haniu (1990) [15] Gumowski
et al. (2008) [16] Mittal & Najjar (1999) [17] Chrust et al. (2013) [18] Kalro & Tezduyar (1998) [19] Lee (2000) [20] Fabre et al. (2008) [21] Meliga et al. (2009a) [22] Fernandes et al. (2007) [23] Bobinski,
Goujon-Durand & Wesfreid (2014) [24] Shenoy & Kleinstreuer (2008) [25] Auguste et al. (2010) [26] Pierson et al. (2019) [27] Yaginuma & It (2008) [28] Goldburg & Florsheim (1966) [29] Bohorquez et al.
(2011) [30] Rigas et al. (2017) [31] Yang et al. (2022) [32] Provansal, Mathis & Boyer (1987) [33] Jackson (1987) [34] Barkley & Henderson (1996) [35] Kumar & Mittal (2006) [36] Henderson & Barkley (1996)
[37] Blackburn & Lopez (2003) [38] Karniadakis & Triantafyllou (1992) [39] Kim & Choi (2003) [40] Saha (2004) [41] Khan ef al. (2020a) [42] Meng et al. (2021) [43] Klotz et al. (2014) [44] Sohankar e al.
(1998) [45] Kelkar & Patankar (1992) [46] Robichaux et al. (1999) [47] Grandemange et al. (2012) [48] Marquet & Larsson (2015).
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Appendix B. Mesh design and sensitivity
B.1. Domain size

The computational domain considered throughout the present work is defined by (In,
Out, Sides) = (10D, 50D, 10D), indicating the domain extends 10D upstream, 50D
downstream and +10D laterally. To assess possible blockage effects, we calculate the
blockage ratio, defined as the ratio of the cross-sectional area of the body to the cross-
sectional area of the domain. For the cube, the blockage ratio is D?/(20D)? = 0.25 %. For
the sphere, it is 7 (D/2)%/(20D)* = = D?/4/400D? 2 0.20 %. Both values are well below
the threshold of 0.43 % suggested by Klotz et al. (2014) to ensure negligible blockage
effects.

In a relative point of view, for the cube case, our domain dimensions are larger in all
directions compared with previous numerical studies. In fact, Meng et al. (2021) used
domain dimensions of 7.5D upstream, 30D downstream and =£7.5D laterally, while Saha
(2004) used 6D upstream, 22D downstream and =£7 D laterally. For a clear quantitative
comparison of the effects of domain size, the top part of table 4 summarises the domain
sizes of previous studies in the literature associated with the critical Reynolds values Re,
and Re. >, and the fundamental shedding frequency S#; computed or measured in such
domains.

For the sphere, our domain is comparable to or slightly larger than most prior
studies (e.g. Citro et al. (2017) used (10D, 30D, £10D) in one configuration and
(14D, 38D, £14D) in another). Only Meliga et al. (2009b) adopted a very extensive
domain of (100D, 200D, 25D) in the context of axisymmetric simulations. The bottom
section of table 4 summarises these references. Overall, our chosen domain provides
adequate space for flow development and exhibits sufficiently low blockage to mitigate
boundary influences.

B.2. Mesh design and sensitivity

To simulate the wake dynamics around the cube and sphere, we designed two distinct
multiblock grids specifically to each geometry. Both grids use smooth refinements and
are composed of second-order hexahedral elements of low aspect ratio, thereby reducing
numerical distortion and promote better convergence of iterative solvers (Fischer 1997).

For cube simulations, the mesh contains 49 176 elements, maintaining symmetry in y
and z. The flat surfaces and sharp edges of the cube allow for a straightforward meshing
strategy, focusing on resolving the regions near the wall and in the wake with high
gradients. A 3-D mesh is constructed by, first, extruding a 2-D cross-section in the z-
direction around the cube faces normal to z, and then filling the remaining corner regions.
In contrast, sphere simulations required a more intricate mesh with 63 281 elements to
capture curvature accurately. A butterfly meshing strategy was used, with a central element
at the pole and surrounding elements that conform to the surface of the sphere.

The final meshes enabled our simulations to closely match the fundamental frequencies
of the limit cycles reported in both experimental and numerical studies, as reviewed in
the introduction. Table 5 compares our results with the finite-volume DNS of Meng
et al. (2021) for the cube and the spectral-element stability analyses of Bouchet et al.
(2006) and Citro et al. (2017) for the sphere. We achieve agreement in S¢; within 0.1 %
to 1.5% and in the mean drag coefficient C, within 0.02 % to 0.7 %, indicating that
the present discretisation is sufficiently refined to capture the key features of the wake
flow. As also shown in table 5, a sensitivity study revealed that a polynomial order of
N =17 is optimal, as higher values of N offered minimal improvements while significantly
increasing computational cost.
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Cube references Type  Dom. size (In, Out, Sides) Re.1 Recn St

Saha (2004) Num 6D,22D, +7D 216 270 0.094 (Re =290)
Klotz et al. (2014) Exp 71.66D stream dir., +4.16D 186 285 0.125 (Recp < Re < 390)
Khan et al. (2020b) Num 8D, 17D, +£7.5D 200-215 250-276 0.088 (Re = 276)
Meng et al. (2021) Num 7.5D, 30D, £7.5D 207 252 0.0975 (Re =270)
Sphere references Type Dom. size (In, out, sides) Order Req Rec, St) at Reqy
Meliga et al. (2009b) Num 100D, 200D, £25D — 212.6 280.7 0.111
Ghidersa & Dusek Num 12D, 25D, £8D N=6 212.0 272.3 0.127
(2000)

Bouchet et al. (2006) Num 12D, 25D, £8D N=38 211.9 274 0.128
Szaltys et al. (2012) Exp - —, £3.125D - 212.0 268.0 0.180
Citro et al. (2017) Num 10D, 30D, +£10D N=10 212.8 272.9 0.128
Citro et al. (2017) Num 14D, 38D, +14D N=13 212.4 271.8 0.129
Sansica et al. (2018) Num 10D, 10D, £5D - 212.5 275.2 0.118

Table 4. Comparison of domain sizes, critical Reynolds numbers (Re.1, Re.2), and fundamental shedding
frequencies (St1) from various numerical (Num) and experimental (Exp) studies of flow past a cube (top)
and a sphere (bottom). For sphere references using a spectral-element method, the polynomial order N is listed
where available.

Appendix C. Consistency verification

We verify the consistency of the critical frequencies identified by our linear stability
analysis for Hopf (II) and Neimark—Sacker (III) bifurcations by comparing them with
the dominant frequencies observed in nonlinear simulations at Reynolds numbers close
to these bifurcation points. Specifically, S#; denotes the primary frequency of the periodic
flow that emerges following the secondary bifurcation in the nonlinear simulations, while
S tLl remains the fundamental frequency predicted by linear stability, interpolated at Re” ey

For the tertiary Neimark—Sacker bifurcation, St; and St, represent two 1ncommensurate
frequencies corresponding to (i) the vortex-shedding mode and (ii) the additional sec-
ondary frequency that appears once the flow surpasses the tertiary threshold. In parallel,
StL1 and StL2 continue to denote the critical fundamental and secondary frequencies

derived from the Floquet analysis, interpolated for Re © and Re 5> Tespectively.

Table 6 summarises, for both cube and sphere, the comparrson between these critical
frequencies from linear stability analysis (LSA) presented in this paper and those
measured in our nonlinear DNS for the secondary (Hopf) and tertiary (Neimark—Sacker)
bifurcations. First, we note that S#; from the nonlinear simulation, run at a supercritical
Reynolds number near Rei , matches closely with Stclj | from figure 8. For example, at
Re =251 for the cube, the DNS yields St =0.0930, while the linear prediction gives
S tLl =0.0927. Similarly, for the sphere at Re =275, the DNS frequency of St; =0.1299

compares well with the linear result of StLl =0.1282.
Furthermore for both geometries, performing DNS at Reynolds numbers just beyond
ReL 3 (i.e. where the tertiary bifurcation triggers) leads to a new frequency S#,, which

coincides closely with the three-dimensional Floquet prediction StCL’2 (cf. figure 15)

(comparison between the values reported in columns ‘StCL2 at Ref3’ and ‘Stp’ of the
‘Tertiary III’ part of table 6). For instance, the cube at Re =281 exhibits St = 0.0282
against an LSA prediction of § tCLz = 0.0276, while for the sphere at Re = 332 , we obtain

St» = 0.0393 compared with a prediction of Stclj2 =0.0385.
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Cube at Re =270

Case Sti C, C, dtx107?
Meng et al. (2021) (DNS) 0.0975  0.866 — 2.5
Present N =5 0.0974 0.8658 —0.0736 4.6
Present N =7 0.0975 0.8598 —0.0734 2.5
Present N =9 0.0979 0.8587 —0.0733 1.7

Sphere at Re =275

Case Sty Cy Fy dr x 1073
Bouchet et al. (2006) (LSA, N =8, Nejem in z—r 0.1279  0.678 0.066 —
domain = 169)

Citro et al. (2017) (LSA, N =10, Nejen, = 8, 510) 0.1296 — — —
Present N =5 0.1281 0.6750 —0.0650 1.4
Present N =7 0.1299 0.6750 —0.0649 0.75
Present N =9 0.1292  0.6749 —0.0648 0.47

Table 5. Comparison of the Strouhal number St#;, mean drag C,, mean lift Fy and time step At for the cube at
Re =270 and the sphere at Re = 275, obtained using different polynomial orders N. Present results are averaged
over 100 shedding periods (non-dimensional times 7" = 1026 for the cube and 7" =772 for the sphere). Data
from Meng et al. (2021) (for the cube) and Bouchet et al. (2006) (for the sphere) are interpolated from published
curves.

LSA DNS
Stélat ReCL,2 St
Secondary I Cube 0.0927 (Rec , =250.61) 0.0930 (Re = 251)
Sphere 0.1282 (Re’, = 273.67) 0.1299 (Re = 275)
Newton-UPO LSA DNS
Ste1 at Ref Stk at Rel Sty Sty

Tertiary III Cube 0.0980 0.0276 (Re '3 =280.31) 0.0975 (Re=281) 0.0282 (Re =28I)
Sphere 0.1353 0.0385 (ReL 3 =2330.75) 0.1333 (Re =332) 0.0393 (Re =332)

Table 6. Comparison of critical frequencies predicted by linear stability analysis (LSA) and measured in
nonlinear simulations (DNS) for the secondary (Hopf) and tertiary (Neimark—Sacker) bifurcations. The table
lists the fundamental frequency St 1,y at Re - for the secondary bifurcation and both Sz, and St T at Rel 3
for the tertiary bifurcation. Correspondmg DNS values for S#; and St, are shown for cube and sphere cases at
nearby supercritical Reynolds numbers.

These new frequencies induce quasiperiodic flow characterised by two incommensurate
frequencies, leading to trajectories in phase- space that do not repeat exactly. In addition,
the stabilised limit cycle frequencies St. 1 at Rel o3 (denoted ‘Newton—UPO’ in table 6)
give the critical fundamental frequency of the 0rb1t as computed by the Newton—-GMRES
approach (see figure 12). The close agreement between St; and St. | arises because the

1018 A30-37


https://doi.org/10.1017/jfm.2025.10469

https://doi.org/10.1017/jfm.2025.10469 Published online by Cambridge University Press

R.A. Schuh Frantz, C. Mimeau, M. Salihoglu, J.-C. Loiseau and J.-C. Robinet

DNS is conducted at a Reynolds number very close to Re. 3, where the nonlinear distortion
of the base flow is low.

Appendix D. Base flow computation

In this section, we expose the present methodology used to compute the steady base
flows @ and the periodic ones Q(¢). We first detail the computation of fixed points
and subsequently extend our methodology to the stabilisation of unstable periodic orbits
(UPOs). In both cases, base flows are computed using the Jacobian-free Newton—Krylov
method, implemented within the open-source NekStab toolbox for Nek5000.

D.1. Fixed points
Fixed points are defined as solutions that satisfy the condition:
X =2 (X), (D1)

where @, represents the evolution operator (nonlinear solver of (2.1)) over a time interval
7, meaning that they are the roots of the following equation:

FX)=o.(X) - X. (D2)

In the present work, the computation of fixed points is framed within a time-stepping
approach. In this method, the state of the system is updated iteratively as

Xiy1 =P (Xp), (D3)

where X represents the state vector at iteration k. Analogously, we presume the
availability of a linearised variant of this code (linear solver of (2.3)) to advance the
linearised state over time:

X1 =Mexy, (D4)

where M; = exp(rL) is the numerically approximated exponential propagator, with L the
linearised operator around the current approximation Xg.

To compute fixed points, i.e. solutions verifying (D2), we employ an inexact Newton
method (Dembo, Eisenstat & Steihaug 1982) with scheduled tightening of the solver’s
tolerances. In the Newton—Krylov method, the Jacobian of (D2), denoted as J =M, —
I, is used to iteratively solve for the corrections x. The inexact Newton—Krylov method
proceeds as follows.

(i) Compute the residual of the nonlinear equation
r = &7 (Xg) — Xk (D5)

If ||rg | is below a predefined threshold ¢, Xy is accepted as the base flow solution.
Otherwise, proceed to the next step.
(i) Compute the Newton correction x by solving the linear system

Jx=—ry, (D6)
subject to the relaxed solvers tolerances ¢. In practice, this involves solving
(exp(tL) = D) x = —ry. (D7)
(iii)) Update the solution using the correction Xy = Xy + x.
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D.2. Periodic orbits

The computation of UPOs follows a similar process to that of fixed points, but includes
modifications to account for the periodic nature of the solutions.
Periodic orbits satisfy the condition

X=o.(X) (D8)
for a specific period T = t*, and are solutions to the equation
FX, 1)=o,X) - X=0. (D9)

The unknowns of this system are the state vector X and the period t. Since the system has
one more unknown than equations, an additional phase condition is introduced to uniquely
identify a point in the orbit. This condition, based on an initial guess Xy, takes the form:

F(Xp) - (X —Xp) =0, (D10)

where F(Xp) is the time derivative of the flow map evaluated at Xg.
The state of the system evolves by time-stepping (2.1) as

Xir1 =P (Xp), (DI1)

where @; represents the flow map over a time period 7, and X is the state at time step k.
The corresponding linearised system of (2.3) evolves as

Xk+1 =M;x;, (D12)

where M; = for Z(t) dt is the monodromy matrix.
The augmented system, combining (D9) and the phase condition (D10) has a Jacobian
matrix defined as

(M =1 F(P:(Xy))

and is solved using the Newton—Krylov method. The iterative steps include the following.

(i) Compute the residual ry = @, (Xy) — Xg. If ||rg|| is below the threshold e, Xj is
accepted as the periodic orbit solution. Otherwise, proceed to the next step.
(i) Determine the Newton correction éx and 7 by solving the bounded system

M; -1 F(@.(Xy)) Sx\ I
(o “70) (52) = (5) P

- Xi+1) _ Xk Sx
(iii) Update the solution (Tk+1) = (Tk> + < 8t>'

In step (ii), both the original nonlinear system and the linearised one must be
marched forward in time to evaluate the matrix-vector product M;§x. To minimise the
computational cost associated with this process, we implemented a pre-computation
strategy. Specifically, the tentative orbit Xy (¢) is stored at discrete time steps within the
period ¢ € [0, t¢]. By doing so, we eliminate the need for repeated time integration during
each Newton iteration, reducing the computational burden. This storage strategy is enabled
by Nek5000’s reduced memory footprint and efficient spectral element implementation.
For details on the bounded Newton—Krylov method for UPOs, see Frantz et al. (2023).
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Figure 20. Power spectral density (PSD) for flow past a sphere at Re = 332. Comparison between PSD obtained
from drag (C,) and lift (Cy) signals and from velocity fluctuations at two wake probe locations, (x, y, z) =
(2, 0,0) (near the body) and (x, y, z) = (10, 0, 0) (further downstream). The PSD highlights the dominant
frequencies St; (dashed vertical line) and St, (dash-dotted vertical line) associated with vortex shedding and
their coupling between body forces and wake dynamics.

Appendix E. Spectral analysis

In this appendix, we examine the spectral characteristics of the flow dynamics and body
forces to clarify how forces acting on the body synchronise with the velocity field in its
wake. Figure 20 presents, for the sphere at Re = 332 (quasiperiodic regime), the power
spectral density (PSD) of the drag and lift signals, along with the PSD of the velocity
fluctuations measured at two probe locations in the wake: (x, y, z) = (2, 0, 0) (near the
body) and (x, y, z) = (10, 0, 0) (further downstream). The PSD results illuminate the
dominant frequencies associated with both the body forces and the local velocity field,
reflecting the influence of vortex shedding and its interactions with the body. In particular,
the spectral peaks align closely among lift, drag and measured velocity fluctuations,
indicating a strong coupling mediated by a global instability that governs the wake
dynamics. At the upstream probe, the dominant frequency exhibits a higher amplitude,
revealing strong velocity fluctuations close to the body. Further downstream, the spectral
energy diminishes, yet the coherent frequency content persists. This progression highlights
the nonlinear transformations, convection and eventual diffusion of flow structures as
they evolve in the wake. The enduring presence of a dominant frequency underscores the
stability and persistent influence of the underlying vortex shedding process.
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