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O N T E R A I ' S C O N J E C T U R E C O N C E R N I N G 

P Y T H A G O R E A N N U M B E R S 

MAOHU A . LE 

In this paper we prove that if o, 6, c, r are fixed positive integers satisfying 
a2 + b2 = c r , gcd(o,6) = 1, a = 3(mod8), 2 | | 6 , r > l , 2\r, and c is a 
prime power, then the equation ax + by = cz has only one positive integer solution 
(x,y,z) = (2,2,r) satisfying x > 1, y > 1 and z > 1. 

1. INTRODUCTION 

Let Z, N be the sets of integers and positive integers respectively. Let a, b, c, m, n, r 
be fixed positive integers satisfying 

(1) am + bn = cr, gcd(a,6) = 1, a > 1, b > 1, m > 1, n > 1, r > 1. 

In 1994, Terai [5] conjectured that the equation 

(2) ax + by = cz, x,y, z e N, x > 1, y > 1, z > 1, 

has only one solution (x, y, z) = (m, n, r ) . This conjecture has been proved for some 
special cases (see [3, 5, 6, 7, 8]). But, in general, the problem is not solved as yet. 

In [7] and [8], Terai proved that if m = n = 2 , 2 \ r, a = 3(mod8), 2 || 6, 
(b/a) = — 1 and either a ^ 416 or r is a large prime, where (*/*) denotes the Jacobi 
symbol, then (2) has only one solution (x, y, z) = (2 ,2, r ) . The proofs of these results 
used a lower bound for linear forms in two logarithms due to Laurent, Mignotte and 
Nesterenko [1]. In this paper, using some elementary methods, we prove a general result 
as follows. 

THEOREM. Ifm = n = 2,2\r,a = 3(mod 8) , 2 || 6 and c is a prime power, 
then (2) has ony one solution (x, y, z) = (2 ,2, r). 
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2. PRELIMINARIES 

LEMMA 1 . [4, pp. 12-13] Every solution (X,Y,Z) of the equation 

(3) X2 + Y2 = Z2, X,Y,ZeN, gcd (X, 10 = 1, 2\Y, 

can be expressed as 
X = u2 - v2, Y = 2uv, Z = u2 + v2, 

where u, v are positive integers satisfying u > v, gcd (u, v) = 1 and 2 | uv. 

LEMMA 2 . [4, pp.122-124] Let r be a positive integer with 2 \ r. Every solution 
(X, Y, Z,) of the equation 

(4) X2 + Y2 = Zr, X,Y,Ze N, gcd(X,Y) = 1, 

can be expressed as 

Z = u2+v2, X + Ys/^1 = X1(u+ X2vy/-i)\ Ai,A2 6 { - 1 , 1 } , 

where u, v are coprime positive integers. 

LEMMA 3 . [4, Theorem 4.2] The equation 

(5) XA - y 4 = Z2, X,Y,Z(E N, gcd{X,Y) = 1 

has no solution (X, Y, Z). 

LEMMA 4 . [2, Lemma 4] Let D\,D2 be positive integers with m i n ( D 1 , D 2 ) > 
1. Let p be an odd prime with p \ D\D2 • If the equation 

(6) DXX2 + D2Y2 = pz, X,Y,Z£ Z , gcd[X,Y) = 1, Z > 0, 

has solutions (X,Y,Z), then it has a unique solution (Xi,Yi,Z\) satisfying Xi > 0, 
Yx > 0 and Zi^Z, where Z runs through all solutions (X,Y,Z) of (6). {XUYUZX) 
is called the least solution of (6). Moreover, every solution (X,Y,Z) of (6) can be 
expressed as 

Z = Zit, t E N, 2 FT, 
X^/Th + Yy/^Lh = Xr(Xlx/D[+ X^y/^th)', A u A2 E { - 1 , 1 } . 

We now show that the condition (6/o) = —1 can be eliminated from the results of 
[7] and [8]. 
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LEMMA 5 . Let m = n = 2, 2 \ r, a = 3(mod8) and 2 || b. If (x,y,z) is a 
solution of (2) with (x,y,z) ^ (2,2, r ) , then we have either 

(7) 2 | x , x > 6 , j / = 2, 2 f z 

or 

(8) 2 || x, x ^ 10, y = 4, 2 || z. 

PROOF: Since m = n = 2, we get from (1) that 

(9) a 2 + b2 = cr, gcd (a, 6) = 1, a > 1, o > 1, r > 1. 

Further, since a = 3(mod8), 2 || 6 and 2 f r, we see from (9) that c = 5(mod8). 
Hence, by Lemma 2, we find from (9) that 

(10) a + bV^l = \i(u+\2vV-iy, A i , A 2 e { - 1 , 1 } , 

where u, v are positive integers satisfying 

(11) u2 + v2 = c, gcd (u, v) = 1. 

Since 2 { r , by (10) and (11), we get 

( r - l ) / 2 

a = A l U £ ( 2 J " r " 2 i " 1 ( - « 2 ) i = 2 r - 1 A i u r ( m o d c ) , 

(12) 
V ' ( r - l ) / 2 , , 

6 = A1A2v ( 2 / i K " " 2 ' " 1 ^ 2 ) * = 2 r - 1 A 1 A 2 u r - 1 t ; ( m o d c). 

Further, since 2 || 6, we see from (12) that 2\u and 2 || v. 

Let (x, y, z) be a solution of (2) with (x, y, z) ^ (2,2, r ) . If 2 f x and 2 \ y, then 
we have 

by (2). However, by (11) and (12), we get 
(14) 

(T)->•(!)-©-(;)-m-(?) 
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This implies that (—ab/c) = — 1, a contradiction with (13). Similarly, by (14), we can 
prove that (2) has no solution (x,y,z) satisfying 2 | x and 2 \ y. So we have 2 | y. 
Further, if 2 { x and 2 | y, then we get cz — zx + bv = 3(mod4). This is impossible. 
Thus, we obtain 2 | x and 2 | y. 

If 2 | x, 2 | y and 2 { z, then 6̂  = c* - ax = 4(mod8). This implies that 
y = 2. Since (x,y,z) ^ (2 ,2 , r ) , we get x ^ 4. Further, if x = 4, then x > r and 
a 4 = - 6 2 ( m o d cz) by (2). Since a 2 = -6 2 (mod c r ) by (9), we get a 2 = l(mod c r ) . It 
follows that a 2 - 1 ^ c r = a 2 + 62 > a 2 — 1, a contradiction. So we have x ^ 6 and (7) 
holds. 

If 2 | x, 2 | y and 2 | x , then (X,Y,Z) = ( a 2 / 2 , ft^2, c*/ 2 ) is a solution of the 
equation (3). Hence, by Lemma 1, we get 

(15) ax>2 = u 2 - v2, bv/2 = 2m,, c z / 2 = u2 + v2, 

where u, v are positive integers satisfying 

(16) u > v, gcd(u,u) = 1, 2 | uv. 

Further, if 2 | x/2, then from (15) and (16) we obtain 2\u, 4 | v and 2 | z/2. This 
implies that the equation (5) has a solution (X, Y, Z) — (c*/ 4 , a1?4, by/2). However, by 
Lemma 3, that is impossible. So we have 2 || x. Then, by (15) and (16), we get 2 || u, 
2 \ u, y — 4 and 2 || x . On the other hand, if x — 2 or 6, then from (2) and (9) we get 
z > r and a2 + 1 = 0(mod c r ) . This is impossible. So we have x ^ 10 and (8) holds. 
Thus, the lemma is proved. D 

3 . PROOF OF THEOREM 

Since r > 1 and c is a prime power, by (9), we have c = p" where p is an odd 
prime, s is a positive integer. Let (x, y, z) be a solution of (2) with (x, y, z) ^ (2,2, r). 
By Lemma 5, the solution satisfies either (7) or (8). 

If (8) holds, then from (15) and (16) we get u = 2u2 and v = v\, where ui,i>i are 
positive odd integers with gcd(u!,ui) = 1. Hence, by (15), we get 

(17) cz'2 = p3z/2 = 4u4 + v\ = (2u\ + 2ulv1 + v2) (2u\ - 2uxvx + v2). 

Since gcd (2u2 + 2u\V\ + v2, 2u\ — 2u\Vi + v2) = 1, we see from (17) that 2u\ -
2uxV\+v2

 — u\ + (ui — v\)2 — 1. This implies that tii = v\ = 1 and (a,6,c) = (3,2,5). 
However, then (9) does not hold. Thus, (2) has no solution (x,y,z) satisfying (8). 

If (7) holds, then (X, Y, Z) = ( o ^ - 2 ^ 2 , 1 , sz) is a solution of the equation 

(18) a2X2 + b2Y2 =pz, X, y, Z, e Z , gcd (X, Y) — 1, Z > 0. 
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On the other hand, we see from (9) that (18) has another solution (X, Y, Z) — (1,1, sr). 
Further, by the definitions of Lemma 4, the least solution of (18) is (X,,Yi, Z,) = 
(1,1, sr). Therefore, by Lemma 4, we get 

(19) sz = srt, t € N, 2fi, t > 1, (20) o ^ - ^ v W v/=62
 = A 1 ( v / S 2 + A2vC62y, Ai,A2 e {-1,1}. 

By (20), we get 
(*-i)/2 . N 

, . i=0 ^ ' 
( 2 1 ) «-!)/» 

Since x ^ 6 and gcd(a, 6) = 1, we find from (21) that a\t. 

Let g be a prime factor of a. Further let g a || a, q@ \\ t and g7J || 2j + 1 for 
jf = 1, . . . , ( * - l)/2. Then we have <22> •*<*SJĵ0.i-i.....4i. 

log? 2 

By (22), we obtain 

^ (y + 1)̂ (-̂ 2)(t"1)/2"i -fC2"/)27̂1 H2)( t _ 1 ) / 2"J = 0 (m o d 

for j = 1, . . . , (t - l)/2. This implies that 

( t - l ) /2 

(24) it \ „ / 1 1 „2j / u2\(,t-i)/2-J 

îiai- E G/+1)«*(-*a)(l"1) 

The combination of (21) and (24) yields 

(25) ^(^T1)"-
Let q run through all prime factors of a. We see from (25) that 

(26) t > a^-4"2 > 1. 

Therefore, by (2), (7), (9), (19) and (26), we get 

(27) ax + b2 = cz = crt = (a2 + b2)' > a2t + b2t > a 2 a ( *~ 4 ) / 2 + b2. 

From (27), we obtain 

(28) x > 2a< I - 4 > / 2 . 

However, since x ^ 6 and o ^ 3, (28) is impossible. Thus, (2) has no solution (x,y,z) 
satisfying (7). The theorem is proved. 0 
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