HOCHSCHILD (CO)HOMOLOGY OF $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-GALOIS COVERINGS OF QUANTUM EXTERIOR ALGEBRAS

HOU BO and XU YUNGE ${ }^{\boxtimes}$

(Received 15 August 2007)

Abstract

Let $A_{q}=k\langle x, y\rangle /\left(x^{2}, x y+q y x, y^{2}\right)$ be the quantum exterior algebra over a field k with char $k \neq 2$, and let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{q}. In this paper the minimal projective bimodule resolution of Λ_{q} is constructed explicitly, and from it we can calculate the k-dimensions of all Hochschild homology and cohomology groups of Λ_{q}. Moreover, the cyclic homology of Λ_{q} can be calculated in the case where the underlying field is of characteristic zero.

2000 Mathematics subject classification: 16E40, 16G10.
Keywords and phrases: Hochschild (co)homology, quantum exterior algebra, Galois covering.

1. Introduction

Let Λ be a finite-dimensional algebra (associative with identity) over a field k. We consider the enveloping algebra $\Lambda^{\mathrm{e}}=\Lambda^{\mathrm{op}} \otimes_{k} \Lambda$. For a finitely-generated bimodule ${ }_{\Lambda} X_{\Lambda}$, the i th Hochschild homology and cohomology of Λ with coefficients in X, denoted by $H H_{i}(\Lambda, X)$ and $H H^{i}(\Lambda, X)$, are the groups $\operatorname{Tor}_{i}^{\Lambda^{e}}(\Lambda, X)$ and $\operatorname{Ext}_{\Lambda^{\mathrm{e}}}^{i}(\Lambda, X)$ respectively, for each $i \geq 0$ [7]. Of particular interest is the case $X=\Lambda$, and in this case we shall write $H H_{i}(\Lambda)=H H_{i}(\Lambda, \Lambda)$ and $H H^{i}(\Lambda)=$ $H H^{i}(\Lambda, \Lambda)$. It is well known that the Hochschild homology and cohomology of an algebra are subtle invariants of associative algebras under Morita equivalence, tilting equivalence, derived equivalence, and so on, and have played a fundamental role in the representation theory of Artin algebras: Hochschild cohomology is closely related to simple connectedness, separability and deformation theory $[1,8,14,18,25]$; Hochschild homology is closely related to the oriented cycle and the global dimension of algebras $[3,16,19]$.

[^0]In [18], Happel asked the following question. If the Hochschild cohomology groups $H H^{n}(\Lambda)$ of a finite-dimensional algebra Λ over a field k vanish for all sufficiently-large n, is the global dimension of Λ finite? In 2005, Buchweitz, Green, Madsen and Solberg gave a negative answer to this question by exhibiting the Hochschild cohomology behaviour of a family of pathological algebras $A_{q}=$ $k\langle x, y\rangle /\left(x^{2}, x y\right.$
$+q y x, y^{2}$) (the so-called quantum exterior algebras) [5]. Moreover, these algebras have been studied to exhibit some other pathologies and thus give negative answers to some open problems, such as Tachikawa's conjecture, Ringel's problem, and so on [20, 23, 26]. Recently, this class of algebras has been extensively studied. Their Hochschild homology and cohomology have been calculated explicitly, and the Hochschild cohomology rings of A_{q} have been determined via generators and relations [5, 27].

During the last few years, several results and tools from algebraic topology, such as covering theory, have been adapted to the representation theory of noncommutative finite-dimensional associative algebras over a field k [13]. A comparison of the Hochschild cohomology of the algebras involved in a Galois covering of the Kronecker algebra with a cyclic group of order 2 was initiated in [22]. A Cartan-Leray spectral sequence related to the Hochschild-Mitchell (co)homology of a Galois covering of linear categories was obtained in [9]. The skew category, Galois covering and smash product of a category over a ring are studied in [10, 11]. It is well known that there are strong connections between skew group algebras, Galois coverings and smash products of graded algebras [12]. Moreover, it is proved in [17] that a finitedimensional quiver algebra is Koszul if and only if its finite Galois covering algebra with Galois group G satisfying char $k \nmid|G|$ is Koszul. As an example, the Galois covering algebra Λ_{q} of quantum exterior algebra A_{q} with Galois group G satisfying char $k \nmid|G|$ is Koszul again. In this note we consider the case where G is the noncyclic Abelian group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. We first provide a minimal projective resolution of Λ_{q}. Applying this minimal projective resolution, we calculate the Hochschild (co)homology of Λ_{q}, and the cyclic homology of Λ_{q} can be calculated in the case where the underlying field is of characteristic zero. These examples will be helpful to understand deeply the Hochschild homology and cohomology behaviour of Galois covering algebras of Koszul algebras with finite Galois groups.

2. Minimal projective bimodule resolutions

Throughout this paper, we fix a base field k with char $k \neq 2$ and let $\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}$ be the residue group modulo 2 . We always suppose that

$$
A_{q}=k\langle x, y\rangle /\left(x^{2}, x y+q y x, y^{2}\right)
$$

is the quantum exterior algebra, with $q \in k \backslash\{0\}$, unless otherwise specified.
Let Q be the quiver given by four points $\overline{0}, \overline{1}, \overline{0}^{\prime}, \overline{1}^{\prime}$ and eight arrows $x_{\overline{0}}, y_{\overline{0}}, x_{\overline{1}}, y_{\overline{1}}$,
$x_{\overline{0}}^{\prime}, y_{\overline{0}}^{\prime}, x_{\overline{1}}^{\prime}, y_{\overline{1}}^{\prime}$ as follows:

We sometimes write arrows $x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}$ instead of $x_{i}, y_{\bar{i}}, x_{\bar{i}}^{\prime}, y_{\bar{i}}^{\prime}$ respectively, $i=0,1$, and assume that, for any nonnegative integers k, j, if $k \equiv j(\bmod 2)$, then $x_{j}=x_{k}$, $x_{j}^{\prime}=x_{k}^{\prime}, y_{j}=y_{k}$ and $y_{j}^{\prime}=y_{k}^{\prime}$. For an arrow $\rho \in Q$, we denote the length of ρ by $l(\rho)$, and let $o(\rho), t(\rho)$ be the origin and terminus of ρ respectively. Denote by I the ideal of the path algebra $k Q$ generated by

$$
R:=\left\{x_{i} x_{i}^{\prime}, y_{i} y_{i+1}, x_{i}^{\prime} x_{i}, y_{i}^{\prime} y_{i+1}^{\prime}, x_{i} y_{i}^{\prime}+q y_{i} x_{i+1}, x_{i}^{\prime} y_{i}+q y_{i}^{\prime} x_{i+1}^{\prime} \mid i=0,1\right\}
$$

For information on quivers we refer to [2]. Set $\Lambda_{q}=k Q / I$. Then Λ_{q} is just the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra over k, which is a Koszul algebra (see [17]). Denote by $e_{0}, e_{0}^{\prime}, e_{1}, e_{1}^{\prime}$ the primitive orthogonal idempotents corresponding to the points $\overline{0}, \overline{0}^{\prime}, \overline{1}, \overline{1}^{\prime}$ respectively. Then we can order the paths in Q in left length-lexicographic order by choosing

$$
e_{0} \prec e_{0}^{\prime} \prec e_{1} \prec e_{1}^{\prime} \prec x_{0} \prec x_{0}^{\prime} \prec x_{1} \prec x_{1}^{\prime} \prec y_{0} \prec y_{0}^{\prime} \prec y_{1} \prec y_{1}^{\prime},
$$

namely, $u_{1} \ldots u_{s} \prec v_{1} \ldots v_{t}$ with u_{i} and v_{i} being arrows if $s<t$, or $s=t$ but $u_{i}=v_{i}$ for $0 \leq i<r$ and $u_{r} \prec v_{r}$ for some $1 \leq r \leq s$. Thus, Λ_{q} has an ordered k-basis

$$
\mathcal{B}=\left\{e_{i}, e_{i}^{\prime}, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime}, y_{i} x_{i+1}, y_{i}^{\prime} x_{i+1}^{\prime} \mid i=0,1\right\}
$$

if we identify the elements of \mathcal{B} with their images in Λ_{q}. We always write a composition of paths from left to right.

Now we construct a minimal projective bimodule resolution $\left(P_{\bullet}, \delta_{\bullet}\right)$ of Λ_{q}. For each $n \geq 0$, we first construct certain elements

$$
\left\{f_{j}^{(n, i)}, f_{j}^{\left(n, i^{\prime}\right)} \mid 0 \leq j \leq n, i=0,1\right\} .
$$

Let

$$
\begin{aligned}
f_{0}^{(0, i)}=e_{i}, & f_{0}^{\left(0, i^{\prime}\right)}=e_{i}^{\prime}, \\
f_{0}^{(1, i)}=x_{i}, & f_{1}^{(1, i)}=y_{i}, \quad f_{0}^{\left(1, i^{\prime}\right)}=x_{i}^{\prime}, \quad f_{1}^{\left(1, i^{\prime}\right)}=y_{i}^{\prime}
\end{aligned}
$$

For any $\rho \in\left\{x_{0}, y_{0}, x_{1}, y_{1}\right\}$, we define

$$
\rho^{(l)}= \begin{cases}\rho^{\prime} & \text { if } l \text { is odd } \\ \rho & \text { if } l \text { is even. }\end{cases}
$$

Then we can define

$$
\left\{f_{j}^{(n, i)}, f_{j}^{\left(n, i^{\prime}\right)}\right\}_{j=0}^{n}, \quad i=0,1,
$$

for all $n \geq 2$ inductively by setting

$$
\begin{align*}
& f_{j}^{(n, i)}=q^{j} f_{j}^{(n-1, i)} x_{i+j}^{(n+j+1)}+f_{j-1}^{(n-1, i)} y_{i+j+1}^{(n+j)}, \\
& f_{j}^{\left(n, i^{\prime}\right)}=q^{j} f_{j}^{\left(n-1, i^{\prime}\right)} x_{i+j}^{(n+j)}+f_{j-1}^{\left(n-1, i^{\prime}\right)} y_{i+j+1}^{(n+j+1)}, \tag{2.1}
\end{align*}
$$

and

$$
f_{-1}^{(n, i)}=f_{-1}^{\left(n, i^{\prime}\right)}=f_{n+1}^{(n, i)}=f_{n+1}^{\left(n, i^{\prime}\right)}=0, \quad i=0,1
$$

Let

$$
\Gamma^{(n)}=\left\{f_{j}^{(n, i)}, f_{j}^{\left(n, i^{\prime}\right)} \mid 0 \leq j \leq n, i=0,1\right\}
$$

Clearly, $\left|\Gamma^{(n)}\right|=4(n+1)$.
Recall that a nonzero element

$$
x=\sum_{i=1}^{s} \alpha_{i} p_{i} \in k Q
$$

is said to be uniform if there exist vertices u and v in Q_{0} such that $o\left(p_{i}\right)=u$ and $t\left(p_{i}\right)=v$ for all $p_{i}, i=1,2, \ldots, s$. Note that $f_{j}^{(n, i)}$ and $f_{j}^{\left(n, i^{\prime}\right)}$ are linear combinations of some paths in $k Q$ for all $0 \leq j \leq n$, which are uniform. Thus for any $f \in \Gamma^{(n)}$, we usually denote by $o(f)$ and $t(f)$ the common origins and termini of all the paths occurring in f. Set

$$
\Gamma_{i j}^{(n)}=\left\{f \in \Gamma^{(n)} \mid o(f)=i \text { and } t(f)=j\right\}, \quad i, j=0,1,0^{\prime}, 1^{\prime} .
$$

Let $\otimes:=\otimes_{k}$. Let

$$
P_{n}:=\coprod_{f \in \Gamma^{(n)}} \Lambda_{q} o(f) \otimes t(f) \Lambda_{q} \quad(\forall n \geq 0) .
$$

Note that

$$
\begin{align*}
f_{j}^{(n, i)} & =x_{i} f_{j}^{\left(n-1, i^{\prime}\right)}+q^{n-j} y_{i} f_{j-1}^{(n-1, i+1)} \\
f_{j}^{\left(n, i^{\prime}\right)} & =x_{i}^{\prime} f_{j}^{(n-1, i)}+q^{n-j} y_{i}^{\prime} f_{j-1}^{\left(n-1,(i+1)^{\prime}\right)} \tag{2.2}
\end{align*}
$$

So we can define $\delta_{n}: P_{n} \rightarrow P_{n-1}$ by setting

$$
\begin{aligned}
\delta_{n}\left(o\left(f_{j}^{(n, i)}\right) \otimes t\left(f_{j}^{(n, i)}\right)\right)= & x_{i} \otimes t\left(f_{j}^{\left(n-1, i^{\prime}\right)}\right)+(-1)^{n} q^{j} o\left(f_{j}^{(n-1, i)}\right) \otimes x_{i+j}^{(n+j+1)} \\
& +q^{n-j} y_{i} \otimes t\left(f_{j-1}^{(n-1, i+1)}\right) \\
& +(-1)^{n} o\left(f_{j-1}^{(n-1, i)}\right) \otimes y_{i+j+1}^{(n+j)}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{n}\left(o\left(f_{j}^{\left(n, i^{\prime}\right)}\right) \otimes t\left(f_{j}^{\left(n, i^{\prime}\right)}\right)\right)= & x_{i}^{\prime} \otimes t\left(f_{j}^{(n-1, i)}\right)+(-1)^{n} q^{j} o\left(f_{j}^{\left(n-1, i^{\prime}\right)}\right) \otimes x_{i+j}^{(n+j)} \\
& +q^{n-j} y_{i}^{\prime} \otimes t\left(f_{j-1}^{\left(n-1,(i+1)^{\prime}\right)}\right) \\
& +(-1)^{n} o\left(f_{j-1}^{\left(n-1, i^{\prime}\right)}\right) \otimes y_{i+j+1}^{(n+j+1)}
\end{aligned}
$$

THEOREM 2.1. The complex ($P_{\bullet}, \delta_{\bullet}$)

$$
\cdots \rightarrow P_{n+1} \xrightarrow{\delta_{n+1}} P_{n} \xrightarrow{\delta_{n}} \cdots \xrightarrow{\delta_{3}} P_{2} \xrightarrow{\delta_{2}} P_{1} \xrightarrow{\delta_{1}} P_{0} \longrightarrow 0
$$

is a minimal projective bimodule resolution of the covering algebra $\Lambda_{q}=k Q / I$.
Proof. We consider the minimal projective bimodule resolution of Λ_{q} constructed in [6, Section 9]. Let $X=\left\{x_{0}, y_{0}, x_{1}, y_{1}, x_{0}^{\prime}, y_{0}^{\prime}, x_{1}^{\prime}, y_{1}^{\prime}\right\}$. Since Λ_{q} is a Koszul algebra (see [17]), we only need to prove that $\Gamma^{(n)}$ is a k-basis of the k-vector space

$$
K_{n}:=\bigcap_{p+q=n-2} X^{p} R X^{q}
$$

Note that $X K_{n-1} \cap K_{n-1} X \subset K_{n}$. By Formulae (2.1) and (2.2),

$$
f_{j}^{(n, 0)}, f_{j}^{\left(n, 0^{\prime}\right)}, f_{j}^{(n, 1)}, f_{j}^{\left(n, 1^{\prime}\right)} \in K_{n}
$$

by induction on n. Clearly, $\Gamma^{(n)}$ is k-linearly independent.
Denote by $\left(R^{\perp}\right)$ the ideal of $k Q$ generated by

$$
R^{\perp}:=\left\{y_{i} x_{i+1}-q x_{i} y_{i}^{\prime}, y_{i}^{\prime} x_{i+1}-q x_{i}^{\prime} y_{i}^{\prime} \mid i=0,1\right\}
$$

Then the quadratic dual of the Koszul algebra Λ_{q} is just the algebra $\Lambda_{q}^{!}$ $=k Q /\left(R^{\perp}\right)$, which is isomorphic to the Yoneda algebra $E\left(\Lambda_{q}\right)$ of Λ_{q} (see [4, Theorem 2.10.1]). Thus the Betti numbers of a minimal projective resolution of Λ_{q} over Λ_{q}^{e} are $\operatorname{dim}_{k} K_{n}=4(n+1)$. Hence $\Gamma^{(n)}$ is a k-basis of K_{n}.

Finally, the maps δ_{\bullet} are determined by [6, p. 354]; see also [15].

3. Hochschild homology and cyclic homology

In this section we calculate the k-dimensions of Hochschild homology groups and cyclic homology groups (in the case char $k=0$) of the covering algebra Λ_{q}. Let X and Y be the sets of uniform elements in $k Q$; then one defines

$$
X \odot Y=\{(p, q) \in X \times Y \mid t(p)=o(q) \text { and } t(q)=o(p)\}
$$

We denote by $k(X \odot Y)$ the vector space that has as basis the set $X \odot Y$.
Applying the functor $\Lambda_{q} \otimes_{\Lambda_{q}^{\mathrm{e}}}(\cdot)$ to the minimal projective bimodule resolution $\left(P_{\bullet}, \delta_{\bullet}\right)$, we have the following result.
Lemma 3.1. We have $\Lambda_{q} \otimes_{\Lambda_{q}^{e}}\left(P_{\bullet}, \delta_{\bullet}\right)=\left(N_{\bullet}, \tau_{\bullet}\right)$, where $N_{n} \cong k\left(\mathcal{B} \odot \Gamma^{(n)}\right)$ and τ_{n} : $N_{n} \rightarrow N_{n-1}$ is given by

$$
\begin{aligned}
\tau_{n}\left(b, f_{j}^{(n, i)}\right)= & \left(b x_{i}, f_{j}^{\left(n-1, i^{\prime}\right)}\right)+(-1)^{n} q^{j}\left(x_{i+j}^{(n+j+1)} b, f_{j}^{(n-1, i)}\right) \\
& +q^{n-j}\left(b y_{i}, f_{j-1}^{(n-1, i+1)}\right)+(-1)^{n}\left(y_{i+j+1}^{(n+j)} b, f_{j-1}^{(n-1, i)}\right) \\
\tau_{n}\left(b, f_{j}^{\left(n, i^{\prime}\right)}\right)= & \left(b x_{i}^{\prime}, f_{j}^{(n-1, i)}\right)+(-1)^{n} q^{j}\left(x_{i+j}^{(n+j)} b, f_{j}^{\left(n-1, i^{\prime}\right)}\right) \\
& +q^{n-j}\left(b y_{i}^{\prime}, f_{j-1}^{\left(n-1,(i+1)^{\prime}\right)}\right)+(-1)^{n}\left(y_{i+j+1}^{(n+j+1)} b, f_{j-1}^{\left(n-1, i^{\prime}\right)}\right)
\end{aligned}
$$

Proof. Clearly,

$$
\begin{aligned}
N_{n}=\Lambda_{q} \otimes_{\Lambda_{q}^{\mathrm{e}}} P_{n} & =\Lambda_{q} \otimes_{E^{\mathrm{e}}} \coprod_{f \in \Gamma^{(n)}}\left(o(f) \otimes_{k} t(f)\right) \\
& \cong \coprod_{\alpha, \beta \in\left\{e_{0}, e_{0}^{\prime}, e_{1}, e_{1}^{\prime}\right\}} \alpha \Lambda_{q} \beta \otimes_{k} \beta \Gamma_{j i}^{(n)} \alpha,
\end{aligned}
$$

where E is the maximal semisimple subalgebra of Λ_{q}. Thus $\mathcal{B} \odot \Gamma^{(n)}$ forms a k-basis of N_{n} by definition.

From the isomorphism above, we have the commutative diagram

$$
\begin{aligned}
& \cdots \longrightarrow \Lambda_{q} \otimes_{\Lambda_{q}^{\mathrm{e}}} P_{n} \xrightarrow{1 \otimes \delta_{n}} \Lambda_{q} \otimes_{\Lambda_{q}^{\mathrm{e}}} P_{n-1} \longrightarrow \cdots \\
& \imath \downarrow \quad \imath^{\downarrow} \downarrow \\
& \cdots \longrightarrow k\left(\mathcal{B} \odot \Gamma^{(n)}\right) \xrightarrow{\tau_{n}} k\left(\mathcal{B} \odot \Gamma^{(n-1)}\right) \longrightarrow \cdots
\end{aligned}
$$

So the differentials τ_{n} can be induced by δ_{n} in the minimal projective resolution $\left(P_{\bullet}, \delta_{\bullet}\right)$.

Note that $H H_{n}\left(\Lambda_{q}\right)=\operatorname{Ker} \tau_{n} / \operatorname{Im} \tau_{n+1}$ by definition:

$$
\begin{align*}
\operatorname{dim}_{k} H H_{n}\left(\Lambda_{q}\right) & =\operatorname{dim}_{k} \operatorname{Ker} \tau_{n}-\operatorname{dim}_{k} \operatorname{Im} \tau_{n+1} \\
& =\operatorname{dim}_{k} N_{n}-\operatorname{dim}_{k} \operatorname{Im} \tau_{n}-\operatorname{dim}_{k} \operatorname{Im} \tau_{n+1} \tag{3.1}
\end{align*}
$$

Consequently, to calculate the dimensions of Hochschild homology groups of Λ_{q}, we only need to determine the $\operatorname{dim}_{k} N_{n}$ and $\operatorname{dim}_{k} \operatorname{Im} \tau_{n}$.

For any $(b, f) \in \mathcal{B} \odot \Gamma^{(n)}, l(b)$ and n must have the same parity. If n is odd, then

$$
\begin{aligned}
\mathcal{B} \odot \Gamma^{(n)}= & \left(\left\{x_{0}\right\} \odot \Gamma_{0^{\prime} 0}^{(n)}\right) \cup\left(\left\{x_{0}^{\prime}\right\} \odot \Gamma_{00^{\prime}}^{(n)}\right) \cup\left(\left\{x_{1}\right\} \odot \Gamma_{1^{\prime} 1}^{(n)}\right) \cup\left(\left\{x_{1}^{\prime}\right\} \odot \Gamma_{11^{\prime}}^{(n)}\right) \\
& \cup\left(\left\{y_{0}\right\} \odot \Gamma_{10}^{(n)}\right) \cup\left(\left\{y_{0}^{\prime}\right\} \odot \Gamma_{1^{\prime} 0^{\prime}}^{(n)}\right) \cup\left(\left\{y_{1}\right\} \odot \Gamma_{01}^{(n)}\right) \cup\left(\left\{y_{1}^{\prime}\right\} \odot \Gamma_{0^{\prime} 1^{\prime}}^{(n)}\right)
\end{aligned}
$$

if n is even, then

$$
\begin{aligned}
\mathcal{B} \odot \Gamma^{(n)}= & \left(\left\{e_{0}\right\} \odot \Gamma_{00}^{(n)}\right) \cup\left(\left\{e_{0}^{\prime}\right\} \odot \Gamma_{0^{\prime} 0^{\prime}}^{(n)}\right) \cup\left(\left\{e_{1}\right\} \odot \Gamma_{11}^{(n)}\right) \cup\left(\left\{e_{1}^{\prime}\right\} \odot \Gamma_{1^{\prime} 1^{\prime}}^{(n)}\right) \\
& \cup\left(\left\{y_{0} x_{1}\right\} \odot \Gamma_{1^{\prime} 0}^{(n)}\right) \cup\left(\left\{y_{0}^{\prime} x_{1}^{\prime}\right\} \odot \Gamma_{10^{\prime}}^{(n)}\right) \\
& \cup\left(\left\{y_{1} x_{0}\right\} \odot \Gamma_{0^{\prime} 1}^{(n)}\right) \cup\left(\left\{y_{1}^{\prime} x_{0}^{\prime}\right\} \odot \Gamma_{01^{\prime}}^{(n)}\right) .
\end{aligned}
$$

Hence $\operatorname{dim}_{k} N_{n}=4(n+1)$.

We now define an order on $\mathcal{B} \odot \Gamma^{(n)}$ as follows:

$$
\left(b_{1}, f_{j_{1}}^{\left(n, i_{1}\right)}\right) \prec\left(b_{2}, f_{j_{2}}^{\left(n, i_{2}\right)}\right) \quad \text { if } j_{1}<j_{2} \text {, or } j_{1}=j_{2} \text { but } b_{1} \prec b_{2},
$$

for any $\left(b_{1}, f_{j_{1}}^{\left(n, i_{1}\right)}\right),\left(b_{2}, f_{j_{2}}^{\left(n, i_{2}\right)}\right) \in \mathcal{B} \odot \Gamma^{(n)}$ and $i_{1}, i_{2} \in\left\{0,0^{\prime}, 1,1^{\prime}\right\}$.
We still denote by τ_{n} the matrix of the differentials τ_{n} under the ordered bases above, and write

$$
A_{i}=\left(\begin{array}{cccc}
1 & q^{i} & 0 & 0 \\
q^{i} & 1 & 0 & 0 \\
0 & 0 & 1 & q^{i} \\
0 & 0 & q^{i} & 1
\end{array}\right)_{4 \times 4} \quad, \quad B_{i}=\left(\begin{array}{cccc}
q^{n-i} & 0 & 1 & 0 \\
0 & q^{n-i} & 0 & 1 \\
1 & 0 & q^{n-i} & 0 \\
0 & 1 & 0 & q^{n-i}
\end{array}\right)_{4 \times 4} .
$$

It follows from the descriptions of the differentials τ_{n} in Lemma 3.1 that if n is odd, then

$$
\tau_{n}=\left(\begin{array}{cccccccc}
0 & & & & & & & \\
0 & A_{2} & & & & & & \\
& -B_{1} & 0 & & & & & \\
& & 0 & A_{4} & & & & \\
& & & -B_{3} & \ddots & & & \\
& & & & \ddots & 0 & & \\
& & & & & 0 & A_{n-1} & \\
& & & & & & -B_{n-2} & 0 \\
& & & & & & & 0
\end{array}\right)_{4(n+1) \times 4 n} ;
$$

and if n is even, then

$$
\tau_{n}=\left(\begin{array}{ccccccc}
A_{0} & & & & & & \\
0 & 0 & & & & & \\
& B_{2} & A_{2} & & & & \\
& & 0 & \ddots & & & \\
& & & \ddots & 0 & & \\
& & & & B_{n-2} & A_{n-2} & \\
& & & & & 0 & 0 \\
& & & & & & B_{n}
\end{array}\right)_{4(n+1) \times 4 n}
$$

Clearly,

$$
\operatorname{rank}\left(\tau_{n}\right)=\sum_{i \in\{1,3,5, \ldots, n-2\}} \operatorname{rank}\binom{A_{i+1}}{-B_{i}},
$$

if n is odd; and

$$
\begin{aligned}
\operatorname{rank}\left(\tau_{n}\right) & =\operatorname{rank}\left(A_{0}\right)+\operatorname{rank}\left(B_{n}\right)+\sum_{i \in\{2,4,6, \ldots, n-2\}} \operatorname{rank}\left(\begin{array}{ll}
B_{i} & A_{i}
\end{array}\right) \\
& =4+\sum_{i \in\{2,4,6, \ldots, n-2\}} \operatorname{rank}\left(B_{i} A_{i}\right),
\end{aligned}
$$

if n is even.
Lemma 3.2. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{q}, with q an r th $(r>2)$ primitive root of unity. If $n(>2)$ is odd,

$$
\operatorname{rank}\left(\tau_{n}\right)= \begin{cases}2 n-k-1 & \text { if } r \text { is odd and } n=2 k r-1, \text { for some } k \geq 1 \\ 2 n-2 & \text { or } r \text { is even and } n=k r-1, \text { for some } k \geq 1 \\ \text { otherwise } .\end{cases}
$$

and if $n(>2)$ is even, then

$$
\operatorname{rank}\left(\tau_{n}\right)= \begin{cases}2 n-k+1 & \text { if } r \text { is odd and } n=2 k r, \text { for some } k \geq 1 \\ 2 n & \text { or } r \text { is even and } n=k r, \text { for some } k \geq 1 \\ \text { otherwise } .\end{cases}
$$

Proof.

CASE I. Suppose n is odd.
For $i=1,3,5, \ldots, n-2$, by elementary operations, each

$$
\binom{A_{i+1}}{-B_{i}}
$$

can be changed into

$$
\left(\begin{array}{cccc}
0 & 0 & -q^{n-i} & -q^{n+1} \\
0 & 0 & -q^{n+1} & -q^{n-i} \\
0 & 0 & 1 & q^{i+1} \\
0 & 0 & q^{i+1} & 1 \\
0 & 0 & q^{2(n-i)}-1 & 0 \\
0 & 0 & 0 & q^{2(n-i)}-1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)_{8 \times 4}
$$

Note that rank $\binom{A_{i+1}}{-B_{i}}=3$ or 4 , and rank $\binom{A_{i+1}}{-B_{i}}=3$ if and only if

$$
\left\{\begin{array} { l }
{ q ^ { 2 (n - i) } = 1 ; } \\
{ q ^ { 2 (i + 1) } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
q^{2(n+1)}=1 \\
q^{2(i+1)}=1
\end{array}\right.\right.
$$

Moreover, $q^{2(n+1)}=1$ if and only if either of the following ((1) or (2)) is satisfied:
(1) r is odd and $2(n+1)=4 k r$, for some $k \geq 1$;
(2) $\quad r$ is even and $2(n+1)=2 k r$, for some $k \geq 1$.

Since i is odd, we have $q^{2(i+1)}=1$ if and only if either of the following ((3) or (4)) is satisfied:
(3) r is odd and $2(i+1)=4 k_{1} r$, for some $k_{1} \geq 1$;
(4) r is even and $2(i+1)=2 k_{1} r$, for some $k_{1} \geq 1$.

If (1) and (3) are satisfied, then r is odd, $n=2 k r-1$ and $k_{1}=1,2, \ldots, k-1$. So the number of i satisfying

$$
\operatorname{rank}\binom{A_{i+1}}{-B_{i}}=3
$$

is $k-1$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n-k-1$.
If (2) and (4) are satisfied, then r is even, $n=k r-1$ and $k_{1}=1,2, \ldots, k-1$. So the number of i satisfying

$$
\operatorname{rank}\binom{A_{i+1}}{-B_{i}}=3
$$

is $k-1$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n-k-1$.
Otherwise, for each i,

$$
\operatorname{rank}\binom{A_{i+1}}{-B_{i}}=4
$$

So $\operatorname{rank}\left(\tau_{n}\right)=4 \times((n-1) / 2)=2 n-2$.
Case II. Suppose n is even.
For $i=2,4,6, \ldots, n-2$, by elementary operations, each $\left(B_{i} A_{i}\right)$ can be changed into

$$
\left(\begin{array}{cccccccc}
0 & 0 & 1-q^{2(n-i)} & 0 & 1 & q^{i} & -q^{n-i} & -q^{n} \\
0 & 0 & 0 & 1-q^{2(n-i)} & q^{i} & 1 & -q^{n} & -q^{n-i} \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)_{4 \times 8} .
$$

Note that $\operatorname{rank}\left(\begin{array}{ll}B_{i} & A_{i}\end{array}\right)=3$ or 4 , and $\operatorname{rank}\left(\begin{array}{ll}B_{i} & A_{i}\end{array}\right)=3$ if and only if

$$
\left\{\begin{array} { l }
{ q ^ { 2 (n - i) } = 1 ; } \\
{ q ^ { 2 i } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
q^{2 n}=1 \\
q^{2 i}=1
\end{array}\right.\right.
$$

Moreover, we have $q^{2 n}=1$ if and only if either of the following ((5) or (6)) is satisfied:
(5) r is odd and $2 n=4 k r$, for some $k \geq 1$;
(6) r is even and $2 n=2 k r$, for some $k \geq 1$.

Since i is even, we have $q^{2 i}=1$ if and only if either of the following ((7) or (8)) is satisfied:
(7) r is odd and $2 i=4 k_{1} r$, for some $k_{1} \geq 1$;
(8) r is even and $2 i=2 k_{1} r$, for some $k_{1} \geq 1$.

If (5) and (7) are satisfied, then r is odd, $n=2 k r$ and $k_{1}=1,2, \ldots, k-1$. So the number of i satisfying $\operatorname{rank}\left(B_{i} \quad A_{i}\right)=3$ is $k-1$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n-k+1$.

If (6) and (8) are satisfied, then r is even, $n=k r$ and $k_{1}=1,2, \ldots, k-1$. So the number of i satisfying $\operatorname{rank}\left(\begin{array}{ll}B_{i} & A_{i}\end{array}\right)=3$ is $k-1$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n-k+1$.

Otherwise, for each $i, \operatorname{rank}\left(B_{i} \quad A_{i}\right)=4$. So

$$
\operatorname{rank}\left(\tau_{n}\right)=4+4 \times \frac{n-2}{2}=2 n
$$

The proof is complete.

Lemma 3.3. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{q}. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity, then for $n>2$

$$
\operatorname{rank}\left(\tau_{n}\right)= \begin{cases}2 n-2 & \text { if } n \text { is odd and } q(\neq 0) \text { is not a root of unity } \\ 2 n & \text { if } n \text { is } \text { even and } q(\neq 0) \text { is not a root of unity; } \\ \frac{3}{2}(n-1) & \text { if } n \text { is odd and } q= \pm 1 \\ \frac{3}{2} n+1 & \text { if } n \text { is even and } q= \pm 1\end{cases}
$$

Proof.

CASE I. Suppose n is odd. If $q(\neq 0)$ is not a root of unity, then $q^{2(n+1)} \neq 1$ for $n>2$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n-2$; if $q= \pm 1$, then $q^{2(n+1)}=q^{2(i+1)}=1$, and $\operatorname{rank}\left(\tau_{n}\right)$ $=(3 / 2)(n-1)$.

CASE II. Suppose n is even. If $q(\neq 0)$ is not a root of unity, then $q^{2 n} \neq 1$ for $n>2$, and $\operatorname{rank}\left(\tau_{n}\right)=2 n$; if $q= \pm 1$, then $q^{2 n}=q^{2 i}=1$, and $\operatorname{rank}\left(\tau_{n}\right)=(3 / 2) n+1$. This completes the proof.

For $n=0,1,2$, direct computations show that

$$
\begin{gathered}
\operatorname{dim}_{k} H H_{0}\left(\Lambda_{q}\right)=4 ; \\
\operatorname{dim}_{k} H H_{1}\left(\Lambda_{q}\right)=4 ; \\
\operatorname{dim}_{k} H H_{2}\left(\Lambda_{q}\right)= \begin{cases}4 & \text { if } q \neq \pm 1, \pm \sqrt{-1} ; \\
5 & \text { if } q= \pm 1, \pm \sqrt{-1}\end{cases}
\end{gathered}
$$

THEOREM 3.4. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If q is an r th $(r>2)$ primitive root of unity, then for $n>2$
$\operatorname{dim}_{k} H H_{n}\left(\Lambda_{q}\right)=\left\{\begin{array}{ll}k+3 & \begin{array}{ll}\text { if } r \text { is odd and } n=2 k r-2 \text { or } n=2 k r, \text { for some } k \geq 1, \\ 2 k+2 & \text { or } r \text { is even and } n=k r-2 \text { or } n=k r, \text { for some } k \geq 1 ;\end{array} \\ \text { if } r \text { is odd and } n=2 k r-1, \text { for some } k \geq 1, \\ \text { or } r \text { is even and } n=k r-1, \text { for some } k \geq 1 ;\end{array}, \begin{array}{l}\text { otherwise. }\end{array}\right.$
Proof. By Lemma 3.2 and the formula

$$
\operatorname{dim}_{k} H H_{n}\left(\Lambda_{q}\right)=\operatorname{dim}_{k} N_{n}-\operatorname{dim}_{k} \operatorname{Im} \tau_{n}-\operatorname{dim}_{k} \operatorname{Im} \tau_{n+1}
$$

we can get the result directly.
THEOREM 3.5. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity, then for $n>2$,

$$
\operatorname{dim}_{k} H H_{n}\left(\Lambda_{q}\right)= \begin{cases}4 & \text { if } q(\neq 0) \text { is not a root of unity } \\ n+3 & \text { if } q= \pm 1\end{cases}
$$

Proof. By Lemma 3.3, we have $\operatorname{dim}_{k}\left(\tau_{n}\right)+\operatorname{dim}_{k}\left(\tau_{n+1}\right)=4 n$ if $q(\neq 0)$ is not a root of unity; and $\operatorname{dim}_{k}\left(\tau_{n}\right)+\operatorname{dim}_{k}\left(\tau_{n+1}\right)=3 n+1$ if $q= \pm 1$. The theorem follows from the formula (3.1) as desired.

Denote by $H C_{n}\left(\Lambda_{q}\right)$ the nth cyclic homology group of Λ_{q} (see [21]).
COROLLARY 3.6. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If q is an r th $(r>2)$ primitive root of unity and char $k=0$, then

$$
\begin{aligned}
& \operatorname{dim}_{k} H C_{n}\left(\Lambda_{q}\right) \\
& \quad= \begin{cases}k+3 & \text { ifr is odd and } n=2 k r-1 \text { or } n=2 k r-2, \text { for some } k \geq 1 \\
4 & \text { or } r \text { is even and } n=k r-1 \text { or } n=k r-2, \text { for some } k \geq 1\end{cases} \\
& \text { otherwise } .
\end{aligned}
$$

Proof. By [21, Theorem 4.1.13],

$$
\begin{aligned}
\operatorname{dim}_{k} H C_{n}\left(\Lambda_{q}\right)-\operatorname{dim}_{k} H C_{n}\left(k^{4}\right)= & -\left(\operatorname{dim}_{k} H C_{n-1}\left(\Lambda_{q}\right)-\operatorname{dim}_{k} H C_{n-1}\left(k^{4}\right)\right) \\
& +\left(\operatorname{dim}_{k} H H_{n}\left(\Lambda_{q}\right)-\operatorname{dim}_{k} H H_{n}\left(k^{4}\right)\right)
\end{aligned}
$$

Thus

$$
\operatorname{dim}_{k} H C_{n}\left(\Lambda_{q}\right)-\operatorname{dim}_{k} H C_{n}\left(k^{4}\right)=\sum_{i=0}^{n}(-1)^{n-i}\left(\operatorname{dim}_{k} H H_{i}\left(\Lambda_{q}\right)-\operatorname{dim}_{k} H H_{i}\left(k^{4}\right)\right)
$$

It is well known that

$$
\operatorname{dim}_{k} H H_{i}\left(k^{4}\right)=\left\{\begin{array}{ll}
4 & \text { if } i=0 ; \\
0 & \text { if } i \geq 1
\end{array} \quad \text { and } \quad \operatorname{dim}_{k} H C_{i}\left(k^{4}\right)= \begin{cases}4 & \text { if } i \text { is even } \\
0 & \text { if } i \text { is odd }\end{cases}\right.
$$

By Theorem 3.4, we can obtain the result.

COROLLARY 3.7. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity and $\operatorname{char} k=0$, then

$$
\operatorname{dim}_{k} H C_{n}\left(\Lambda_{q}\right)= \begin{cases}\frac{n-1}{2}+4 & \text { if } q= \pm 1 \text { and } n \text { is odd } \\ \frac{n}{2}+4 & \text { if } q= \pm 1 \text { and } n \text { is even } \\ 4 & \text { if } q(\neq 0) \text { is not a root of unity. }\end{cases}
$$

Proof. Similarly to the proof of Corollary 3.6, we can get this corollary by Theorem 3.5.

For completeness, we also consider the degenerate case when $q=0$. Then

$$
A_{0}=k\langle x, y\rangle /\left(x^{2}, x y, y^{2}\right),
$$

and its $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering algebra $\Lambda_{0}=k Q /\left(R_{0}\right)$, where the quiver Q is as in Section 2 and

$$
R_{0}:=\left\{x_{i} x_{i}^{\prime}, y_{i} y_{i+1}, x_{i}^{\prime} x_{i}, y_{i}^{\prime} y_{i+1}^{\prime}, x_{i} y_{i}^{\prime}, x_{i}^{\prime} y_{i} \mid i=0,1\right\}
$$

THEOREM 3.8. Let Λ_{0} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{0} as the above; then

$$
\operatorname{dim}_{k} H H_{n}\left(\Lambda_{0}\right)=4
$$

Proof. Clearly, Λ_{0} is a quadratic monomial algebra. Denote by $\Lambda_{0}^{!}$the quadratic dual of Λ_{0}; then

$$
\Lambda_{0}^{!}=k Q /\left(y_{0} x_{0}^{\prime}, y_{1} x_{1}^{\prime}, y_{0}^{\prime} x_{0}, y_{1}^{\prime} x_{1}\right)
$$

and

$$
\begin{aligned}
\Gamma^{n}= & \left\{f_{j}^{(n, i)}=x_{i} x_{i}^{\prime} x_{i} \ldots x_{i}^{(n-j+1)} y_{i}^{(n-j)} y_{i+1}^{(n-j)} \ldots y_{i+j-1}^{(n-j)}, f_{j}^{\left(n, i^{\prime}\right)}\right. \\
& \left.=x_{i}^{\prime} x_{i} x_{i}^{\prime} \ldots x_{i}^{(n-j)} y_{i}^{(n-j+1)} y_{i+1}^{(n-j+1)} \ldots y_{i+j-1}^{(n-j+1)} \mid 0 \leq j \leq n, i=0,1\right\}
\end{aligned}
$$

is a k-basis of $\Lambda_{0}^{!}$. Thus, by [24], we can get a minimal projection resolution of Λ_{0},

$$
\left(P_{\bullet}^{0}, \delta_{\bullet}^{0}\right): \cdots \rightarrow P_{n}^{0} \xrightarrow{\delta_{n}^{0}} P_{n-1}^{0} \longrightarrow \cdots \longrightarrow P_{2}^{0} \xrightarrow{\delta_{2}^{0}} P_{1}^{0} \xrightarrow{\delta_{1}^{0}} P_{0}^{0} \longrightarrow 0
$$

where

$$
P_{n}^{0}=\coprod_{f \in \Gamma^{(n)}} \Lambda_{0} o(f) \otimes t(f) \Lambda_{0}
$$

and the differentials are given by

$$
\delta_{n}^{0}(o(f) \otimes t(f))=L^{n-1} \otimes t(f)+(-1)^{n} o(f) \otimes R^{n-1}
$$

where L^{n-1} and R^{n-1} are the subpaths of f satisfying $f=L^{n-1} g=h R^{n-1}$ for some $g, h \in \Gamma^{(n-1)}$.

Applying the functor $\Lambda_{0} \otimes_{\Lambda_{0}^{\mathrm{e}}}(\cdot)$ to $\left(P_{\bullet}^{0}, \delta_{\bullet}^{0}\right)$, we get the homology complex $\left(N_{\bullet}^{0}, \tau_{\bullet}^{0}\right)$ of Λ_{0}, and $\operatorname{dim}_{k} N_{n}^{0}=4(n+1)$,

$$
\operatorname{dim}_{k} \operatorname{Im} \tau_{n}^{0}= \begin{cases}2 n-2 & \text { if } n \text { is odd } \\ 2 n & \text { if } n \text { is even }\end{cases}
$$

So $\operatorname{dim}_{k} H H_{n}\left(\Lambda_{0}\right)=4$.
Similar to Corollary 3.6, we have the following result.
Corollary 3.9. Let Λ_{0} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{0} and char $k=0$; then

$$
\operatorname{dim}_{k} H C_{n}\left(\Lambda_{0}\right)=4
$$

4. Hochschild cohomology

In this section we calculate the k-dimensions of Hochschild cohomology groups of the covering algebra Λ_{q}. Let X and Y be the sets of uniform elements in $k Q$; then one defines

$$
X / / Y=\{(p, q) \in X \times Y \mid o(p)=o(q) \text { and } t(p)=t(q)\}
$$

We denote by $k(X / / Y)$ the vector space that has as basis the set $X / / Y$.
Applying the functor $\operatorname{Hom}_{\Lambda_{q}^{\mathrm{e}}}\left(\cdot, \Lambda_{q}\right)$ to the minimal projective bimodule resolution $\left(P_{\bullet}, \delta_{\bullet}\right)$, we have the following result.
Lemma 4.1. We have $\operatorname{Hom}_{\Lambda_{q}^{e}}\left(\left(P_{\bullet}, \delta_{\bullet}\right), \Lambda_{q}\right)=\left(M^{\bullet}, \varphi^{\bullet}\right)$, where $M^{n} \cong k\left(\mathcal{B} / / \Gamma^{(n)}\right)$ and $\varphi^{n+1}: M^{n} \rightarrow M^{n+1}$ is given by

$$
\begin{aligned}
\varphi^{n+1}\left(b, f_{j}^{(n, i)}\right)= & \left(x_{i}^{\prime} b, f_{j}^{\left(n+1, i^{\prime}\right)}\right)+(-1)^{n+1} q^{j}\left(b x_{i+j}^{(n+j)}, f_{j}^{(n+1, i)}\right) \\
& +q^{n-j}\left(y_{i+1} b, f_{j+1}^{(n+1, i+1)}\right)+(-1)^{n+1}\left(b y_{i+j}^{(n+j)}, f_{j+1}^{(n+1, i)}\right) \\
\varphi^{n+1}\left(b, f_{j}^{\left(n, i^{\prime}\right)}\right)= & \left(x_{i} b, f_{j}^{(n+1, i)}\right)+(-1)^{n+1} q^{j}\left(b x_{i+j}^{(n+j+1)}, f_{j}^{\left(n+1, i^{\prime}\right)}\right) \\
& +q^{n-j}\left(y_{i+1}^{\prime} b, f_{j+1}^{\left(n+1,(i+1)^{\prime}\right)}\right)+(-1)^{n+1}\left(b y_{i+j}^{(n+j+1)}, f_{j+1}^{\left(n+1, i^{\prime}\right)}\right)
\end{aligned}
$$

Proof. Clearly,

$$
\begin{aligned}
M^{n} & =\operatorname{Hom}_{\Lambda_{q}^{\mathrm{e}}}\left(P_{n}, \Lambda_{q}\right)=\operatorname{Hom}_{\Lambda_{q}^{\mathrm{e}}}\left(\coprod_{f \in \Gamma^{(n)}} \Lambda_{q} o(f) \otimes t(f) \Lambda_{q}, \Lambda_{q}\right) \\
& \cong \coprod_{f \in \Gamma^{(n)}}\left(o(f) \otimes t(f) \Lambda_{q}\right) \cong \coprod_{f \in \Gamma^{(n)}}\left(o(f) \Lambda_{q} t(f)\right) .
\end{aligned}
$$

Thus $\mathcal{B} / / \Gamma^{(n)}$ forms a k-basis of M^{n} by definition.

Applying the commutative diagram

$$
\begin{aligned}
& \cdots \longrightarrow \operatorname{Hom}_{\Lambda_{q}^{\mathrm{e}}}\left(P_{n}, \Lambda_{q}\right) \xrightarrow{\delta_{n+1}^{*}} \operatorname{Hom}_{\Lambda_{q}^{\mathrm{e}}}\left(P_{n+1}, \Lambda_{q}\right) \longrightarrow \cdots
\end{aligned}
$$

we can induce the differentials φ^{n} by δ_{n} in the minimal projective resolution $\left(P_{\bullet}, \delta_{\bullet}\right)$.

Clearly, for any $(b, f) \in \mathcal{B} / / \Gamma^{(n)}, l(b)$ and n must have the same parity. Thus $\operatorname{dim}_{k} M^{n}=4(n+1)$.

Now, we can define an order on $\mathcal{B} / / \Gamma^{(n)}$ as follows:

$$
\left(b_{1}, f_{j_{1}}^{\left(n, i_{1}\right)}\right) \prec\left(b_{2}, f_{j_{2}}^{\left(n, i_{2}\right)}\right) \quad \text { if } j_{1}<j_{2} \text { or } j_{1}=j_{2} \text { but } b_{1} \prec b_{2}
$$

for any

$$
\left(b_{1}, f_{j_{1}}^{\left(n, i_{1}\right)}\right),\left(b_{2}, f_{j_{2}}^{\left(n, i_{2}\right)}\right) \in \mathcal{B} / / \Gamma^{(n)} \quad \text { and } \quad i_{1}, i_{2} \in\left\{0,0^{\prime}, 1,1^{\prime}\right\}
$$

We still denote by φ^{n} the matrix of the differentials φ^{n} under the ordered bases above, and write

$$
C_{i}=\left(\begin{array}{cccc}
-q^{i} & 1 & 0 & 0 \\
1 & -q^{i} & 0 & 0 \\
0 & 0 & -q^{i} & 1 \\
0 & 0 & 1 & -q^{i}
\end{array}\right)_{4 \times 4} \quad, \quad D_{i}=\left(\begin{array}{cccc}
-1 & 0 & q^{n-i} & 0 \\
0 & -1 & 0 & q^{n-i} \\
q^{n-i} & 0 & -1 & 0 \\
0 & q^{n-i} & 0 & -1
\end{array}\right)_{4 \times 4} .
$$

It follows from the description of the differentials φ^{n} in Lemma 4.1 that if n is odd, then

$$
\varphi^{n}=\left(\begin{array}{ccccccccc}
C_{0} & D_{1} & & & & & & & \\
& 0 & 0 & & & & & & \\
& & C_{2} & D_{3} & & & & & \\
& & & 0 & 0 & & & & \\
& & & & \ddots & \ddots & & & \\
& & & & & C_{n-3} & D_{n-2} & & \\
& & & & & & 0 & 0 & \\
& & & & & & & C_{n-1} & D_{n}
\end{array}\right)_{4 n \times 4(n+1)} ;
$$

and if n is even, then

$$
\left.\varphi^{n}=\left(\begin{array}{ccccccc}
0 & q D_{2} & & & & & \\
0 & -q C_{0} & 0 & & & & \\
& & 0 & q D_{4} & & & \\
& & & -q C_{2} & \ddots & & \\
& & & & \ddots & 0 & \\
\\
& & & & & 0 & q D_{n}
\end{array}\right)^{0}\right)_{4 n \times 4(n+1)}
$$

Clearly,

$$
\operatorname{rank}\left(\varphi^{n}\right)=\left\{\begin{array}{cl}
\sum_{i \in\{0,2,4, \ldots, n-1\}} \operatorname{rank}\left(C_{i} \quad D_{i+1}\right) & \text { if } n \text { is odd } \\
\sum_{i \in\{0,2,4, \ldots, n-2\}} \operatorname{rank}\binom{D_{i+2}}{-C_{i}} & \text { if } n \text { is even. }
\end{array}\right.
$$

Lemma 4.2. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{q}, with q an r th $(r>2)$ primitive root of unity. If $n(>2)$ is odd, then

$$
\operatorname{rank}\left(\varphi^{n}\right)= \begin{cases}2 n-k+1 & \text { if } r \text { is odd and } n=2 k r+1, \text { for some } k \geq 1 \\ & \text { or } r \text { is even and } n=k r+1, \text { for some } k \geq 1 \\ 2 n+2 & \text { otherwise }\end{cases}
$$

and if $n(>2)$ is even, then

$$
\operatorname{rank}\left(\varphi^{n}\right)= \begin{cases}2 n-k-1 & \text { if } r \text { is odd and } n=2 k r+2, \text { for some } k \geq 1 \\ 2 n & \text { or } r \text { is even and } n=k r+2, \text { for some } k \geq 1 \\ \text { otherwise } .\end{cases}
$$

Proof.

CASE I. Suppose n is odd.
For $i=0,2,4, \ldots, n-1$, by elementary operations, each ($C_{i} D_{i+1}$) can be changed into

$$
\left(\begin{array}{cccccccc}
-q^{i} & 1 & -q^{n-1} & q^{n-i-1} & q^{2(n-i-1)}-1 & 0 & 0 & 0 \\
1 & -q^{i} & q^{n-i-1} & -q^{n-1} & 0 & q^{2(n-i-1)}-1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right)_{4 \times 8} .
$$

Note that $\operatorname{rank}\left(C_{i} \quad D_{i+1}\right)=3$ or 4 , and $\operatorname{rank}\left(C_{i} \quad D_{i+1}\right)=3$ if and only if

$$
\left\{\begin{array} { l }
{ q ^ { 2 (n - i - 1) } = 1 ; } \\
{ q ^ { 2 i } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
q^{2(n-1)}=1 \\
q^{2 i}=1
\end{array}\right.\right.
$$

Moreover, we have $q^{2(n-1)}=1$ if and only if either of the following $\left(\left(1^{\prime}\right)\right.$ or $\left.\left(2^{\prime}\right)\right)$ is satisfied:
(1') r is odd and $2(n-1)=4 k r$, for some $k \geq 1$;
(2') r is even and $2(n-1)=2 k r$, for some $k \geq 1$.
Since i is even, we have $q^{2 i}=1$ if and only if either of the following $\left(\left(3^{\prime}\right)\right.$ or $\left.\left(4^{\prime}\right)\right)$ is satisfied:
(3') r is odd and $2 i=4 k_{1} r$, for some $k_{1} \geq 0$;
(4') r is even and $2 i=2 k_{1} r$, for some $k_{1} \geq 0$.
If (1^{\prime}) and (3^{\prime}) are satisfied, then r is odd, $n=2 k r+1$ and $k_{1}=0,1, \ldots, k$. So the number of i satisfying $\operatorname{rank}\left(C_{i} \quad D_{i+1}\right)=3$ is $k+1$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n-k+1$.

If (2') and (4^{\prime}) are satisfied, then r is even, $n=k r+1$ and $k_{1}=0,1, \ldots, k$. So the number of i satisfying $\operatorname{rank}\left(C_{i} \quad D_{i+1}\right)=3$ is $k+1$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n-k+1$.

Otherwise, $\operatorname{rank}\left(\varphi^{n}\right)=4 \times((n+1) / 2)=2 n+2$.
CASE II. Suppose n is even.
For $i=0,2,4, \ldots, n-2$, by elementary operations, each

$$
\binom{D_{i+2}}{-C_{i}}
$$

can be changed into

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & q^{2(n-i-2)}-1 & 0 \\
0 & 0 & 0 & q^{2(n-i-2)}-1 \\
0 & 0 & q^{n-2} & -q^{n-i-2} \\
0 & 0 & -q^{n-i-2} & q^{n-2} \\
0 & 0 & q^{i} & -1 \\
0 & 0 & -1 & q^{i}
\end{array}\right)_{8 \times 4}
$$

Note that rank $\binom{D_{i+2}}{-C_{i}}=3$ or 4 , and rank $\binom{D_{i+2}}{-C_{i}}=3$ if and only if

$$
\left\{\begin{array} { l }
{ q ^ { 2 (n - i - 2) } = 1 ; } \\
{ q ^ { 2 i } = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
q^{2(n-2)}=1 \\
q^{2 i}=1
\end{array}\right.\right.
$$

Moreover, we have $q^{2(n-2)}=1$ if and only if either of the following $\left(\left(5^{\prime}\right)\right.$ or $\left.\left(6^{\prime}\right)\right)$ is satisfied:
(5) r is odd and $2(n-2)=4 k r$, for some $k \geq 1$;
(6') r is even and $2(n-2)=2 k r$, for some $k \geq 1$.
Since i is even, we have $q^{2 i}=1$ if and only if either of the following $\left(\left(7^{\prime}\right)\right.$ or $\left.\left(8^{\prime}\right)\right)$ is satisfied:
(7') r is odd and $2 i=4 k_{1} r$, for some $k_{1} \geq 1$;
$\left(8^{\prime}\right) \quad r$ is even and $2 i=2 k_{1} r$, for some $k_{1} \geq 1$.

If (5^{\prime}) and $\left(7^{\prime}\right)$ are satisfied, then r is odd, $n=2 k r+2$ and $k_{1}=0,1, \ldots, k$. So the number of i such that

$$
\operatorname{rank}\binom{D_{i+2}}{-C_{i}}=3
$$

is $k+1$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n-k-1$.
If (6^{\prime}) and (8^{\prime}) are satisfied, then r is even, $n=k r+2$ and $k_{1}=0,1, \ldots, k$. So the number of i such that

$$
\operatorname{rank}\binom{D_{i+2}}{-C_{i}}=3
$$

is $k+1$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n-k-1$.
Otherwise, $\operatorname{rank}\left(\varphi^{n}\right)=4 \times(n / 2)=2 n$. The proof is complete.

LEMMA 4.3. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{q}. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity, then for $n>2$,

$$
\operatorname{rank}\left(\varphi^{n}\right)= \begin{cases}2 n+2 & \text { if } n \text { is odd and } q(\neq 0) \text { is not a root of unity; } \\ 2 n & \text { if } n \text { is } \text { even and } q(\neq 0) \text { is not a root of unity } \\ \frac{3}{2}(n+1) & \text { if } n \text { is odd and } q= \pm 1 \\ \frac{3}{2} n & \text { if } n \text { is even and } q= \pm 1\end{cases}
$$

Proof.

CASE I. Suppose n is odd. If $q(\neq 0)$ is not a root of unity, then $q^{2(n-1)} \neq 1$ for $n>2$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n+2$. If $q= \pm 1$, then $q^{2(n-1)}=q^{2 i}=1$, and $\operatorname{rank}\left(\varphi^{n}\right)$ $=(3 / 2)(n+1)$.

CASE II. Suppose n is even. If $q(\neq 0)$ is not a root of unity, then $q^{2(n-2)} \neq 1$ for $n>2$, and $\operatorname{rank}\left(\varphi^{n}\right)=2 n$. If $q= \pm 1$, then $q^{2(n-2)}=q^{2 i}=1, \operatorname{and} \operatorname{rank}\left(\varphi^{n}\right)=(3 / 2) n$. This completes the proof.

For $n=0,1,2$, direct computations show that

$$
\begin{gathered}
\operatorname{dim}_{k} H H^{0}\left(\Lambda_{q}\right)=1 ; \\
\operatorname{dim}_{k} H H^{1}\left(\Lambda_{q}\right)=2 \\
\operatorname{dim}_{k} H H^{2}\left(\Lambda_{q}\right)= \begin{cases}3 & \text { if } q= \pm 1, \pm \sqrt{-1} \\
1 & \text { if } q \neq \pm 1, \pm \sqrt{-1}\end{cases}
\end{gathered}
$$

THEOREM 4.4. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If q is an r th $(r>2)$ primitive root of unity, then for $n>2$,
$\operatorname{dim}_{k} H H^{n}\left(\Lambda_{q}\right)=\left\{\begin{array}{ll}k+1 & \begin{array}{l}\text { if } r \text { is odd and } n=2 k r \text { or } n=2 k r+2, \text { for some } k \geq 1, \\ \text { or } r \text { is even and } n=k r \text { or } n=k r+2, \text { for some } k \geq 1 ;\end{array} \\ 2 k+2 & \begin{array}{l}\text { if } r \text { is odd and } n=2 k r+1, \text { for some } k \geq 1, \\ \text { or } r \text { is even and } n=k r+1, ~ f o r ~ s o m e ~\end{array} \geq 1 ;\end{array}, \begin{array}{l}\text { otherwise. }\end{array}\right.$
Proof. Note that $H H^{n}\left(\Lambda_{q}\right)=\operatorname{Ker} \varphi^{n+1} / \operatorname{Im} \varphi^{n}$ by definition, and

$$
\begin{align*}
\operatorname{dim}_{k} H H^{n}\left(\Lambda_{q}\right) & =\operatorname{dim}_{k} \operatorname{Ker} \varphi^{n+1}-\operatorname{dim}_{k} \operatorname{Im} \varphi^{n} \\
& =\operatorname{dim}_{k} M^{n}-\operatorname{dim}_{k} \operatorname{Im} \varphi^{n+1}-\operatorname{dim}_{k} \operatorname{Im} \varphi^{n} \\
& =\operatorname{dim}_{k} M^{n}-\operatorname{rank} \varphi^{n+1}-\operatorname{rank} \varphi^{n} . \tag{4.1}
\end{align*}
$$

The theorem follows from Lemma 4.2.
THEOREM 4.5. Let Λ_{q} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the quantum exterior algebra A_{q}. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity, then for $n>2$,

$$
\operatorname{dim}_{k} H H^{n}\left(\Lambda_{q}\right)= \begin{cases}0 & \text { if } q(\neq 0) \text { is not a root of unity; } \\ n+1 & \text { if } q= \pm 1\end{cases}
$$

Proof. By Lemma 4.3,

$$
\operatorname{dim}_{k}\left(\varphi^{n}\right)+\operatorname{dim}_{k}\left(\varphi^{n+1}\right)=4 n+4
$$

if $q(\neq 0)$ is not a root of unity; and

$$
\operatorname{dim}_{k}\left(\varphi^{n}\right)+\operatorname{dim}_{k}\left(\varphi^{n+1}\right)=3 n+3
$$

if $q= \pm 1$. The theorem follows from the formula (4.1) as desired.
COROLLARY 4.6. If $q(\neq 0)$ is not an r th $(r>2)$ primitive root of unity, then the Hilbert series of the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the algebra Λ_{q} is

$$
\sum_{n=0}^{\infty} \operatorname{dim}_{k} H H^{n}\left(\Lambda_{q}\right) t^{n}= \begin{cases}\frac{1}{(1-t)^{2}} & \text { if } q= \pm 1 \\ 1+2 t+t^{2} & \text { if } q(\neq 0) \text { is not a root of unity. }\end{cases}
$$

Proof. This follows from Theorem 4.5 and the fact that

$$
\sum_{n=0}^{\infty}(n+1) t^{n}=\frac{1}{(1-t)^{2}}
$$

Theorem 4.5 shows that the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of the algebra Λ_{q} also give a family of counterexamples to Happel's question in the case where $q(\neq 0)$ is not a root of unity. For completeness, we also consider the degenerate case when $q=0$.

THEOREM 4.7. Let Λ_{0} be the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering of A_{0}; then

$$
\operatorname{dim}_{k} H H^{n}\left(\Lambda_{0}\right)= \begin{cases}1 & \text { if } n=0 \\ 5 & \text { if } n=1 \\ 2 n & \text { if } n \geq 2 \text { is even } \\ 2 n+2 & \text { if } n \geq 2 \text { is odd }\end{cases}
$$

Proof. Denote the cohomology complex of Λ_{0} by $\left(M_{0}^{\bullet}, \varphi_{0}^{\bullet}\right)$. We can get

$$
\begin{gathered}
\operatorname{dim}_{k} M_{0}^{n}=4(n+1) \\
\operatorname{dim}_{k} \operatorname{Im} \varphi_{0}^{1}=3 ; \\
\operatorname{dim}_{k} \operatorname{Im} \varphi_{0}^{n}= \begin{cases}2 n+2 & \text { if } n \geq 2 \text { is odd } \\
0 & \text { if } n \geq 2 \text { is even. }\end{cases}
\end{gathered}
$$

Thus, we can get this theorem by the formula (4.1).
Similar to Corollary 4.6, we have the following result.
Corollary 4.8. The Hilbert series of the $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-Galois covering algebra Λ_{0} is

$$
\sum_{n=0}^{\infty} \operatorname{dim}_{k} H H^{n}\left(\Lambda_{0}\right) t^{n}=1+t+\frac{4 t(1+t)}{\left(1-t^{2}\right)^{2}}
$$

References

[1] I. Assem and J. A. de la Peña, 'The fundamental groups of a triangular algebra', Comm. Algebra 24 (1996), 187-208.
[2] M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36 (Cambridge University Press, Cambridge, 1995).
[3] L. L. Avramov and M. Vigueé-Poirrier, 'Hochschild homology criteria for smoothness', Int. Math. Res. Not. 1 (1992), 17-25.
[4] A. Beilinson, V. Ginsburg and W. Soergel, 'Koszul duality patterns in representation theory', J. Amer. Math. Soc. 9 (1996), 473-527.
[5] R. O. Buchweitz, E. L. Green, D. Madsen and Ø. Solberg, 'Finite Hochschild cohomology without finite global dimension', Math. Res. Lett. 12 (2005), 805-816.
[6] M. C. R. Butler and A. D. King, 'Minimal resolutions of algebras', J. Algebra 212 (1999), 323362.
[7] H. Cartan and S. Eilenberg, Homological algebra (Princeton University Press, Princeton, NJ, 1956).
[8] C. Cibils, 'Rigid monomial algebras', Math. Ann. 289 (1991), 95-109.
[9] C. Cibils and M. J. Redondo, 'Cartan-Leray spectral sequence for Galois coverings of categories', J. Algebra 284 (2005), 310-325.
[10] C. Cibils and E. N. Marcos, 'Skew category, Galois covering and smash product of a category over a ring', Proc. Amer. Math. Soc. 134 (2006), 39-50.
[11] C. Cibils and A. Solotar, 'Galois coverings, Morita equivalence and smash extensions of categories over a field', Doc. Math. 11 (2006), 143-159.
[12] M. Cohen and S. Montgomery, 'Group-graded rings, smash products, and group actions', Trans. Amer. Math. Soc. 282 (1984), 237-258.
[13] P. Gabriel, The universal cover of a representation-finite algebra, Lecture Notes in Mathematics, 903 (Springer, Berlin, 1981).
[14] M. Gerstenhaber, 'On the deformation of rings and algebras', Ann. Math. 79 (1964), 59-103.
[15] E. L. Green, G. Hartman, E. N. Marcos and Ø. Solberg, 'Resolutions over Koszul algebras', Arch. Math. 85(2) (2005), 118-127.
[16] Y. Han, 'Hochschild (co)homology dimension', J. London Math. Soc. 73(2) (2006), 657-668.
[17] Y. Han and D. K. Zhao, 'Construction of Koszul algebras by finite Galois covering', Preprint, 2006, math.RA/0605773.
[18] D. Happel, Hochschild cohomology of finite-dimensional algebras, Lecture Notes in Mathematics, 1404 (Springer, Berlin, 1989), pp. 108-126.
[19] K. Igusa, 'Notes on the no loop conjecture', J. Pure Appl. Algebra 69 (1990), 161-176.
[20] S. P. Liu and R. Schulz, 'The existence of bounded infinite DTr-orbits', Proc. Amer. Math. Soc. 122 (1994), 1003-1005.
[21] J. L. Loday, Cyclic Homology. Appendix E by Mariá O. Ronco. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 301 (Springer, Berlin, 1992).
[22] I. R. Martins Ma and J. A. de la Peña, 'Comparing the simplicial and the Hochschild cohomologies of a finite-dimensional algebra', J. Pure Appl. Algebra 138(1) (1999), 45-58.
[23] R. Schulz, 'A non-projective module without self-extensions', Arch. Math. 62 (1994), 497-500.
[24] E. Sköldberg, 'The Hochschild homology of the truncated and quadratic monomial algebras', J. London Math. Soc. 59(2) (1999), 76-86.
[25] A. Skowroński, 'Simply connected algebras and Hochschild cohomology', Proc. ICRA IV (Ottawa, 1992), Can. Math. Soc. Proc. 14 (1993), 431-447.
[26] A. Skowroński and K. Yamagata, 'Socle deformations of self-injective algebras', J. London Math. Soc. 72 (1996), 545-566.
[27] Y. G. Xu and Y. Chen, 'Hochschild homology groups of generalized exterior algebras with two variables', Acta Math. Sinica (Chin. Ser.) 49(5) (2006), 1091-1098.

HOU BO, School of Mathematics and Computer Science, Hubei University, Wuhan 430062, PR China
e-mail: bohou1981@163.com
XU YUNGE, School of Mathematics and Computer Science, Hubei University, Wuhan 430062, PR China
e-mail: xuy@hubu.edu.cn

[^0]: Research is supported by NNSF of China (Grant No. 10501010).
 (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

