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ON THE ZEROS OF A POLYNOMIAL
AND ITS DERIVATIVE

AspuL Aziz

Let P(z) ©be a polynomial of degree n and P'(z) be its
derivative. Given a zero of P’(z) , we shall determine regions
which contains at least one zero of P(z) . In particular, it
will be shown that if all the zeros of P(z) 1lie in |z| =1

and wl, Wos == wn-l are the zeros of P'(3) , then each of

the disks |(z/2)—wj| <% and Iz—wjl <1, j=1,2, ..., n-1,

contains at least one zero of P(z) . We shall also determine
regions which contain at least one zero of the polynomials
mP(z) + 2P'(2) and P'(z) under some appropriate assumptions.

Finally some other results of similar nature will be obtained.

1. Introduction and statement of results

Let all the zeros of a polynomial P(z) of degree n lie in the
closed unit disk |z| =1 and let P(a) = 0 , then according to a
conjecture of Sendov, better known as "Ilieff's conjecture" [4, Problem
L.51, [6, p. 7951, the disk |z-a|] =1 contains at least one zero of
P'(z) , the derivative of P(2) . The boundary case, that is when
Ja] = 1 , has been proved by Rubinstein [10]. A conjecture stronger than
that of Ilieff, in which the disk |z-a| =1 1is replaced by the disk
|z-(a/2)| = 1 - |a|/2 , is stated in [3] by Goodman, Rahman and Ratti and
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is proved there only for the boundary case. 1In full generality, these
conjectured results have been proved [2], [3], [é1, [7], (7101, [12] only

for polynomials of degree at most five.

Ilieff's conjecture might suggest that close to every zero of P(z)
there should always lie a zero of P’(z) . In this paper we shall first
determine a neighbourhood of a zero w of P’'(z) , which will always

contain a zero of P(z) . We prove

THEOREM 1. If P(z) is a polynomial of degree n and w is a zero
of P'(z) , then for every given real or complex number o , P(z) has at

least one zero in the region

Taking @ = 0 in Theorem 1 and noting that |w-(z/2)]| =< |z/2|

IA

implies lw-zl |zi , we get the following interesting result.

COROLLARY 1. If all the zeros of a polynomial P(z) of degree n
lte in |z| =1, and w 1is a zero of P'(z) , then P(z) has at least

one zero in both the circles

<% and |w-z| =1.

2
W=7

Next we prove

THEOREM 2. If all the zeros of a polynomial P(z) of degree n lie
in |z] =1 and Pla) =0, a # 0, then for every positive integer m ,

the polynomial F(z) = mP(z) + 2P'(2) has at least ome zero in the circle

|z—a| =1.

THEOREM 3. If 2(z)

if all the zeros of Q(z) Llie in the circle |z+o-a| < |a| for some real

(2-a)q(z) <s a polynomial of degree n and

or complex number a # 0 , then at least one zero of P'(z) lies in the

eirele

a
2

a
—a+3| =
Z a 2|

For a=1=0a , this reduces to the result of Goodman, Rahman and
Ratti [3].

An immediate consequence of Theorem 3 is
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COROLLARY 2. If all the zeros of a polynomial P(z) = (z-a)@(z) ,
0<a=1, lie in the region S = {|z| =1} n {]z+1-a| =1}, then P'(3)

has at least one zero in both the circles

|z—a+%| =% and

THEOREM 4. [Let P(z) (2-a)@(z) be a polynomial of degree n , If

w'la)
Re ToDie(a) = %

for some real or complex number o , then P'(z) has at least ome zero in

the circle

a

—a+ 3 =
r a 2

a
2

The next corollary immediately follows from Theorem 4.

COROLLARY 3. I1F P(3) = (2-1)Q(2) <s a polynomial of degree n and

P'(z) does not vanish in the circle |z-%| <%, then

Q1) . n-1
Re a(1) < > -

We also prove

THEOREM 5. If the polynomial P(z) = (2-1)Q(z) of degree n has
all its zeros in |z| = 1, then P'(z) cannot have all its zeros in the
disk

lz-%| <% .
Finally we establish

THEOREM 6. If P(z) is a polynomial of degree n such that

wax |P(z)] = |P(*®)] ,
|z{=1

then P(2) cannot have all its zeros in the disk

eia
SN
2. Proofs

For the proofs of these theorems we need the following lemmas.
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LEMMA 1. If P(z) <is a polynomial of degree n such that
Pla) =P(b) , a#b, thenm P'(z) has at least one zero in each of the
regions
|z-a| = |z-b| and |z-al = |z-b] .
Proof of Lemma 1. Without loss of generality we suppose
P(a) = P(b) = 0 . Consider the polynomial

oo - e[+

then G(1) = P(a) = 0 and G(-1) = P(b) = 0 . Now it follows from the
proof of the Grace-Heawood theorem [5, p. 107] that G'{z) is apolar to
the polynomial

_ (z-1)"-(z41)"

H(z) = "——F——,

whose zeros are 2z, = -7 cot(km/n) , k=1,2, ..., n-1 . Since all the

zeros of H(z) 1lie in Re 2 = 0 , it follows by Grace's theorem [5, p. 61]
that G'(2) has at least one zero in Re 2 2 0 . That is, at least one
zero of G'(z) 1lie in |z-1| = |z+#l1] . Replacing 2z by
(z-((a+b)/2))((2/(a—b)]] , it follows that, at least one zero of P’'(3)

lies in |z-a| = |z-b| .

Since all the zeros of H(2) lie also in Re 2 = 0 , it follows by a
similar argument as above that P’(2) has at least one zero in the region

|z-a| = |z-b| . This completes the proof of Lemma 1.

Let P(z) be a polynomial of degree #n . The first polar derivative

of P(z) with respect to the point oy is defined by

DalP(z) = nP(z) + [al-z)P'(z)

Similarly the second polar derivative of P(2) with respect to oy is

defined by

Dalpazp(z) = Da2 [DalP(z)) ,

and so on. For the proof of Theorem 4, we need

LEMMA 2. If all the zeros of a polynomial P(z) of degree n Llie
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in a circular region C and if none of the points o, Qps wevs O s

1

k=n-1, lies in region C , then each of the polar derivatives

p P(z), D D P(2), ..., D.D_ ... D P(3)
% ¢ % % % %

has all of its zeros in region C .

This lemma follows by repeated application of Laguerre's theorem [5,

p. 49].

Finally for the proof of Theorem 6, we need the following lemma which
is an immediate consequence of Berstein's theorem on the derivative of a

trigonometric polynomial [11] (see also [1]).
LEMMA 3. Let P(z) be a polynomial of degree n =1 , then

Max |P'(3)| =n Max |P(2)]| .
|z|=l z2{=1

3. Proofs of the theorems

Z_ be the zeros of P(z) and

Proof of Theorem 1. Let 2., 2., ...,
2 n

1

let w be a zero of P'(z) . If w=a or w-= zj for some

j=1,2, ..., n , then the result follows and we have nothing to prove.

Hence we suppose that w # o and W # 2, forany J=1,2, ..., n .

J 3
Since w is a zero of P'(z) and P(w) # O , we have

n

1 P'(w)
Z = =0 .
i} w-zj P(w)
This gives
n (w-z2.)-(0-2.) ) wa _
4= w-zJ iz w—zJ 2

and therefore

This implies
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n o-z, o-2 .
n = Z: Re B—El'f n Max Re 5:;1
Jj=1 J 1sj=n J
which shows that for at least one j =1, 2, ..., n ,
0-z ,
Re —L >1 .
w-3 .
)
Thus for at least one j =1, 2, ..., n Wwe have
o=z . -z .
| - syl = eyl
2lw-23 . |2 w-2 . .
o= )
This gives
a+s ., oz .
- <
lw 2 | = i 2
for at least one J =1, 2, ..., n , which is equivalent to the desired

result.

Proof of Theorem 2. Consider the polynomial

G(z) = 2"p(z) ,
where m 1is a positive integer greater or equal to 1 , then

m-l(

G'(z) = 2" (mP(z)+2P"(2)) = 2" 1F(z) .

By hypothesis, P(a) =0 , a # 0 ; therefore G(a) = 0 = G(0) . Hence by
using Lemma 1, with b = 0 , it follows that the polynomial G'(2) has at

least one zero in the region

(1) |z-al = |z] .
As a # 0 , this zero cannot be 2 = 0 . Therefore this zero must be a
zero of F(z) . Since all the zeros of P(2) 1lie in |zl =1, it follows

by the Gauss-Lucas theorem that all the zeros of G'(z) 1lie in |z] =1
and hence all the zeros of F(z) also lie in |z] =1 . Thus from (1) we
conclude that at least one zero of F(z) 1lie in the circle |z-a|l =1 and

this completes the proof of Theorem 2.

Proof of Theorem 3. We have

(2) P'(2) = (z-a)Q'(2) + @(z)

https://doi.org/10.1017/5S000497270000472X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000472X

Zeros of a polynomial 251

and

(3) P"(z) = (2-a)Q"(z) + 2@'(3) .

If z =a is a multiple zero of P(z) , then 2z = a is also a zero of
P'(z) and since z =a lies in the circle |z-a+(a/2)| = |a/2| , the

assertion is true in this case. Henceforth we assume that 2 =g is a

simple zero of P(z) , so that P'(a) # 0 . Now from (2) and (3) we get

() P"(a) = 2Q'(a)
P'(a) Q(a)
If Bl By ees B, o are the zeros of @(z) and Wy, w2, cees wn—l are

those of P'(z) , then from (4) we have

n-1 1 n-1
q=1 a—wj i} a-zj

Multiplying the two sides of this equation by @ # 0 and then taking the

real parts on both sides, we obtain

ni% ni% -

(5) Re =2 Re .

. a-w . o (a—g+z ;)
J= d J= i J°

Since by hypothesis

a-a+z2 . I

e | £1 forall J=1,2, ..., n-1,

therefore,

a >
Re oloara) %

for all 4j =1, 2, ..., n=-1 . Hence from (5) we get

a-w .

n-1 a n-1
j[ Re >2 )[ Y=n-1.
J=1 J J=1

This shows that

Re >1, for al least one g =1,2, ..., n-1 ,

a-v;
J

from which it follows that
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af <
le a+3| =

%I for at least one 4 =1, 2, ..., n-1 .

This is equivalent to the desired result and Theorem 3 is proved.

Proof of Theorem 4. If =2 = a is a multiple zero of P(z) , then the
result follows as in the proof of Theorem 3. Hence we assume that 2z = a
is a simple zero of P(z) , so that P'(a) # 0 . Since P(z) = (2-a)@(z) ,
therefore, P'(a) = Q(a) # 0 , P"(a) = 2Q’'(a) . Also it follows by
hypothesis that @'(a) # 0 and a # 0 . We have to show that P'(z) has
at least one zero in the circle |z-a+(a/2)| = |a/2| . Assume the
contrary. That is, assume that all the zeros of P'(z) 1lie in
|z-a+(a/2)| > |a/2| . Since the point a does not lie in
|z-a+(a/2)| > |a/2| , it follows from Lemma 2 that all the zeros of the

(n-2)th polar derivative

n-2_, _ ,
Da P'(z) = DaDa ve DaP (2)

2

of P'(z) 1lie in |z-a+(a/2)| > |a/2| . But DZ_ P'(z) 1is a polynomial

of degree one and its only zero is (see [9, p. 235, Problem V 1371]1) given

by
B (n-1)P'(a) _ (n-1)g(a)
Era-"pray T 2T T29(a)
so that
1 _ _2Q'(a)

a-z  (n-1)Q(a) ~
This gives with the help of the hypothesis

o aQ'(a)
Re 2z 2 Re ?Z:ETéTZT-E 1,

which implies

a |
2(a-z)|

1 -

<

o
2(a-z)|

This shows that the only zero of lﬁ_eP’(z) lies in |z-a+(a/2)| = |0/2] ,
which is a contradiction and therefore the desired result follows.

Proof of Theorem 5. Here we have P(z) = (3-1)Q(z) , so that
P'(1) = @(1) and P"(1) = 2@'(1) . sSince g(z) has all its zeros in
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|z| = 1 , therefore, if 215 By -vvs 3, | 8TE the zeros of @{(z) , then
|zj| =1, 4=1,2, ..., n-1, and
2Q@'(2) =n-1 2
3 L z-z.
Q(z) i 3
16

Now for points 3 = e , 0 =86 <271 , which are not the zeros of Q(z) ,
we have
10 10 n-1 16 n-1
e Q'le _ e _n-1
U C il S T

iB) K 18

Q(e J=1 e —zj J=1
This implies
IeieQ,(eie)| < I(n-l)Q(eie)-eieQ'(eie]l
for points eie , 0<86 <21, which are not the zeros of g(z) . Since

i
this inequality obviously holds for points e 6 which are the zeros of

g(z) , therefore, it follows that

(6) @'(z)| = |(n-1)@(2)-2Q'(3)| for |z| =1 .

If P"(1) =0 , then P’(2) has at least one zero in |z-%| = % . Because
if all the zeros of P'(2) 1lie in |2-%| < % , then by the Gauss-Lucas

theorem, all the zeros of P"(z) also lie in |z-%| < % . Since

P"(1) = 0 and 1 does not lie in |z-%| < % , we get a contradiction.

We now suppose that P"(1) # 0 , so that @'(1) # 0 . We have to show
that P'(z) cannot have all its zeros in the disk |z-%| < % . Assume
that all the zeros of P’'(z) 1lie in |2-%| <% . Since 1 does not lie
in |Z-%| < % , it follows by Lemma 2 that all the zeros of (n-2)th polar
derivative

Nn-2,, - '
Dl P'(z) = DlDl .o DlP (z)

of P'(z) 1lie in |z-%| < % . But the only zero of the polynomial

D:_ZP'(z) , which is of the first degree, is given by (see [9, p. 235])

_ (n-1)P'(1) _ (n-1)Q(1)
2=1-"pyy "1~
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This gives, with the help of (6),

- |2 )=(n-1)0(1)]
|z'!5| =% 2’ (1) I

This shows that the only zero of the polynomial Dz-zP'(z) lies in

Iz-%] > % , which is a contradiction and therefore the result follows.
Proof of Theorem 6. Since |P(z)| takes its maximum at z = ¢® on

|z2] =1, it follows that (see [§, p. 132, Problem IIT 1kLk])

ie) #0 . We

eteP’(ete]/P[eze) is real and positive and therefore P’(e
have to show that P(z) hes at least one zero in ‘z-(eie/2]| >
Suppose that all the zeros of P(z) 1lie in |z—(ete/2]| <% . Since ot

does not lie in Iz-(ete/2) <% , it follows from Lemma 2 that all the

zeros of the (n-1)th polar derivative

n-l _
7oP(2) =D oD +q ... D ;oP(2)
e e e

of P(z) 1ie in lz-(e‘e/e)l <%. But D" P(z) is a polynomial of
e

degree 1 and its only zero (see [9, p. 235, Problem V 137]) is given by

z = eie _ nP(eiel

p (eie]

With the help of Lemma 3, this zero lies in

iad I P npte“’1| n|P(c*9)|
SN B - N %9 P ( ze]l
21 -%=%,

which is a contradiction and Theorem 6 is established.
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