
 

 

The Enabler Framework: an Object-Oriented Toolkit for Microscopy Data Analysis 
 
Michael K. Kundmann 
 
e-Metrikos, Pleasanton, USA 
 
Present-day microscopy data sets comprise numerous detector readouts that densely sample specimen 
properties along multiple spatial dimensions and multiple signal modalities. Typical examples include 
STEM EDS/EELS spectrum images, TEM tomography image stacks, and multi-channel optical sections 
in confocal microscopy. Such rich and complex data call for novel software tools that enable 
microanalysts to flexibly view, identify, extract, and quantitatively analyze their constituent signals. In 
the past, microscopy software development focused on the mathematical data reduction and analysis 
algorithms needed to isolate and quantify features or signals in digitized images and spectra [1], 
including filters for feature enhancement and detection, cross-correlation for drift correction and data 
alignment, model fitting, and various types of principal component analysis. These have been deployed 
within programs that run the gamut from proprietary analysis software packaged with commercial 
instruments to open-source software developed for general microscopy data processing (e.g. Hyperspy 
project [2]). However, despite the many packages, accessibility can be limited (due to high cost or to 
steep learning curves) and applying the tools of one package to data obtained in another can be difficult 
(due to proprietary data formats, incompatible abstractions, or overly specific application focus). 
 
The Enabler framework seeks to address the need for a flexible, capable, accessible, and unified 
software system for analyzing multi-dimensional, multi-modal microscopy data sets. It is designed as a 
complete object-oriented application development framework that allows for fully polished apps with 
approachable UIs for routine users, as well as code-level class and object access for re-use and extension 
by researchers and developers. The Enabler effort has so far focused on defining a generic microscopy 
data model and developing a modular architecture based on the controller concept. Controllers, first 
devised for programs with graphic UIs (MVC pattern) [3], act as command dispatchers and mediators 
that keep subsidiary model data and views (UIs) in sync. In the Enabler framework, generalized 
controllers serve as self-contained program modules responsible for particular data-analysis (or other 
application-specific) tasks. Each controller manages its data and parameters (including loading from and 
archiving to persistent storage), one or more task-relevant UIs, associated algorithms, and references to 
other (helper) controller objects. The inter-object references enable arbitrarily complex applications to 
be constructed as networks of collaborating controllers. 
 
Enabler’s generic microscopy data model follows findings of recent work towards a standard hyper-
dimensional microscopy data exchange format [4]. In the HMSA proposal, a microscopy data set 
consists of two parts, a multi-dimensional binary array and a text-based, hierarchically tagged (XML) 
description of the array specifying how to load and physically interpret it. This makes the data structure 
transparent and allows it to be captured in non-proprietary formats, thereby improving archive longevity. 
It also permits efficient access to both the binary array data and its metadata, allowing frequent updates 
to the latter (which may contain calibrations and analytical results) while avoiding time-consuming re-
saving of the measured data array (which tends to be large and generally should not be altered). 
With the HMSA effort as guide, Enabler defines classes for a number of data abstractions, including: 
NumericBrick, PhysicalQuantity, PhysicalRange, PhysicalArea, and PhysicalDatum. NumericBrick 
encapsulates the multi-dimensional data array, providing functions for extracting data subsets (slices) 

290
doi:10.1017/S1431927616002300

Microsc. Microanal. 22 (Suppl 3), 2016
© Microscopy Society of America 2016

https://doi.org/10.1017/S1431927616002300 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927616002300


 

 

and performing math operations on the data (e.g. arithmetic, projections, integrations, and FFTs). 
PhysicalQuantity represents physically dimensioned parameters (e.g specimen feature size, lattice 
spacing, and differential cross-section) and their math functions. PhysicalRange and PhysicalArea 
extend the PhysicalQuantity concept to 1D and 2D selections on a data set. PhysicalDatum represents a 
complete, physically calibrated data set, with metadata and named ranges and areas of interest. 
 
A key task for any data analysis package is resolving measured data into component signals. This often 
involves processing a finely sampled data array, such as an image, to extract high-level features from the 
pixel-level data. The human visual system exemplifies such an abstraction process as it picks apart a 
scene to detect and identify nearby physical objects (e.g. a coffee mug on a cluttered desk). Although 
this sort of data abstraction can be viewed as an algorithm that takes an image as input and returns a list 
of detected features, developing understanding of how the brain does this points to something more like 
a flexible network of interacting modules, rather than a processing pipeline. Enabler’s controller 
architecture is well suited to experimentation with such data-abstraction object networks (DAO-Nets). 
 
The self-archiving feature of Enabler controllers facilitates repetition, adjustment, and review of 
complex data analyses. In effect, an analysis goes from being a sequence of user-triggered function calls 
to a gradually compiled living document or archive, one that is automatically generated as analysis 
proceeds and that can immediately be applied to other similar data sets. This living archive fully 
captures all aspects of the analysis and can be readily shared for detailed peer review. 
 
Since Enabler is rooted in high-level concepts and a generic microscopy data model, it can potentially be 
implemented within any object-oriented development environment. Early efforts explored possible 
implementations using the .NET (Windows) and Cocoa (MacOS) frameworks, but since they are not 
specifically designed for scientific applications, even a rudimentary Enabler implementation is 
challenging within either of them. Their use in rapidly evolving consumer technologies also make them 
fast-moving (i.e. unstable) development environments with which it is difficult to keep pace. Good 
progress towards a basic implementation of the Enabler framework has been made with the surprisingly 
capable and stable DigitalMicrograph scripting (dm-script) system [5, 6]. Early experiences and results 
obtained with this experimental version of the framework will be presented. 
 
References: 
 
[1] D.B. Williams and C.B. Carter, “Transmission EM”, 2nd ed. (Springer, 2009) chs. 31, 35, and 39. 
[2] F. de la Peña et al, Hyperspy 0.8, (15 Apr 2015), http://dx.doi.org/10.5281/zenodo.16850. 
[3] E. Gamma et al., “Design Patterns”, (Addison-Wesley, 1994) p. 4. 
[4] M. Kundmann et al., Microscopy and Microanalysis, 17 Suppl. 2, (2011) p. 860. 
[5] http://portal.tugraz.at/portal/page/portal/felmi/DM-Script 
[6] http://www.gatan.com/products/tem-analysis/gatan-microscopy-suite-software 

291Microsc. Microanal. 22 (Suppl 3), 2016

https://doi.org/10.1017/S1431927616002300 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927616002300

