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FRAME FIELDS ON MANIFOLDS 

TZE BENG NG 

1. Introduction. Consider the following stable secondary cohomology 
operations associated with the relations in the mod 2 Steenrod alge
bra: 31 

4>4:Sq1(Sq1Sql) = 0; 

<j>5:(Sq1Sql)(Sq1Sql) + Sql(Sq2Sq3) = 0 

such that 

SfoA = Sql<j>5 = 0. 

Let ^5 be a stable tertiary cohomology operation associated with the 
above relation. We assume that (<J>4, <£5) and \p5 are chosen to be spin trivial 
in the sense of Theorem 3.7 of [14]. 

Let <J>00, (j>{ j be the stable Adams basic secondary cohomology 
operations associated with the relations: 

<j>00:SqlSql = 0 and 

<t>]y.Sq1Sq1 + Sq3Sql = 0 

respectively. 
Let n be a positive integer with n = 1 mod 8 = 1 5 . Suppose that M is a 

closed, connected and smooth manifold of dimension n which is 
3-connected mod 2 and satisfies the condition w4(M) = 0, where wz(M) 
is the ith-mod 2 Stiefel-Whitney class of the tangent bundle of M. Let the 
mod 2 semi-Kervaire characteristic be defined by 

XL(M)= 2 d i m z ( / / ' ( M ) ) m o d 2 . 
2i<n 

All cohomology will be ordinary singular cohomology with Z2 coefficients 
unless otherwise specified. Let 

S: i /*(- , Z 2 ) - + i / * + 1 ( - , Z) 

be the Bockstein operator associated with the exact sequence 

0 - ^ Z ^ Z - * Z 2 - > 0 . 

We shall prove the following theorems: 
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THEOREM 1.1. Suppose 

Indet""4(^5, M) = S(^Hn'\M) and 

SilT~\M\ Z) = siHn~\M). 

(i) Ifn = \S mod 16 ^ 15, then Span(M) ^ 7. 
(ii) Suppose n = 1 mod 16 > 7. 77zez? span(M) ~ 1 if and only if 

0 e *4(ww_9(M)) aw/ 0 G ^5(w„_9(M)). 

THEOREM 1.2. Suppose 

I n d e t " " 4 ^ , M) = SiHn~\M) and 

Sc^Hn~\M) = S^SqlHn~\M). 

(i) If n = 15 mod 16 > 15, span(M) ^ 8. 

(ii) If n = 1 mod 16 > 7, span(M) ^ 8 z/a/id o«/y if wn^_1{M) = 0, 

0 G * 4 K _ 9 ( M ) ) , 0 e ^ _ 9 ( M ) ) W X 2 W = 0. 

We have the following immediate corollaries. 

COROLLARY 1.3. Suppose n = 15 mod 16. 
(i) If M is A-connected mod 2 and 

S^Hn~\M; Z) = SfHn~\M\ 

then span(M) ^ 7. 
(ii) If M is 5-connected mod 2 and « > 15, then span(M) ^ 8. 

COROLLARY 1.4. If M is 5-connected mod 2 a/id n = 1 mod 16 vv/7/z 
« > 7, z7ze« 

(a) Span(M) ^ 7 
(b) Span(M) ^ 8 / /am/ o«z> ifwn_1(M) = 0 W x 2 ( M ) = °-

Throughout the rest of the paper M is assumed to be 3-connected 
mod 2. 

2. The modified Postnikov tower. We shall consider the problem of 
finding a /c-field as a lifting problem. Let BSOn(S) be the classifying 
space of orientable «-plane bundles £ satisfying 

H>2(€) = w4(£) = 0 

where wt(£) is the z-th mod 2 Stiefel-Whitney class of the bundle £. Let 

g:M -» £SO„<8> 

classify an /i-plane bundle 17 over M. Then the problem of finding 
/c-linearly independent sections of -q is equivalent to lifting g to 

A 

BSOn_k(%). Hence we shall consider a Postnikov tower for the fibration 

VnJc -> £SOn_,<8> ^ £50„<8), 
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and inspect the obstructions to lifting g to BSOn_k(S). Following [3] we 
shall consider the n-MFT for 77 for k = 7 or 8. The computation is done in 
[8]. We list the results in the following tables: 

TABLE 1 

The K-Postnikov tower for 7T:BSOn_7($) -» BSOn(S).  

A:-invariant Dimension Defining relation 

Stage 1 k\ n — 6 ^w
n-i 

k\ n - 5 -5 
/C3 n — 3 w

n — 3 

Stage 2 k] n - 5 Sq2k\ = 0 
kl n - 4 Sq2k\ + Sq3k\ = 0 
k] n - 3 Sq4k\ = 0 
*4 n ~ 3 Sq2SqXk\ + Sqlk\ = 0 
A:I « - 2 Sq4k\ = 0 
^6 n Sq4k\ = 0  

Stage 3 &? n - 4 Sq2k] = 0 

&2 n - 3 Sq2SqXk2 + SqXk] = 0 

k] n - 3 Sq]kî + Sq2k\ + Sqlkj = 0 
kl n xSq4k2 + Sq2Sq4k] = 0 

Stage 4 £4 « - 3 S?2A:? + Sqxk\ = 0 

TABLE 2 

The n-MVT for *r:AS0,,_8<8> -> BSOn{%). 

/c-invariant Dimension Defining relation 

Stage 1 kl n - 1 kl = w „ _ 7 

Stage 2 k\ n - 5 Sq2Sqlkl = 0 
k\ n - 3 Sq*Sqlkl = 0 
k] n - 2 Sq4Sq2k] = 0 
*4 » ( ^ 8 + wg)^1 = 0 

(n > 15) 

Stage 3 k\ 
k\ 
kl 

n - 4 
n - 3 

n 

Sq2k\ = 0 
(Sq2Sq])k2\ + Sqlkl = 0 
(Sq2Sq4)k\ + xS<74^2 = 0 

Stage 4 k4 n - 3 S<?2A:i + Sqxk\ = 0 

By the connectivity condition on M we only need to consider for the 
case of lifting g to BSOn_7(S), K - v f o ) . w„_5(ij), fcfa), *fo) , A&IJ), 

/̂ Crç) and /C4(TJ) whenever these are defined. 
According to [14, Proposition 4.2] we have the following technical 

result: 

PROPOSITION 2.1. L ^ w „-9 be the (n — 9)-th mod 2 universal Stiefel 
Whitney class considered as in H"~9(BSOn_7(S) ). Then 
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(a) (0, 0) e (4>4, 4>5)K_9) c H" 5(5SO„_7<8> ) 

©//"~~4(£SO„_7<8)). 

(b) 0 e « w H ) c r 4 ( è „ . , ( 8 ) ) . 

The proof is entirely analogous to that of Theorem 4.2 of [14]. We shall 
not present it here. 

According to [14] <f>} x is spin trivial and so we have 

PROPOSITION 2.2. (E. Thomas) 

0 e * l f l(w„_7) c Hn-\BSOn^(%)). 

Let the «-MPT for <rr:BSOn_k{%) -> BSOn{%) for k = 1 or 8 be 
indicated by the following diagram: 

By the connectivity condition on M, there is no obstruction to lifting any 
map from M into E3 to BSOn_k(S). 

Recall the definition of a generating class in [13]. Then we have the 
following Proposition due to E. Thomas. The proof is identical to that of 
Proposition 4.1 in the case k = 1 and to Proposition 4.5 in the case k = 8 
in [14]. 

PROPOSITION 2.3. (a) The class wn-9 in Hn~9(BSOn(%) ) is a generating 
class for the pair (k\, 0) in Hn~5(Ex) 0 Hn~4(E{), relative to the pair 

(b) The class px*wn_9 is a generating class for kx, relative to the opera
tion \p5. 

Similarly we have 

PROPOSITION 2.4. For 7T:BSOn_7(S) -> BSOn($), the class w„_7 

in Hn~\BSOn(%) ) is a generating class for k\ in Hn~\Ex). 

Now by inspection of the ^-invariants for the TZ-MPT for <n and the 
connectivity condition on M, together with Proposition 2.1, 2.2, 2.3, 2.4 
and the generating class theorem of Thomas [13] we have 

THEOREM 2.5. (The case k = 7.) Let -q be an orientable n-plane bundle 
over M satisfying 

W4(TJ) = 0, ÔW„_7(TJ) = 0, W„_5(TJ) = 0. 

Suppose 
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Inde t n - 4 (* M . M) = S^H"~6(M), 

Indet" '4(^5 , M) = Indet""4(A:], M) and 

5^//"""7(M; Z) = siHn~\M). 

Then 
(i) (0, 0) G (kl k\)(y]) if and only if 

0 ^ <j>4(wn_9(7])) and 0 e <J>U(W„_7(TJ)) 

(ii) 0 G /^(TJ) / /am/ 0«/y / / 

0 G * 4 K-9fo))> ° G ^i,iK-7W) 

0 G fcfo) w 0 G ^5(^_9(T,)) . 

THEOREM 2.6. (The case A: = 8.) Le/ TJ fee a« orientable n-plane bundle 
over M satisfying w4(rj) = wn_1(r}) = 0. Suppose 

I n d e t " - 4 ^ , M) = I n d e t " " 4 ^ , M). 

If either w$(j]) = F8(M), the Sth Wu class of M, and 

Sq2Hn~1(M) = Sq1SqlHn~\M) or Sq1H5(M) = 0, 

then 
(i) 0 G k2\(i\) if and only i/O G *4(ww_9(iy) ) 

(ii) 0 G kx(i)) if and only if 

0 G 4>4(ww_9(i0), 0 G fcfo)fl/M/0 G ^ 5 (WW_ 9 (TÏ)) . 

3. The top dimensional secondary obstructions. Let f6 be a choice of 
stable cohomology operation of Hughes-Thomas type associated with the 
following relation in 21: 

S6:Sq4S(f-3 + SfiSq^Sq1) 4- Sq\Sq"-3Sq3 

+ V 1 ^ 1 ) = o 
such that 

where Z>„_4 is the fundamental class of the space Yn_4 over Kn_4 with 
classifying map (Sq1, Sql)}n_4. 

Then the following is proved in [8]. 

THEOREM 3.1. Consider the n-MPT for the fibration 

•n:BSOn_k(%) -> BSOn(S). 

Let y be the pull back of the universal orientable n-plane bundle over 
BSOn($). Using this bundle induce bundles over Ex, E2 by px and p2 o px 
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respectively. -Denote the Thorn class of the resulting bundles by U(EX) and 
U(E2) respectively. Suppose k = 7. Then 

U{Ex)'k\ G f6(t/(£2)). 

Let 7} be an orientable «-plane bundle over M satisfying 

w400 = w„_5(i7) - 0, 8wn_1(7i) = 0. 

Then by Theorem 3.1 together with the fact that 

Indet2"(T(r/) ) = ^ Indetn(M, k\) 

(where \p is the Thorn isomorphism and T{K]) the Thorn space of 77), we 
have 

THEOREM 3.2. 0 e k\(i}) if and only ifO e f6(£/(T)) ) wAere £/(TJ) W the 
Thorn class of i\. 

3.3. Consider now the case k = 8. Then Theorem 5.10 of [8] applies 
to give the existence of a secondary cohomology operation, f8 (stable if 
« = 15(16) and non-stable if n = 7(16) ) associated with the relation 

SïSfSf-1 + Sq\Sq"-7Sq4) 

+ SfyScf'^Sq2 + Sq"~1Sq2Sq4) 

+ Sq\Sq"~XSqX + S< f~W + Stf^St? 

+ Scf^Sq1) = 0 

satisfying 

dn_% U Sq%dn_% + Sq6dn^ U Sq2d„_s e ?8(</„_8), 

where J„_ 8 is the fundamental class of an universal example for (n — 8) 
dimensional class x satisfying SqAx = 0. Then for the n-MPT for IT for the 
case k = 8, we have 

(3.4) U(EX) • (k2
4 + w8 • w„_8) G MU(EX) ). 

Since 

M ^ i ) * 0v8 ' H>„_9) ) = £/(£!> • (w8 • w„_8) 

by (3.4) and the connectivity condition on M we have 

THEOREM 3.5. (The case k = 8.) Let -q be an orientable n-plane bundle 
over M satisfying 

W4(TJ) = w„__7(i)) = 0. 

Ifw4(M) = 0 /to?/i 0 e fcfo) Ï / Û / I J only */0 e f8(£/fa) ). 

Of course if w$(rj) ¥= F8(M) then 
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and so trivially 0 

\M) = H"(M) 

k2M). 

(4.2) 

4. The top dimensional tertiary obstructions. 

4.1. Let 4>02, $2 2 b e t n e basic stable Adams secondary cohomology 
operations associated with the relation: 

4>02:Sq]Sq4 + (ScfSq^Sq2 + Sq4Sql = 0 and 

<t>22:Sq4Sq4 + Sq6Sq2 + Sq7Sq] = 0 

respectively. 
Then Lemma 4.7, 4.17 of [8] says there exist stable secondary co

homology operations f,, f3, r\x and T/2 associated with the following 
relations (denoted by the same symbols) 

' Sl:Sq2(Sq"-6 + Scf^Sq1) = 0 

$3:Sq\Sq"~6 + Scf^Sq1) + Sq4(Sqn~9Sq1Sq] + Stf^Sq2) 

+ (Sq5Sql)(Sq"~uSq2Sql) = 0 

rh:(Sq4Sq2)(Sqn"9Sq2Sq] + Stf'^Sq2) 

+ Sq2(Sqn~1Sq2Sqi) = 0 

,:(Sq2Sql)(Sqn"9Sq2Sqî + Sq"~1Sq2Sql) 

+ Sq\Sq"~1Sq2Sq3) + (Sq4Sq2Sq] 

+ Sq1)(Sqn~USq2Sql) = 0 

satisfying 

(4.3) Q:(S<?Sq% + XSq% + Sq2^ + Sq\ = 0 

such that on bn_1 the fundamental class of Y„_7 over Kn_n with 
^-invariant (Sq\ Sq1)\n_1, 

Sq4bn_7 U bn_7 + (Scf-'Sq4 + S^Sq6 

+ v- 'V)*„-7 + ^-V,,,(^_7) 

+ Scf-'Sq^ib^j) e f3(ô„_7); 

( V 4 + S<f-6Sf)*u(b„-7) e TJ,(6„_7) and 

(4.4) 

Let Z\ be the universal example space for /c-dimensional mod 2 
cohomology class x satisfying Sqlx = Sq1x = Sq4x = 0, <f>0,o(*) = 0 an<^ 
<#>! j(x) = 0. Let dk be the fundamental class of Dk. Let fl9 f3 be the 
relations obtained from f j , f3 of (4.2) respectively by replacing 
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Sq2(Sq"~b + Scf^Sq1) and Sq\S<f~b + Stf^Sq1) 

by 

(Sq2Sql)Sqn~1 + Sq2(Sqn~1Sql) and 

(Sq^Sq^Sq"-1 + Sq^iSq"'1 SqX) 

respectively. Then there exist stable secondary cohomology operations 
associated with fb f3 also denoted by the same symbols such that 

(4.5) ?, c f „ ?3 c S, and 

a^Stf4)?, + xV?3 + s^i + V*)2 = o. 
Then Theorem 4.19 of [8] gives us 

THEOREM 4.6. There exist stable tertiary cohomology operations, fi and Q, 
associated with the relations (4.3) and (4.5) respectively such that 

4,-7 u (<MJ«-7) + ^ 0 , 2 ( 4 , - 7 ) ) G ««-7) 

S e a w o G n(4,_8). 
Let J>4 G H \BSOn{%) ) « Z2 be a generator. Then by the admissible 

class theorem of [8], and Theorem 4.6 we have 

THEOREM 4.7. (1) (The case k = 7.) 

t/(£2) • (k\ + ( f t o ^ ) X - 7 ' S<73"4) e Q(I/(£2)). 

(2) (The case k = 8.) 

£/(£2) -^3 G 8(£/(£2)). 

This is Theorem 5.8 of [8]. 

5. The case of sectioning orientable bundle TJ over M with w4(j]) =£ 
w4(M). The «-MPT for the fibration 

n:BSpmn_k^BSpmn 

is similar to that given by Table 1 or Table 2 depending on whether k = 1 
or 8. We will retain the same notation. Note that for k = 7, k6 and k\ will 
be defined by 

(Sq4 + w4)k\ = 0 and (XSq4 + w4 -)*3 + S^Sq4k] = 0 

respectively and for k = 8, k\ and fc| will be defined by 

(Sq* + w8 -)*:1 = 0 and 

(XSq4 + w4 -)fc2 + S#SqAk\ = 0. 

Thus if H>4(TJ) ¥= w4(M), for k = 1, 
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(0, jii) G Indet"~4''2( (k]9 k3
4)9 M) 

where fi e Hn(M) is a generator. Also for k = 8, 

(0,/x) G Indet^ 4 ^( (4^) ,M) . 

This means that once we have a lifting of an «-plane bundle 17 satisfying 
w4(j]) ¥= w4(M) to E2 we can ignore the top dimensional tertiary 
obstruction. 

5.1. Note that the analogue of Theorem 2.5 for an orientable «-plane 
bundle TJ over M satisfying wri_5(j]) = 0 and 8wn_6(j]) = 0 holds. The 
proof is exactly the same. Hence we have by the above remarks and 
the analogue of Theorem 2.5: 

THEOREM 5.1. Suppose i) is an orientable n-plane bundle over M satisfying 
W4(T]) ¥= w4(M). Suppose 

Indet""4(^5, M) = I n d e f ~ 4 ( ^ , M\ 

S<?IT~\M\ Z) = S(f-IP~\M) and 

Indetw"4(* l f l, M) = S^Hn~\M\ 

Then i) has 1-linearly independent cross sections if and only if 

K - v f o ) = 0, w„_5(i?) = 0, 0 e 4>4(W„_9(T0), 

0 G <t>xti(wn--j(y))andO e I//5(WW_9(TJ) ). 

5.2. Similarly the analogue of Theorem 2.6 holds for an orientable 
«-plane bundle satisfying W„_7(TJ) = 0. Therefore by the discussion at the 
beginning of this section and the analogue of Theorem 2.6 we have 
the following existence theorem. 

THEOREM. Suppose 

W4(T?) * w4(M), S<?H5(M) = 0, 

Indet"~4(^5, M) = Indet"~4(^, M) and 

W8(T0 * K8(M), 

the %-th Wu class of M. Then 7] has 8 linearly independent cross-sections if 
and only if 

wn-i(v) = 0, <M>*-9<>?)) = 0 and 0 €= ^ 5 O „ _ 9 ( T 0 ) . 

6. Indeterminacy of £2. In addition to all the cohomology operations we 
have used so far we need to consider the following stable secondary 
cohomology operations associated with the following relations 
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f T^SfSq^Sq2 + xSq4Sq4 = 0 

I T2:Sq2(Sq4Sq2) + xSq4Sq4 = 0 

1 r3:XSq\S<?Sql) + Sq3(Sq1 + xSq1) = 0 

Ti:Sq\Sq2Sql) = 0 
V 

By virtue of the last section we shall now assume for an orientable 
«-plane bundle TJ over M that W4(T)) = w4(M) = 0. According to Atiyah 
[2], the S-dual of T(rj) is the Thorn space of the stable bundle a = —17 — T 
where r is the tangent bundle of M. Primary piece of 

Indet" '""4(^, k\) = {0} X S^Hn~6(M) 

for the case k = 1. 

indet"'"-4(4 k]) = (r„ tfA)ir-\ 
where 

Z>"~7 = {JC G H"~\M; Z):Sq2x = 0} 

and <f>f, is the stable secondary cohomology operation of degree 3 defined 
on integral class and associated with the relation 

SfSq2 = 0. 

Now by inspection, if W4(T)) = w4(M), 

(6.2) Indet2"(fi, TVj) = TxD
2n~\Tri) + r2//2"~7(7ij) 

+ r3j/2"~9(rT,) + r5H
2"-\TV) 

where D2n~7 c H2"~\TT\) is defined by 

Z)2" - 7 = {* G H2"~1(T7)):Sq2x = 0}. 

Notice that 
P i Z )2«-7 ( r 7 j ) c r 27/2„-7 ( r T ) ) 

Apply the 5-duality pairing and by Maunder [6], we have for any 
x G H2n~\Tri) 

< r 2 * , I / ( - i j - T ) > 

= <x, x r 2 f / ( -T, - T ) > 

= (x, Sq\2U(-V] ~ T )> 

where £/(—•») — T) is the Thorn class of — TJ — T. 
This is because 

X r
2 = 5̂ f <f>0,2 + 4>2,2-
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Since w4( —TJ — T) = 0 and M is 3-connected mod 2, a = —17 — r is 
classified by a map 

for some large N. Then 

<j>22(U(BSON(S))) = 0, 

where U(BSON(8) ) is the Thorn class of the universal TV-plane bundle 
over BSON(S). Now let 

vA G H\BSON(%) ) « z2 

be a generator. Then 

4.0>2t/(55CV<8> ) = U(BSON(%) ) • v4. 

Now for any bundle £ over M classified by a map 

h:M ^ BSON(%). 

Define vA(£) to be h*(i>4). Hence we have by the above remarks, 

(6.3) (T2x, U(-r, - T) > = (x, Sq\U(-7) - r) • vA{a) ) > 

= (x • U(a) • Sq\(a) > 

= 0 if S<?vA(a) = 0. 

Similarly since 

X(r5) = Sq\i o Sq] 

is trivial on integral classes, for any x e H n~ (7TJ), r5(x) = 0 modulo 
zero indeterminacy because 

<r5x, U(a) > = (x, XT5U(a) > = (x, Sql<j>u(SqlU(a) ) > 

= 0 Vx e H2n~5(Tr\). 

Now the 5-dual of T3, xr3 , is associated with the relation 

(6.4) (Sq5Sql)Sq4 + (Sq1 + XSq1)(Sq2Sql) = 0. 

Therefore on U(a), 

X(r3) = Sq2Sq\2 + Sfsfop 
Thus for any x <= H2n~9(Tr)) 

(T3(x), U(a) > = (x, Sq2Sqi4>oaU(a) > 

= (x, U(a) • Sq2Sq3P4(a) > 

= 0 

since Sq\ = 0 in H\BSON(%) ). 
Hence we have the following 
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THEOREM 6.5. Suppose W4(TJ) = w4(M). Then 

Indet2"(fi, TV») = Y2{Hln~\Ti\)) 

and is trivial if Sq v4(a) = 0. 

Similarly we have 

THEOREM 6.6. Suppose w4(M) = 0. Then 

Indet2"(Œ, M X M) = T2H
2n~\M X M) and 

Indet2"(Œ, M X M) = 0 

i / S ^ a - r ) X ( - r ) ) = 0orifSq*V4(-T) = 0. 

7. The case when the top dimensional tertiary obstruction has non-trivial 
indeterminacy. Let TJ be an orientable «-plane bundle over M. Suppose 
that 

Indet""40//5, M) = siHn~6{M) and W4(TJ) = w4{M). 

7.1. The case k = 7. If 

Indet"(^4, M) ^ 0, 

since the primary piece of I n d e t " ^ , M) is trivial, we see that 

(0, 0) G (/ci fcftij) if 0 G fcfo). 

Thus we have 

THEOREM. Suppose 

Indet""Vi , i ?
 M) = SiHn~\M\ 

S^Hn~7(M; Z) = S^ i / n _ 7 (M) and 

Indetn(*3, M) ¥= 0. 

77ze« 17 /zos1 7 linearly independent sections if and only if 

Swn_1(r]) = 0, w„_5(T7) = 0, 

0 e < M > „ _ 9 ( Î ] ) ) , 0 G ^ f l ( W | I _ 7 f t ) ) , 

S6(U(rÙ) = 0and0 e * 5 K _ 9 ( i j ) ) . 

This follows from a theorem similar to 2.5 where the condition 
W4O7) = 0 is dropped. 

7.2. The case k = 8. Suppose W4(T)) = 0. 
If Indet"(^, M) * 0, (0, 0) e (Jfcf, jfc?)(i)) if 0 G fcfo). Then similar 

to the case k = 7, we have 
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THEOREM. Suppose either 

Wg(ij) = K8(M) and SiHn~\M) = SiSqxHn~^(M) 

or 

Sq2H5(M) = 0. 

Iflndef(k3, M) ^ 0, then rj admits 8 linearly independent sections if and 
only if 

W„_7(TJ) = 0 , 0 E * 4 K _ 9 ( Î Ï ) ) , 

0 e f8(I/fo)) W 0 e ^ ( ^ _ 9 ( T , ) ) . 

8. The case when the top dimensional tertiary obstruction has trivial 
indeterminacy. Let TJ be an orientable «-plane bundle over M with 

W4(T)) = w4(M) = 0. 

8.1. The case k = 7. Recall from Section 6 that 

Indet"(4 M) = TXET'\ 

By S-duality TxD
n~7 = 0 modulo zero indeterminacy if 0 e xTj ( £/( — T) ) 

or if 

Sq*v4(-r) e Sq2H5(M). 

Theorem 2.5, Theorem 4.7 (1), 6.5 and the admissible class theorem of [8], 
give the following: 

THEOREM. Suppose 

S^Hn~\M\ Z) = Sq2Hn~7(M), 

Sq\»4(-V) + P4(-T)) = 0, 

Indet"^, M) = 0, 

S^Hn~6(M) = I n d e t n " 4 ( $ u , M) A/K/ 

I n d e t " - 4 ^ , M) = Indetn~\k]9 M). 

77ie« r; admits 7 linearly independent cross sections if and only if 

0 e 4 > M K _ 7 ( T 0 ), S6(U(TI) ) = 0 , 0 G ^ K _ 9 ( T , ) ) and 

0(1/(10) = 0. 

8.2. The case k = 8. As for the case /: = 7, we have a similar theorem 
for the existence of 8 linearly independent cross sections of TJ. 
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THEOREM. Suppose 

Sq\p4(-V) + v4(-r)) = 0, 

lndet"(kl M) = 0 and 

Indet"~4(^5, M) = Indet""4(/c], M). 

Suppose either 

W8(T}) = F8(M) andSiH^iM) = Sq2SqiH"-&(M) or 

5^/ / 5 (M) = 0. 

Then TJ admits 8 linearly independent cross sections if and only if 

W„_7(TJ) = 0, 0 e ^ K . Ç O J ) ) , 0 G r8(I/(7,)), 

0 e ^ 5 K _ 9 ( t , ) ) a«J B(I/(u)) = 0. 

This is a consequence of Theorem 2.6, Theorem 3.5, Theorem 4.7 (2), 
6.5, and the admissible class theorem of [8] applied to 6.5 and the fact 
that 

Indet2,I(S, 7Vj) = Indet2"(12, Ti\) = 0. 

9. Evaluation on Thom complex of the tangent bundle of M. We now 
specialise to the case when TJ is the tangent bundle over M. We shall be 
considering the stable cohomology operation f6 and the secondary 
operation J8 and the tertiary cohomology operation £2. 

Suppose M is a closed, connected and smooth manifold of dimension q 
and q is odd. Let 

g:Mf X M' -> T(T) 

be the map that collapses the complement of a tubular neighbourhood of 
the diagonal in M X M' to a point. Let U = g*(U(r) ), where U(r) is the 
Thom class of the tangent bundle of M'. Then we have the decomposition 
of Milnor and Wu: 

(9.1) t/mod2= 2 2 «f®/?*-,+ 2 2/*;_,• ®«? 
2i<<7 /c 2/<<7 /: 

where af e ^"(M'), £*_, <E Hq~\M) and af U ^ _ z = ô^/x, /x G 
Hq(M) is a generator and 8kj is the Kronecker function. Then we have 

LEMMA 9.2. ( [15, Section 4] ). Let 

A = 2 af 0 jS^_,- G JÏ*(M' X M') 

6e as g/vew by 9.1. 7%ew 
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(i) U mod 2 = A + t*A, where 

t*:H*(M' X M') -> #*(M' X M') 

is the homomorphism induced by the map that interchanges the factors. 

(ii) A U t*A = X2( A O/* ® /*. 

Then according to Mahowald and Randall ( [12] ), we have the 
following 

THEOREM 9.3. Suppose M is a spin manifold of dimension n = 1 mod 8 
with n > 7. Let A be as given by Lemma 9.2. Then 

(i) S(f-3A = Sqn~3Sq1A = (S(f~3Sq3 + S<f~xSqx)A = 0. 
(ii) f6 w defined on A and so on t*A. In particular f6([/(r) ) = 0 modulo 

zero indeterminacy. 

Since n is congruent to 7 mod 8, and M is a spin manifold it follows 
from Wu's formula, 6.6 of [8], that wn_3(M') = 0. Thus 

V 3 ( t / ( r ) ) = V 3 ( ^ + fM) = S(f~3A + t*Sqn~3A = 0. 

But Sqn~3A is of bidegree (« — 1, « — 2) and so 

S<f~3A = 0. 

Similarly, it is shown that 

Sqn~3Sq2A = 0. 

Now 

S(f~3Sf = S^iS^'^Sq2) 4- Sql(Sqn~3Sq2) and 

SfSif-2 = S<f-lSql. 

Therefore since M' is a spin manifold, by Wu's duality, 

(Sq"~3Sq3 + S ^ S V M = 0. 

This proves (i). Therefore f6 is defined on A and so on t*A. The last 
assertion is proved in [12, Section 2]. 

Now we return to our manifold M. Recall that M is 3-connected mod 2. 
For the rest of this section we shall assume that w4(M) = 0. Recall that f 8 

is a stable cohomology operation if n == 15(16) > 15 and is non-stable 
if n = 7 (16) ^ 23. We shall exploit the technique of Mahowald [5] 
to evaluate ? 8 ( 1 / ( T ) ) . Note that Indet2"(f8, T(T)) is trivial since 
w8(M) = K8(M), the 8-th Wu class of M. 

Let A G Hn{M X M) be the class given by the decomposition (9.1). 
Suppose wn_1{M) = 0. Then 

5'^7_7(v4 + / M ) = 0. 

But it can be shown that Sqn~1A is of bidegree (n — 7, n). Hence 
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Scf-'A = 0. 

Since 

S<f~5Sq5 + Sq^Sq1 = Sq2Sqn~1Sq5 + Sq1Sqn~%Sq6 

+ SqlSq"~7Sq6, 

(Scf~5Sq5 + S(f~1Sq1)A = 0. 

Hence we have 

PROPOSITION 9.4. Suppose wn_1(M) = 0. Tfcen 
(i) S ^ " l 4 - 0, 

(ii) Jg w defined on A, hence orTT^A. 

THEOREM 9.5. Suppose wn_7(M) = 0. 77*e« f8 w defined on U(r) and 
modulo zero indeterminacy, 

y (Tj( \ \ _ / 0 if n = 15 mod 16. 
SgC^W ) - \ X 2 (M) • £/(T) • /i i/w = 7 mod 16. 

To prove 9.5 we shall exploit the technique of Mahowald. 
Let p\P -» ^ be the universal example space for f8 on «-dimensional 

mod 2 cohomology classes. Consider A e Hn{M X M) as a map 

^ : M X M - > Kn. 

Then 9.4 says that A has a lifting 2 j M X M -> P to P. Let f €E #2w(P) be 
a representative for J8. Note that A o t is a lifting of /*vl represented by 

Now P is a //-space and so we have a multiplication map 

m:P X P ^ P. 

Then the map h = mo (A, A o t)is a. lifting of A + / M regarded as a map 
m o (A, A o t). Let f G H2n(P) be a representative for f8. Then if £8 is 
stable 

w*f = 1 0 f + ? 0 1 and 

« * f = i 0 î + j : 0 i + ? » | B 0 / ? * ^ 

if f8 is non-stable. Thus 

/,*f = J * f -f *Mf for « = 15 mod 16 

But t*:H2n(M X M) -> i/2"(M X M) is the identity homomorphism. 
Therefore 

h*$ = 0 if n = 15 mod 16. 

Similarly if n = 1 mod 16, 

A*f = l * f + *M *f -f A U *M = x 2 ( M ) 0 ® M)-
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Let U: T(T) —> Kn represent the Thorn class of the tangent bundle of M 
reduced mod 2. Let 

t7:r(T)-> p 

be any lifting of U to P. Then / = U o g is a lifting of 4̂ 4- /*vl. Since g* is 
a monomorphism in dimension 2n, ?8(£/(T) ) vanishes if and only if 

g%(U(T))=f*(0 = o. 

Since/and h are both liftings of g*(U(r) mod 2), there is a map 

l:M X M-> QC, 

where 

C = ^2«-7 X ^2«-3 X ^ 2 » - l X K2n> 

unique up to homotopy such that / and m o (/ o /, h) are homotopic, 
where i:QC —> P is the inclusion of the fibre. We can identify / 
with the quadruple (a, b, c, d) where a, b, c, d represent some classes in 
H2n~*(M X M), H2n~\M X M), H2n~2(M X M) and H2n~x(M X M) 
respectively. 

The class /' o / is invariant under t since both / and h are obviously 
invariant under t. Thus the homotopy class [/] 4- [lot] lies in the image of 
the homomorphism, 

[M X M, *„_!] -> [M X M, QC]. 

I.e., there exists x e Hn~l(M X M) such that 

(9.6) [/] + [ /o / ] = ( ^ " 7 x , 

S(f-1Sq4x, (Scf^Sq2 4- Sqn~7Sq2Sq4)x, 

(S(f~lSql + S(f~3Sq3 4- Sq"~5Sq5 4- Scf~7 Sq7)x) 

= (Sq"~7x, Sq"~7Sq\ 0, 0). 

By the connectivity condition on M we may assume that c and J are trivial. 
Therefore, since Sq4H2n~4(M X M) = 0, 

/ * £ = A*f 4- S?8* 4- S?4* 

ÏQ7Ï = lS(fa iin = 1 5 < 1 6 > 
lx2(M)M ® M + S^fl if n = 7(16) 

From (9.6) we have that 

(9.8) a 4- t*a e S^~7Hn~l(M X M). 

Note that S48 is trivial on any class in # ' (M) ® H2n~%~\M) with 
bidegree (/', 2« — 8 — /) different from (n — 8, n) and («, « — 8). We shall 
show that Sq*a = 0. This would prove 9.5. For this we need the 
following. 
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LEMMA 9.9. Let M be an orientable closed, connected and smooth 
manifold of dimension n = 1 mod 8. Suppose w2(M

f) = 0. Let 

p:H2n~\M' X M) -> Hn~\M') ® H"(M') 

be the projection corresponding to the Runneth formula. Then 

Sq"~7Hn~l(M' X Àf) c KerP . 

The proof is easy. Let 

a ® 0 e Hn~\M' X M'). 

Then by the Cartan formula and Wu-duality we see that V ~ V 0 0) 
does not have any non-trivial element with bidegree (n — 8, n) and 
(/i, « - 8). 

Therefore, since 

« + t*a e Sqn~1Hn~\M X M), 

by 9.9 a is symmetric in the classes with bidegree (n — 8, «) and 
(«, « — 8). Therefore Sg8^ = 0. And this completes the proof of 9.5. 

Following 6.9 of [8] we can derive the following. 

THEOREM 9.10. Let A e Hn(M X M) be as given by the decomposition of 
9.1. Suppose w4(M) = 0. Then 

(i) S(p-%SfA = S(f~9SiSqXA = Sq^SqU = Sqn"6A = 0; 
S(f~USq1SqlA = 0; (Sq«-9Sq2Sq3 + Scf~7Sql)A = 0; 

(ii) Suppose 0 e ^4(ww_9(M) ). 77zen fi w defined on A. Hence £2 is 
defined on t*A. In particular Çl(U(r) ) = 0 modulo zero indeterminacy. 

(iii) Suppose wn_1{M) = 0 and 0 e <J>4(ww_9(M ) ), f/*e« £2 w defined on A 
andQ(U(r)) = 0. 

Proof The proof of (i) is similar to that of 6.9 in [8]. If n = 7 + 8s, then 
for any JC e i /3 + 4 5(M), J G i/4+4*(M), 

Sq4s~3Sq1Sqlx = Sq4s-{Sqlx, 

Sq4s~]y = Sq4s~3Sq2y if s is odd, and 

Sq4s~3Sq1Sqlx = Sq4s~3Sq1y = 0 if s is even. 

Now it can be shown that 

S<f-uSiSqxA = 2 (Sq*°-WSqXak
3+A, ® Sq4s~l(3k

4+4s 
k 

+ Sq4s-iSjak
3+4s®Sq4s-3Sq2llk

4_4s). 

Thus by the above remark 

Sqn~USq2SqlA = 0. 
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The other cases are similar. 
Part (iii) follows from (ii) and naturally since fi c fi and that wtl_1(M) 

= 0 implies that 

S(f~7A = Stfl~7t*A = 0. 

Part (ii) is harder. First we check that f} is defined and trivial on A. It 
can be shown that if n = 7 + &s, then 

5 ^ 9A = w„_9(M) 0 /x 

^45+6 + 2 ( « î + 4 / ® Sq«-3flk4 
k 

+ 2(Sq4s+]ak
4s + 2®Sq4s~3l3l+5 

k 

+ Sq4sak
4s+2 ® Sq4s-Y4s + s) 

+ 2 (SAl+3 ® 5^"2i8i+4 

+ 5 ^ - ' a l + 3 ®Sq4s-]pk
4s+4). 

f ! can be chosen in such a way that 

f,(t/(x)) = 4>4(S(f-9U(T)). 

Hence 

g*f,(f/(T)) = f,(g*I/(T)) = * 4 ( W + rM)) 

Since M is 3-connected mod 2 and w4(M) = 0, by a Cartan formula for <£4 

and the above proceeding, 

(9.11) US<f~9A) = * 4 K - 9 ( ^ ) ) ® M 

+ 2 ( « i + , ) 2 ® * 4 ( ^ - X + 6 ) 

+ 2{* 4 (^ + i «i + 2 )®^-x + 5 

+ 5 ^ « t + 2 ® 0 4 ( ^ 4 s " 2 i 8 i + 5 ) } 

+ 2 { * 4 ( sA i + 3 ) ® s<?45~2# - 2 0 £ 
4s + 4 

+ Sq
4s-lak

4s + 3®USq4s-iPk4+4s)} 
4 2«-5 modulo Inder" ^ M X M). 
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But by S-duality 

XMU(-T)) = Sq\x(U(-*)) = 0-

Therefore <f>4 which is defined on Hn~4(M) is trivial on Hn~4(M) modulo 
zero indeterminacy. It follows from (9.11) that 

Thus 

0 e *4(w„_9(M)) =» 0 G < |> 4 (^- 9 ^) . 

Hence 0 e fj(^4). Thus £2 is defined on ^4, hence on t*A. 
Let P2 —> Px —» A^ be the universal example tower of space for the 

operation fl. Let U be the Thorn class of T reduced mod 2 and represented 
by a map 

Let Û be lifting of £/ to Px such that f7 also has a lifting £/ to P2. Let 

WjiPj X Px -* Px and 

m2:P2 X P2-+ P2 

be the multiplication maps. Let A e Hn(M X M) be represented by a 
map 

,4:M X M-* Kn 

also denoted by the same symbol. If 0 e <j>4(wn_9(M) ), £2 is defined on A. 
Let ^ be a lifting of A to Pj and A a lifting of A to P2. Then 

/z = mx o (A, A o t) 

is a lifting of U o g to Px and 

/* = ra2 o {A, 4̂ o t) 

is a lifting of h to P2. Let / = U o g. Then / i s also a lifting of U o g to 

Since / and h are both liftings of U o g there is a map 

l\M X M - > Q C l 9 

where 

Q = ^2« -6 X ^2«-6 X ^2«-8 X ^2« -4 X ^2« -2 

such t h a t / a n d hx = mx o (ix o I, h) are homotopic where 

ix:ttCx - > P ! 

is the inclusion of the fibre. 
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Consider the following fibre square. 

I "' l 

We can represent / as a vector (y, z, c, d, 0), where 

H2n \M X M), c H2n~9(M X M) and 

d e H2"~5(M X M). 

The class /, o / is invariant under t since both / and h are obviously 
invariant under /. Thus the homotopy class [/] + [lot] lies in the image of 
the homomorphism 

[M X M, Kn_\] ^[M X M, QC,]. 

Note that since b o t h / a n d h lift to P2, I must lift to G, with a lifting 

T:M X M^GX. 

There is a class 0 e Hn~x{M X M) such that 

[/] + [/o /] = (S<f ~60 + S<f~7Sq]8, 

(Sq"~9sq2sq
l + sq"~ssq2)e, 

Sq"-USq2Sq]0, 

(Sqn'9Sq2Sq3 + Sqn~1Sq2Sq])8, 0). 

It can be easily checked that 

Sq"~6H"~\M X M) = 0 

and (S^~7Sqle, (Sqn~9Sq2Sql + Sq"~&Sq2)d) is of the form 

( (S?1 a)2 ® /i + ju ® ( ^ ' a ) 2 , 

( V ' & T 2 + Sq4s~2Sq2Sql)a ® fi 

+ ix®(Sq4s~lSq2 + Sq4s~2Sq2Sq])a), 

where a e i / 4 j " ' ( M ) . 
Since 

H2n~\M X M) « Hn~\M) 0 i/"(M) © #" (M) ® H"~\M) 

we can write 

>> = / ® ju. + JU, ® / ' 
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where / , y" <= Hn 7(M). Therefore 

y + t*y = ( / + y") ® /x + /I 0 ( / + / ' ) • 

Since Tx is defined on j ; , Tj is defined o n / a n d / ' . Therefore modulo zero 
indeterminacy 

W + y") = r,(/) + r^/o. 
Now 

I^S^a) 2 = I ^ ^ a ) = Tx(Sq2Sq4s~la). 

But by S-duality pairing, 

(T^SfSq^-'a), 1 / ( - T ) > = (ScfSq^a, X W - T ) > 

= < V V S<?(U(-T) • Sq\(-r) ) > 

= < ^ - ' « , U(-r)SiS^v4(-r)). 

But Sq2Sq3p4(-r) = 0. Thus r,(S^'a)2 = 0. Hence r , ( / + y") = 0 and 
so 

r,(/) = W). 
Thus 

r ^ / ®/i + /x ® / ' ) = Tx(y') ® ix + /x ® Tx(y") = 0. 

Similarly we can show that T2(z) = 0. The proof of Theorem 6.5 shows 
that T3(c) = 0, T5(d) = 0. Hence 

r,(jo + r2(z) + r3(c) + r5(<o = o. 
Now h = ra2 o (/j o /, /z) is a lifting of mx o (^ o /, h) ~ f. Let w be a 

representative for the operation Œ. Then 

h *w = h*w -f l*ifw. 

Now 

7"*Ffw e r,(^) + r2(z) + r3(c) + v5(d) = o. 
Therefore 

/z *w = /z*w = ^4*w + t*A*w = 0. 

N o w / = lu o g is a lifting of 

f ~ mxo (ix o /, A). 

Since the primary piece of the indeterminacy of S is trivial, 

y*w = h *w = 0. 

That is 
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g*U*w = 0. 

Since g* is injective, 

U*w = 0. 

Thus £1(U(T) ) = 0 modulo zero indeterminacy. 

10. Vector fields on manifolds. We shall now prove Theorem 1.1 and 
Theorem 1.2. 

Suppose w4(M) = 0. Recall that then 

I n d e t " ^ , M) = T ^ ' 1 

for the case k = 7. 

10.1. Proof of Theorem 1.1. I n d e f - 4 ^ , M) = I n d e t " - 4 ^ , M) im
plies that 

I n d e t " - 4 ^ b M) = SiHn~\M\ 

Furthermore if n = 7 mod 8, 

K - W = 0, w„_5(M) = 0. 
In particular if n = 15 mod 16, 

*v„_7(M) = H>„_9(M) = 0. 

If Indet"(&4, M) ¥= 0, the hypothesis of Theorem 7.1 is satisfied. Thus it 
follows from 7.1 and 9.3 (ii) that Span(M) = 7 if and only if 

0 e <t>4(wn_9(M) ) , 0 e *,,,(*„ _ 7 (M)) and 

0 G ^5(ww_9(M)). 

Thus by the above remark if n = 15 mod 16, Span(M) = 7. If 
n = 7 + 16s with « > 7, then ww_7(M) = Fg5, where VSs e #8 5(M) is 
the 8s-th Wu class of M. It is easily seen that 

Therefore by a Cartan formula for $x 1? 

modulo indeterminacy of <f>} x. Thus 

This proves the assertion in (ii) when n = 1 mod 16 and 

Indet"(^, M) # 0. 

The case when I n d e t " ^ , M) = 0 follows from 8.1, 9.3 and 9.10. This 
completes the proof. 
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Notice, if Sq3v4(-r) G Sq2H5(M\ in applying 8.1 we only require 
that 

Indet" ~4(^5, M) = Indef ~\k\ M) 

for the case k = 7. We have actually proved a stronger result. 

THEOREM 10.2. (The case k = 7.) Suppose 

w4(M) = 0, 

Sq3p4(-r) G Sc?H\M\ 

Indet"_4(^5, M) = Indet"~4(^, M) and 

Sq2Hn'1(M; Z) = Sq2Hn~1(M). 

Then : 
(i) Ifn = 15 mod 16, span(M) ^ 7; 

(ii) If n = 1 mod 16 > 7, span(M) ^ 7 / /««J ow/y / / 

0 M 4 ( V ^ ) ) ^ 0 G ^ ( W „ _ 9 ( M ) ) . 

The proof of 1.2 is similar to that of 1.1, using Theorem 8.2, 9.5 and 
9.10. We have in fact a stronger result: 

THEOREM 10.3. (The case k = 8). Suppose 

w4(M) = 0, 

Sq\4(-r) G Sq2H5(Ml 

SiHn~\M) = Sq2SqlHn~\M) and 

Indet"-4(i//5, M) = Indet"~4(^, M). 

(i) If n = 15 mod 16 with n > 15, //*<?« span(M) ^ 8; 
(ii) Ifn = l mod 16 > 7, //zeft span(M) â 8 if and only if 

wn_7(M) = 0 , 0 e 4>4*n-9(M))9 

0 e ^ 5 ( % - 9 ( ^ ) ) and x2(M) = 0. 

11. Application. It is well known that Span(S8*+3) = 3. Let us 
consider 

M = S 3 + 8 5 X QPx+lk, s ^ 1, k ^ 0, 

where g P y is the quaternionic projective space of real dimension 4/. 
Then 

Indet"~4(i//5, M) = 0, 

H*{s+k\M) = i/8(5+/c) + 1(M) = 0, 
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H\M) = H%{s+k) \M) = 0 and 

Xi(M) = 0. 

By 1.2 we have the following immediate result. 

THEOREM 11.1. 

Span(S3+8* X QPx+2k) è 8 for s ^ 1, A: è 0. 
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