FRAME FIELDS ON MANIFOLDS

TZE BENG NG

1. Introduction. Consider the following stable secondary cohomology operations associated with the relations in the mod 2 Steenrod algebra: \mathfrak{A}

$$
\begin{aligned}
& \phi_{4}: S q^{2}\left(S q^{2} S q^{1}\right)=0 \\
& \phi_{5}:\left(S q^{2} S q^{1}\right)\left(S q^{2} S q^{1}\right)+S q^{1}\left(S q^{2} S q^{3}\right)=0
\end{aligned}
$$

such that

$$
S q^{2} \phi_{4}=S q^{1} \phi_{5}=0
$$

Let ψ_{5} be a stable tertiary cohomology operation associated with the above relation. We assume that $\left(\phi_{4}, \phi_{5}\right)$ and ψ_{5} are chosen to be spin trivial in the sense of Theorem 3.7 of [14].

Let $\phi_{0,0}, \phi_{1,1}$ be the stable Adams basic secondary cohomology operations associated with the relations:

$$
\begin{aligned}
& \phi_{0,0}: S q^{1} S q^{1}=0 \quad \text { and } \\
& \phi_{1,1}: S q^{2} S q^{2}+S q^{3} S q^{1}=0
\end{aligned}
$$

respectively.
Let n be a positive integer with $n \equiv 7 \bmod 8 \geqq 15$. Suppose that M is a closed, connected and smooth manifold of dimension n which is 3 -connected mod 2 and satisfies the condition $w_{4}(M)=0$, where $w_{i}(M)$ is the ith-mod 2 Stiefel-Whitney class of the tangent bundle of M. Let the $\bmod 2$ semi-Kervaire characteristic be defined by

$$
\chi_{2}(M)=\sum_{2 i<n} \operatorname{dim}_{\mathbf{Z}_{2}}\left(H^{i}(M)\right) \bmod 2 .
$$

All cohomology will be ordinary singular cohomology with \mathbf{Z}_{2} coefficients unless otherwise specified. Let

$$
\delta: H^{*}\left(-, \mathbf{Z}_{2}\right) \rightarrow H^{*+1}(-, \mathbf{Z})
$$

be the Bockstein operator associated with the exact sequence

$$
0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Z} \rightarrow \mathbf{Z}_{2} \rightarrow 0
$$

We shall prove the following theorems:

Theorem 1.1. Suppose

$$
\begin{aligned}
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=S q^{2} H^{n-6}(M) \quad \text { and } \\
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M) .
\end{aligned}
$$

(i) If $n \equiv 15 \bmod 16 \geqq 15$, then $\operatorname{Span}(M) \geqq 7$.
(ii) Suppose $n \equiv 7 \bmod 16>7$. Then $\operatorname{span}(M) \geqq 7$ if and only if

$$
0 \in \phi_{4}\left(w_{n-9}(M)\right) \quad \text { and } \quad 0 \in \psi_{5}\left(w_{n-9}(M)\right) .
$$

Theorem 1.2. Suppose

$$
\begin{aligned}
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=S q^{2} H^{n-6}(M) \quad \text { and } \\
& S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)
\end{aligned}
$$

(i) If $n \equiv 15 \bmod 16>15, \operatorname{span}(M) \geqq 8$.
(ii) If $n \equiv 7 \bmod 16>7, \operatorname{span}(M) \geqq 8$ if and only if $w_{n-7}(M)=0$, $0 \in \phi_{4}\left(w_{n-9}(M)\right), 0 \in \psi_{5}\left(w_{n-9}(M)\right)$ and $\chi_{2}(M)=0$.

We have the following immediate corollaries.
Corollary 1.3. Suppose $n \equiv 15 \bmod 16$.
(i) If M is 4-connected $\bmod 2$ and

$$
S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M)
$$

then $\operatorname{span}(M) \geqq 7$.
(ii) If M is 5-connected $\bmod 2$ and $n>15$, then $\operatorname{span}(M) \geqq 8$.

Corollary 1.4. If M is 5 -connected $\bmod 2$ and $n \equiv 7 \bmod 16$ with $n>7$, then
(a) $\operatorname{Span}(M) \geqq 7$
(b) $\operatorname{Span}(M) \geqq 8$ if and only if $w_{n-7}(M)=0$ and $\chi_{2}(M)=0$.

Throughout the rest of the paper M is assumed to be 3-connected $\bmod 2$.
2. The modified Postnikov tower. We shall consider the problem of finding a k-field as a lifting problem. Let $B \hat{S} O_{n}\langle 8\rangle$ be the classifying space of orientable n-plane bundles ξ satisfying

$$
w_{2}(\xi)=w_{4}(\xi)=0
$$

where $w_{i}(\xi)$ is the i-th mod 2 Stiefel-Whitney class of the bundle ξ. Let

$$
g: M \rightarrow B \hat{S} O_{n}\langle 8\rangle
$$

classify an n-plane bundle η over M. Then the problem of finding k-linearly independent sections of η is equivalent to lifting g to $B \hat{S} O_{n-k}\langle 8\rangle$. Hence we shall consider a Postnikov tower for the fibration

$$
V_{n, k} \rightarrow B \hat{S} O_{n-k}\langle 8\rangle \xrightarrow{\pi} B \hat{S} O_{n}\langle 8\rangle,
$$

and inspect the obstructions to lifting g to $B S O_{n-k}\langle 8\rangle$. Following [3] we shall consider the n-MPT for π for $k=7$ or 8 . The computation is done in [8]. We list the results in the following tables:

TABLE 1
The n-Postnikov tower for $\pi: B \hat{S} O_{n-7}\langle 8\rangle \rightarrow B \hat{S} O_{n}\langle 8\rangle$.

	k-invariant	Dimension	Defining relation
Stage 1	k_{1}^{1}	$n-6$	δw_{n-7}
	k_{2}^{1}	$n-5$	w_{n-5}
	k_{3}^{1}	$n-3$	w_{n-3}
Stage 2	k_{1}^{2}	$n-5$	$S q^{2} k_{1}^{1}=0$
	k_{2}^{2}	$n-4$	$S q^{2} k_{2}^{1}+S q^{3} k{ }_{1}^{1}=0$
	k_{3}^{2}	$n-3$	$S q^{4} k_{1}^{1}=0$
	k_{4}^{2}	$n-3$	$S q^{2} S q^{1} k{ }_{2}^{1}+S q^{1} k{ }_{3}^{1}=0$
	k_{5}^{2}	$n-2$	$S q^{4} k_{2}^{1}=0$
	k_{6}^{2}	n	$S q^{4} k_{3}^{1}=0$
Stage 3	k_{1}^{3}	$n-4$	$S q^{2} k_{1}^{2}=0$
	k_{2}^{3}	$n-3$	$S q^{2} S q^{1} k_{1}^{2}+S q^{1} k_{3}^{2}=0$
	k_{3}^{3}	$n-3$	$S q^{1} k_{3}^{2}+S q^{2} k_{2}^{2}+S q^{1} k_{4}^{2}=0$
	k_{4}^{3}	n	$\chi S q^{4} k_{3}^{2}+S q^{2} S q^{4} k_{1}^{2}=0$
Stage 4	k^{4}	$n-3$	$S q^{2} k_{1}^{3}+S q^{1} k_{2}^{3}=0$

Table 2
The n-MPT for $\pi: B \hat{S} O_{n-8}\langle 8\rangle \rightarrow B \hat{S} O_{n}\langle 8\rangle$.

	k-invariant	Dimension	Defining relation
Stage 1	k^{1}	$n-7$	$k^{1}=w_{n-7}$
Stage 2	k_{1}^{2}	$n-5$	$S q^{2} S q^{1} k^{1}=0$
	k_{2}^{2}	$n-3$	$S q^{4} S q^{1} k^{1}=0$
	k_{3}^{2}	$n-2$	$S q^{4} S q^{2} k^{1}=0$
	k_{4}^{2}	n	$\left(S q^{8}+w_{8}\right) k^{1}=0$
Stage 3	$(n>15)$		
	k_{1}^{3}	$n-4$	$S q^{2} k_{1}^{2}=0$
	k_{2}^{3}	$n-3$	$\left(S q^{2} S q^{1}\right) k_{1}^{2}+S q^{1} k_{2}^{2}=0$
	k_{3}^{3}	n	$\left(S q^{2} S q^{4}\right) k_{1}^{2}+\chi S q^{4} k_{2}^{2}=0$
Stage 4	k^{4}	$n-3$	$S q^{2} k_{1}^{3}+S q^{1} k{ }_{2}^{3}=0$

By the connectivity condition on M we only need to consider for the case of lifting g to $B \hat{S} O_{n-7}\langle 8\rangle, \delta w_{n-7}(\eta), w_{n-5}(\eta), k_{1}^{2}(\eta), k_{2}^{2}(\eta), k_{6}^{2}(\eta)$, $k_{1}^{3}(\eta)$ and $k_{4}^{3}(\eta)$ whenever these are defined.

According to [14, Proposition 4.2] we have the following technical result:

Proposition 2.1. Let w_{n-9} be the $(n-9)$-th mod 2 universal Stiefel Whitney class considered as in $H^{n-9}\left(B \hat{S} O_{n-7}\langle 8\rangle\right)$. Then
(a) $(0,0) \in\left(\phi_{4}, \phi_{5}\right)\left(w_{n-9}\right) \subset H^{n-5}\left(B \hat{S} O_{n-7}\langle 8\rangle\right)$
$\oplus H^{n-4}\left(B \hat{S} O_{n-7}\langle 8\rangle\right)$.
(b) $0 \in \psi_{5}\left(w_{n-9}\right) \subset H^{n-4}\left(B \hat{S} O_{n-7}\langle 8\rangle\right)$.

The proof is entirely analogous to that of Theorem 4.2 of [14]. We shall not present it here.

According to [14] $\phi_{1,1}$ is spin trivial and so we have
Proposition 2.2. (E. Thomas)

$$
0 \in \phi_{1,1}\left(w_{n-7}\right) \subset H^{n-4}\left(B \hat{S} O_{n-7}\langle 8\rangle\right)
$$

Let the n-MPT for $\pi: B \hat{S} O_{n-k}\langle 8\rangle \rightarrow B \hat{S} O_{n}\langle 8\rangle$ for $k=7$ or 8 be indicated by the following diagram:

By the connectivity condition on M, there is no obstruction to lifting any map from M into E_{3} to $B \hat{S} O_{n-k}\langle 8\rangle$.

Recall the definition of a generating class in [13]. Then we have the following Proposition due to E. Thomas. The proof is identical to that of Proposition 4.1 in the case $k=7$ and to Proposition 4.5 in the case $k=8$ in [14].

Proposition 2.3. (a) The class w_{n-9} in $H^{n-9}\left(B \hat{S} O_{n}\langle 8\rangle\right)$ is a generating class for the pair $\left(k_{1}^{2}, 0\right)$ in $H^{n-5}\left(E_{1}\right) \oplus H^{n-4}\left(E_{1}\right)$, relative to the pair $\left(\phi_{4}, \phi_{5}\right)$.
(b) The class $p_{1}{ }^{*} w_{n-9}$ is a generating class for k_{1}^{3}, relative to the operation ψ_{5}.

Similarly we have
Proposition 2.4. For $\pi: B \hat{S} O_{n-7}\langle 8\rangle \rightarrow B \hat{S} O_{n}\langle 8\rangle$, the class w_{n-7} in $H^{n-7}\left(B \hat{S} O_{n}\langle 8\rangle\right)$ is a generating class for k_{2}^{2} in $H^{n-4}\left(E_{1}\right)$.

Now by inspection of the k-invariants for the n-MPT for π and the connectivity condition on M, together with Proposition 2.1, 2.2, 2.3, 2.4 and the generating class theorem of Thomas [13] we have

Theorem 2.5. (The case $k=7$.) Let η be an orientable n-plane bundle over M satisfying

$$
w_{4}(\eta)=0, \delta w_{n-7}(\eta)=0, w_{n-5}(\eta)=0 .
$$

Suppose

$$
\begin{aligned}
& \operatorname{Indet}^{n-4}\left(\phi_{1,1}, M\right)=S q^{2} H^{n-6}(M) \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) \quad \text { and } \\
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M)
\end{aligned}
$$

Then
(i) $(0,0) \in\left(k_{1}^{2}, k_{2}^{2}\right)(\eta)$ if and only if

$$
0 \in \phi_{4}\left(w_{n-9}(\eta)\right) \quad \text { and } \quad 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right)
$$

(ii) $0 \in k_{1}^{3}(\eta)$ if and only if

$$
\begin{aligned}
& 0 \in \phi_{4}\left(w_{n-9}(\eta)\right), 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right) \\
& 0 \in k_{6}^{2}(\eta) \text { and } 0 \in \psi_{5}\left(w_{n-9}(\eta)\right) .
\end{aligned}
$$

Theorem 2.6. (The case $k=8$.) Let η be an orientable n-plane bundle over M satisfying $w_{4}(\eta)=w_{n-7}(\eta)=0$. Suppose

$$
\operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right)
$$

If either $w_{8}(\eta)=V_{8}(M)$, the 8 th Wu class of M, and

$$
S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M) \text { or } S q^{2} H^{5}(M)=0
$$

then
(i) $0 \in k_{1}^{2}(\eta)$ if and only if $0 \in \phi_{4}\left(w_{n-9}(\eta)\right)$
(ii) $0 \in k_{1}^{3}(\eta)$ if and only if

$$
0 \in \phi_{4}\left(w_{n-9}(\eta)\right), 0 \in k_{4}^{2}(\eta) \text { and } 0 \in \psi_{5}\left(w_{n-9}(\eta)\right)
$$

3. The top dimensional secondary obstructions. Let ζ_{6} be a choice of stable cohomology operation of Hughes-Thomas type associated with the following relation in \mathfrak{U} :

$$
\begin{aligned}
\zeta_{6}: S q^{4} S q^{n-3} & +S q^{2}\left(S q^{n-3} S q^{2}\right)+S q^{1}\left(S q^{n-3} S q^{3}\right. \\
& \left.+S q^{n-1} S q^{1}\right)=0
\end{aligned}
$$

such that

$$
S q^{4}\left(b_{n-4}\right) \cup b_{n-4} \in \zeta_{6}\left(b_{n-4}\right)
$$

where b_{n-4} is the fundamental class of the space Y_{n-4} over K_{n-4} with classifying map $\left.\left(S q^{2}, S q^{1}\right)\right\rangle_{n-4}$.

Then the following is proved in [8].
Theorem 3.1. Consider the n-MPT for the fibration

$$
\pi: B \hat{S} O_{n-k}\langle 8\rangle \rightarrow B \hat{S} O_{n}\langle 8\rangle .
$$

Let γ be the pull back of the universal orientable n-plane bundle over $B \hat{S} O_{n}\langle 8\rangle$. Using this bundle induce bundles over E_{1}, E_{2} by p_{1} and $p_{2} \circ p_{1}$
respectively. Denote the Thom class of the resulting bundles by $U\left(E_{1}\right)$ and $U\left(E_{2}\right)$ respectively. Suppose $k=7$. Then

$$
U\left(E_{1}\right) \cdot k_{6}^{2} \in \zeta_{6}\left(U\left(E_{2}\right)\right)
$$

Let η be an orientable n-plane bundle over M satisfying

$$
w_{4}(\eta)=w_{n-5}(\eta)=0, \quad \delta w_{n-7}(\eta)=0
$$

Then by Theorem 3.1 together with the fact that

$$
\operatorname{Indet}^{2 n}(T(\eta))=\psi \operatorname{Indet}^{n}\left(M, k_{6}^{2}\right)
$$

(where ψ is the Thom isomorphism and $T(\eta)$ the Thom space of η), we have

Theorem 3.2. $0 \in k_{6}^{2}(\eta)$ if and only if $0 \in \zeta_{6}(U(\eta))$ where $U(\eta)$ is the Thom class of η.
3.3. Consider now the case $k=8$. Then Theorem 5.10 of [8] applies to give the existence of a secondary cohomology operation, ζ_{8} (stable if $n \equiv 15(16)$ and non-stable if $n \equiv 7(16)$) associated with the relation

$$
\begin{aligned}
\zeta_{8}: S q^{8} S q^{n-7} & +S q^{4}\left(S q^{n-7} S q^{4}\right) \\
& +S q^{2}\left(S q^{n-3} S q^{2}+S q^{n-7} S q^{2} S q^{4}\right) \\
& +S q^{1}\left(S q^{n-1} S q^{1}+S q^{n-5} S q^{5}+S q^{n-3} S q^{3}\right. \\
& \left.+S q^{n-7} S q^{7}\right)=0
\end{aligned}
$$

satisfying

$$
d_{n-8} \cup S q^{8} d_{n-8}+S q^{6} d_{n-8} \cup S q^{2} d_{n-8} \in \zeta_{8}\left(d_{n-8}\right),
$$

where d_{n-8} is the fundamental class of an universal example for $(n-8)$ dimensional class x satisfying $S q^{4} x=0$. Then for the n-MPT for π for the case $k=8$, we have

$$
\begin{equation*}
U\left(E_{1}\right) \cdot\left(k_{4}^{2}+w_{8} \cdot w_{n-8}\right) \in \zeta_{8}\left(U\left(E_{1}\right)\right) \tag{3.4}
\end{equation*}
$$

Since

$$
S q^{1}\left(U\left(E_{1}\right) \cdot\left(w_{8} \cdot w_{n-9}\right)\right)=U\left(E_{1}\right) \cdot\left(w_{8} \cdot w_{n-8}\right)
$$

by (3.4) and the connectivity condition on M we have
Theorem 3.5. (The case $k=8$.) Let η be an orientable n-plane bundle over M satisfying

$$
w_{4}(\eta)=w_{n-7}(\eta)=0
$$

If $w_{4}(M)=0$ then $0 \in k_{4}^{2}(\eta)$ if and only if $0 \in \zeta_{8}(U(\eta))$.
Of course if $w_{8}(\eta) \neq V_{8}(M)$ then

$$
\left(S q^{8}+w_{8}(\eta) \cdot\right) H^{n-8}(M)=H^{n}(M)
$$

and so trivially $0 \in k_{4}^{2}(\eta)$.

4. The top dimensional tertiary obstructions.

4.1. Let $\phi_{0,2}, \phi_{2,2}$ be the basic stable Adams secondary cohomology operations associated with the relation:

$$
\begin{aligned}
& \phi_{0,2}: S q^{1} S q^{4}+\left(S q^{2} S q^{1}\right) S q^{2}+S q^{4} S q^{1}=0 \quad \text { and } \\
& \phi_{2,2}: S q^{4} S q^{4}+S q^{6} S q^{2}+S q^{7} S q^{1}=0
\end{aligned}
$$

respectively.
Then Lemma 4.7, 4.17 of [8] says there exist stable secondary cohomology operations $\zeta_{1}, \zeta_{3}, \eta_{1}$ and η_{2} associated with the following relations (denoted by the same symbols)

$$
\left\{\begin{align*}
& \zeta_{1}: S q^{2}\left(S q^{n-6}+S q^{n-7} S q^{1}\right)=0 \tag{4.2}\\
& \zeta_{3}: S q^{4}\left(S q^{n-6}\right.\left.+S q^{n-7} S q^{1}\right)+S q^{4}\left(S q^{n-9} S q^{2} S q^{1}+S q^{n-8} S q^{2}\right) \\
&+\left(S q^{5} S q^{1}\right)\left(S q^{n-11} S q^{2} S q^{1}\right)=0
\end{align*} \quad \begin{array}{rl}
\eta_{1}:\left(S q^{4} S q^{2}\right)\left(S q^{n-9} S q^{2} S q^{1}\right. & \left.+S q^{n-8} S q^{2}\right) \\
& +S q^{2}\left(S q^{n-7} S q^{2} S q^{3}\right)=0 \\
\vdots\left(S q^{2} S q^{1}\right)\left(S q^{n-9} S q^{2} S q^{3}\right. & \left.+S q^{n-7} S q^{2} S q^{1}\right) \\
& +S q^{1}\left(S q^{n-7} S q^{2} S q^{3}\right)+\left(S q^{4} S q^{2} S q^{1}\right. \\
& \left.+S q^{7}\right)\left(S q^{n-11} S q^{2} S q^{1}\right)=0
\end{array}\right.
$$

satisfying

$$
\begin{equation*}
\Omega:\left(S q^{2} S q^{4}\right) \zeta_{1}+\chi S q^{4} \zeta_{3}+S q^{2} \eta_{1}+S q^{3} \eta_{2}=0 \tag{4.3}
\end{equation*}
$$

such that on b_{n-7} the fundamental class of Y_{n-7} over K_{n-7} with k-invariant $\left(S q^{1}, S q^{2}\right) l_{n-7}$,

$$
\left\{\begin{align*}
& S q^{4} b_{n-7} \cup b_{n-7}+\left(S q^{n-7} S q^{4}+S q^{n-9} S q^{6}\right. \tag{4.4}\\
&\left.+S q^{n-10} S q^{7}\right) b_{n-7}+S q^{n-6} \phi_{1,1}\left(b_{n-7}\right) \\
&+S q^{n-7} S q^{3} \phi_{0,0}\left(b_{n-7}\right) \in \zeta_{3}\left(b_{n-7}\right) \\
& S q^{n-6} \phi_{0,0}\left(b_{n-7}\right) \in \zeta_{1}\left(b_{n-7}\right) \\
&\left(S q^{n-4}\right.\left.+S q^{n-6} S q^{2}\right) \phi_{1,1}\left(b_{n-7}\right) \in \eta_{1}\left(b_{n-7}\right) \text { and } \\
& S q^{n-7} S q^{2} \phi_{1,1}\left(b_{n-7}\right) \in \eta_{2}\left(b_{n-7}\right)
\end{align*}\right.
$$

Let D_{k} be the universal example space for k-dimensional mod 2 cohomology class x satisfying $S q^{1} x=S q^{2} x=S q^{4} x=0, \phi_{0,0}(x)=0$ and $\phi_{1,1}(x)=0$. Let d_{k} be the fundamental class of D_{k}. Let $\widetilde{\zeta}_{1}, \widetilde{\zeta}_{3}$ be the relations obtained from ζ_{1}, ζ_{3} of (4.2) respectively by replacing

$$
S q^{2}\left(S q^{n-6}+S q^{n-7} S q^{1}\right) \text { and } S q^{4}\left(S q^{n-6}+S q^{n-7} S q^{1}\right)
$$

by

$$
\begin{aligned}
& \left(S q^{2} S q^{1}\right) S q^{n-7}+S q^{2}\left(S q^{n-7} S q^{1}\right) \text { and } \\
& \left(S q^{4} S q^{1}\right) S q^{n-7}+S q^{4}\left(S q^{n-7} S q^{1}\right)
\end{aligned}
$$

respectively. Then there exist stable secondary cohomology operations associated with $\widetilde{\zeta}_{1}, \widetilde{\zeta}_{3}$ also denoted by the same symbols such that

$$
\begin{align*}
& \widetilde{\zeta}_{1} \subset \zeta_{1}, \widetilde{\zeta}_{3} \subset \zeta_{1} \text { and } \tag{4.5}\\
& \widetilde{\Omega}:\left(S q^{2} S q^{4}\right) \widetilde{\zeta}_{1}+x S q^{4} \widetilde{\zeta}_{3}+S q^{2} \eta_{1}+S q^{3} \eta_{2}=0 .
\end{align*}
$$

Then Theorem 4.19 of [8] gives us
Theorem 4.6. There exist stable tertiary cohomology operations, Ω and $\widetilde{\Omega}$ associated with the relations (4.3) and (4.5) respectively such that

$$
\begin{aligned}
& d_{n-7} \cup\left(\phi_{2,2}\left(d_{n-7}\right)+S q^{3} \phi_{0,2}\left(d_{n-7}\right)\right) \in \Omega\left(d_{n-7}\right) \\
& \widetilde{\Omega} \subset \Omega \quad \text { and } \quad 0 \in \widetilde{\Omega}\left(d_{n-8}\right)
\end{aligned}
$$

Let $\nu_{4} \in H^{4}\left(B \hat{S} O_{n}\langle 8\rangle\right) \approx \mathbf{Z}_{2}$ be a generator. Then by the admissible class theorem of [8], and Theorem 4.6 we have

Theorem 4.7. (1) (The case $k=7$.)

$$
U\left(E_{2}\right) \cdot\left(k_{4}^{3}+\left(p_{2} \circ p_{1}\right)^{*} w_{n-7} \cdot S q^{3} \nu_{4}\right) \in \Omega\left(U\left(E_{2}\right)\right)
$$

(2) (The case $k=8$.)

$$
U\left(E_{2}\right) \cdot k_{3}^{3} \in \widetilde{\Omega}\left(U\left(E_{2}\right)\right)
$$

This is Theorem 5.8 of [8].
5. The case of sectioning orientable bundle η over M with $w_{4}(\eta) \neq$ $w_{4}(M)$. The n-MPT for the fibration

$$
\widetilde{\pi}: B \operatorname{Spin}_{n-k} \rightarrow B \operatorname{Spin}_{n}
$$

is similar to that given by Table 1 or Table 2 depending on whether $k=7$ or 8 . We will retain the same notation. Note that for $k=7, k_{6}^{2}$ and k_{4}^{3} will be defined by

$$
\left(S q^{4}+w_{4}\right) k_{3}^{1}=0 \text { and }\left(\chi S q^{4}+w_{4} \cdot\right) k_{3}^{2}+S q^{2} S q^{4} k_{1}^{2}=0
$$

respectively and for $k=8, k_{4}^{2}$ and k_{3}^{3} will be defined by

$$
\begin{aligned}
& \left(S q^{8}+w_{8} \cdot\right) k^{1}=0 \quad \text { and } \\
& \left(\chi S q^{4}+w_{4} \cdot\right) k_{2}^{2}+S q^{2} S q^{4} k_{1}^{2}=0
\end{aligned}
$$

Thus if $w_{4}(\eta) \neq w_{4}(M)$, for $k=7$,

$$
(0, \mu) \in \operatorname{Indet}^{n-4, n}\left(\left(k_{1}^{3}, k_{4}^{3}\right), M\right)
$$

where $\mu \in H^{n}(M)$ is a generator. Also for $k=8$,

$$
(0, \mu) \in \operatorname{Indet}^{n-4, n}\left(\left(k_{1}^{3}, k_{3}^{3}\right), M\right)
$$

This means that once we have a lifting of an n-plane bundle η satisfying $w_{4}(\eta) \neq w_{4}(M)$ to E_{2} we can ignore the top dimensional tertiary obstruction.
5.1. Note that the analogue of Theorem 2.5 for an orientable n-plane bundle η over M satisfying $w_{n-5}(\eta)=0$ and $\delta w_{n-6}(\eta)=0$ holds. The proof is exactly the same. Hence we have by the above remarks and the analogue of Theorem 2.5:

Theorem 5.1. Suppose η is an orientable n-plane bundle over M satisfying $w_{4}(\eta) \neq w_{4}(M)$. Suppose

$$
\begin{aligned}
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) \\
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M) \text { and } \\
& \text { Indet }^{n-4}\left(\phi_{1,1}, M\right)=\operatorname{Sq}^{2} H^{n-6}(M)
\end{aligned}
$$

Then η has 7-linearly independent cross sections if and only if

$$
\begin{aligned}
& \delta w_{n-7}(\eta)=0, w_{n-5}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(\eta)\right) \\
& 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right) \text { and } 0 \in \psi_{5}\left(w_{n-9}(\eta)\right)
\end{aligned}
$$

5.2. Similarly the analogue of Theorem 2.6 holds for an orientable n-plane bundle satisfying $w_{n-7}(\eta)=0$. Therefore by the discussion at the beginning of this section and the analogue of Theorem 2.6 we have the following existence theorem.

Theorem. Suppose

$$
\begin{aligned}
& w_{4}(\eta) \neq w_{4}(M), \quad S q^{2} H^{5}(M)=0 \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) \quad \text { and } \\
& w_{8}(\eta) \neq V_{8}(M)
\end{aligned}
$$

the 8 -th Wu class of M. Then η has 8 linearly independent cross-sections if and only if

$$
w_{n-7}(\eta)=0, \phi_{4}\left(w_{n-9}(\eta)\right)=0 \quad \text { and } \quad 0 \in \psi_{5}\left(w_{n-9}(\eta)\right) .
$$

6. Indeterminacy of Ω. In addition to all the cohomology operations we have used so far we need to consider the following stable secondary cohomology operations associated with the following relations

$$
\left\{\begin{array}{l}
\Gamma_{1}:\left(S q^{2} S q^{4}\right) S q^{2}+\chi S q^{4} S q^{4}=0 \tag{6.1}\\
\Gamma_{2}: S q^{2}\left(S q^{4} S q^{2}\right)+\chi S q^{4} S q^{4}=0 \\
\Gamma_{3}: \chi S q^{4}\left(S q^{5} S q^{1}\right)+S q^{3}\left(S q^{7}+\chi S q^{7}\right)=0 \\
\Gamma_{5}: S q^{3}\left(S q^{2} S q^{1}\right)=0
\end{array}\right.
$$

By virtue of the last section we shall now assume for an orientable n-plane bundle η over M that $w_{4}(\eta)=w_{4}(M)=0$. According to Atiyah [2], the S-dual of $T(\eta)$ is the Thom space of the stable bundle $\alpha=-\eta-\tau$ where τ is the tangent bundle of M. Primary piece of

$$
\operatorname{Indet}^{n, n-4}\left(k_{4}^{3}, k_{1}^{3}\right)=\{0\} \times S q^{2} H^{n-6}(M)
$$

for the case $k=7$.

$$
\operatorname{Indet}^{n, n-4}\left(k_{4}^{3}, k_{1}^{3}\right)=\left(\Gamma_{1}, \phi_{1,1}^{*}\right) D^{n-7}
$$

where

$$
D^{n-7}=\left\{x \in H^{n-7}(M ; \mathbf{Z}): S q^{2} x=0\right\}
$$

and ϕ_{11}^{*} is the stable secondary cohomology operation of degree 3 defined on integral class and associated with the relation

$$
S q^{2} S q^{2}=0
$$

Now by inspection, if $w_{4}(\eta)=w_{4}(M)$,

$$
\begin{align*}
& \operatorname{Indet}^{2 n}(\Omega, T \eta)=\Gamma_{1} D^{2 n-7}(T \eta)+\Gamma_{2} H^{2 n-7}(T \eta) \tag{6.2}\\
& \quad+\Gamma_{3} H^{2 n-9}(T \eta)+\Gamma_{5} H^{2 n-5}(T \eta)
\end{align*}
$$

where $D^{2 n-7} \subset H^{2 n-7}(T \eta)$ is defined by

$$
D^{2 n-7}=\left\{x \in H^{2 n-7}(T \eta): S q^{2} x=0\right\}
$$

Notice that

$$
\Gamma_{1} D^{2 n-7}(T \eta) \subset \Gamma_{2} H^{2 n-7}(T \eta)
$$

Apply the S-duality pairing and by Maunder [6], we have for any $x \in H^{2 n-7}(T \eta)$

$$
\begin{aligned}
& \left\langle\Gamma_{2} x, U(-\eta-\tau)\right\rangle \\
& =\left\langle x, \chi \Gamma_{2} U(-\eta-\tau)\right\rangle \\
& =\left\langle x, S q^{3} \phi_{0,2} U\left(-\eta_{1}-\tau\right)\right\rangle
\end{aligned}
$$

where $U(-\eta-\tau)$ is the Thom class of $-\eta-\tau$.
This is because

$$
\chi \Gamma_{2}=S q^{3} \phi_{0,2}+\phi_{2,2} .
$$

Since $w_{4}(-\eta-\tau)=0$ and M is 3 -connected $\bmod 2, \alpha=-\eta-\tau$ is classified by a map

$$
g: M \rightarrow B \hat{S} O_{N}\langle 8\rangle
$$

for some large N. Then

$$
\phi_{2,2}\left(U\left(B \hat{S} O_{N}\langle 8\rangle\right)\right)=0
$$

where $U\left(B \hat{S} O_{N}\langle 8\rangle\right)$ is the Thom class of the universal N-plane bundle over $B \hat{S} O_{N}\langle 8\rangle$. Now let

$$
\nu_{4} \in H^{4}\left(B \hat{S} O_{N}\langle 8\rangle\right) \approx \mathbf{Z}_{2}
$$

be a generator. Then

$$
\phi_{0,2} U\left(B \hat{S} O_{N}\langle 8\rangle\right)=U\left(B \hat{S} O_{N}\langle 8\rangle\right) \cdot \nu_{4}
$$

Now for any bundle ξ over M classified by a map

$$
h: M \rightarrow B \hat{S} O_{N}\langle 8\rangle
$$

Define $\nu_{4}(\xi)$ to be $h^{*}\left(\nu_{4}\right)$. Hence we have by the above remarks,

$$
\begin{align*}
\left\langle\Gamma_{2} x, U(-\eta-\tau)\right\rangle & =\left\langle x, S q^{3}\left(U(-\eta-\tau) \cdot \nu_{4}(\alpha)\right)\right\rangle \tag{6.3}\\
& =\left\langle x \cdot U(\alpha) \cdot S q^{3} \nu_{4}(\alpha)\right\rangle \\
& =0 \quad \text { if } S q^{3} \nu_{4}(\alpha)=0
\end{align*}
$$

Similarly since

$$
\chi\left(\Gamma_{5}\right)=S q^{1} \phi_{1,1} \circ S q^{1}
$$

is trivial on integral classes, for any $x \in H^{2 n-5}(T \eta), \Gamma_{5}(x)=0$ modulo zero indeterminacy because

$$
\begin{aligned}
\left\langle\Gamma_{5} x, U(\alpha)\right\rangle & =\left\langle x, \chi \Gamma_{5} U(\alpha)\right\rangle=\left\langle x, S q^{1} \phi_{1,1}\left(S q^{1} U(\alpha)\right)\right\rangle \\
& =0 \quad \forall x \in H^{2 n-5}(T \eta) .
\end{aligned}
$$

Now the S-dual of $\Gamma_{3}, \chi \Gamma_{3}$, is associated with the relation

$$
\begin{equation*}
\left(S q^{5} S q^{1}\right) S q^{4}+\left(S q^{7}+\chi S q^{7}\right)\left(S q^{2} S q^{1}\right)=0 \tag{6.4}
\end{equation*}
$$

Therefore on $U(\alpha)$,

$$
\chi\left(\widetilde{\Gamma}_{3}\right)=S q^{2} S q^{3} \phi_{0,2}+S q^{6} S q^{2} \phi_{0,0}
$$

Thus for any $x \in H^{2 n-9}(T \eta)$

$$
\begin{aligned}
\left\langle\Gamma_{3}(x), U(\alpha)\right\rangle & =\left\langle x, S q^{2} S q^{3} \phi_{0,2} U(\alpha)\right\rangle \\
& =\left\langle x, U(\alpha) \cdot S q^{2} S q^{3} \nu_{4}(\alpha)\right\rangle \\
& =0
\end{aligned}
$$

since $S q^{1} \nu_{4}=0$ in $H^{5}\left(B \hat{S} O_{N}\langle 8\rangle\right)$.
Hence we have the following

Theorem 6.5. Suppose $w_{4}(\eta)=w_{4}(M)$. Then

$$
\operatorname{Indet}^{2 n}(\Omega, T \eta)=\Gamma_{2}\left(H^{2 n-7}(T \eta)\right)
$$

and is trivial if $\mathrm{Sq}^{3} \nu_{4}(\alpha)=0$.
Similarly we have
Theorem 6.6. Suppose $w_{4}(M)=0$. Then

$$
\begin{aligned}
& \qquad \operatorname{Indet}^{2 n}(\Omega, M \times M)=\Gamma_{2} H^{2 n-7}(M \times M) \quad \text { and } \\
& \operatorname{Indet}^{2 n}(\Omega, M \times M)=0 \\
& \text { if } S q^{3} \nu_{4}((-\tau) \times(-\tau))=0 \text { or if } S q^{3} \nu_{4}(-\tau)=0 \text {. }
\end{aligned}
$$

7. The case when the top dimensional tertiary obstruction has non-trivial indeterminacy. Let η be an orientable n-plane bundle over M. Suppose that

$$
\operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=S q^{2} H^{n-6}(M) \quad \text { and } \quad w_{4}(\eta)=w_{4}(M)
$$

7.1. The case $k=7$. If

$$
\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right) \neq 0
$$

since the primary piece of $\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)$ is trivial, we see that

$$
(0,0) \in\left(k_{4}^{3}, k_{1}^{3}\right)(\eta) \quad \text { if } 0 \in k_{1}^{3}(\eta)
$$

Thus we have
Theorem. Suppose

$$
\begin{aligned}
& \text { Indet }^{n-4}\left(\phi_{1,1}, M\right)=S q^{2} H^{n-6}(M), \\
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M) \text { and } \\
& \text { Indet }^{n}\left(k_{4}^{3}, M\right) \neq 0 .
\end{aligned}
$$

Then η has 7 linearly independent sections if and only if

$$
\begin{aligned}
& \delta w_{n-7}(\eta)=0, w_{n-5}(\eta)=0, \\
& 0 \in \phi_{4}\left(w_{n-9}(\eta)\right), 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right), \\
& \zeta_{6}(U(\eta))=0 \text { and } 0 \in \psi_{5}\left(w_{n-9}(\eta)\right) .
\end{aligned}
$$

This follows from a theorem similar to 2.5 where the condition $w_{4}(\eta)=0$ is dropped.
7.2. The case $k=8$. Suppose $w_{4}(\eta)=0$.

If $\operatorname{Indet}^{n}\left(k_{3}^{3}, M\right) \neq 0,(0,0) \in\left(k_{3}^{3}, k_{1}^{3}\right)(\eta)$ if $0 \in k_{1}^{3}(\eta)$. Then similar to the case $k=7$, we have

Theorem. Suppose either

$$
w_{8}(\eta)=V_{8}(M) \text { and } S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M)
$$

or

$$
S q^{2} H^{5}(M)=0
$$

If $\operatorname{Indet}^{n}\left(k_{3}^{3}, M\right) \neq 0$, then η admits 8 linearly independent sections if and only if

$$
\begin{aligned}
& w_{n-7}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(\eta)\right), \\
& 0 \in \zeta_{8}(U(\eta)) \quad \text { and } \quad 0 \in \psi_{5}\left(w_{n-9}(\eta)\right) .
\end{aligned}
$$

8. The case when the top dimensional tertiary obstruction has trivial indeterminacy. Let η be an orientable n-plane bundle over M with

$$
w_{4}(\eta)=w_{4}(M)=0
$$

8.1. The case $k=7$. Recall from Section 6 that

$$
\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)=\Gamma_{1} D^{n-7}
$$

By S-duality $\Gamma_{1} D^{n-7}=0$ modulo zero indeterminacy if $0 \in \chi \Gamma_{1}(U(-\tau))$ or if

$$
S q^{3} \nu_{4}(-\tau) \in S q^{2} H^{5}(M)
$$

Theorem 2.5, Theorem 4.7 (1), 6.5 and the admissible class theorem of [8], give the following:

Theorem. Suppose

$$
\begin{aligned}
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M), \\
& S q^{3}\left(\nu_{4}(-\eta)+\nu_{4}(-\tau)\right)=0, \\
& \operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)=0 \\
& S q^{2} H^{n-6}(M)=\operatorname{Indet}^{n-4}\left(\phi_{1,1}, M\right) \text { and } \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right)
\end{aligned}
$$

Then η admits 7 linearly independent cross sections if and only if

$$
\begin{aligned}
& \delta w_{n-7}(\eta)=0, w_{n-5}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(\eta)\right) \\
& 0 \in \phi_{1,1}\left(w_{n-7}(\eta)\right), \zeta_{6}(U(\eta))=0,0 \in \psi_{5}\left(w_{n-9}(\eta)\right) \text { and } \\
& \Omega(U(\eta))=0
\end{aligned}
$$

8.2. The case $k=8$. As for the case $k=7$, we have a similar theorem for the existence of 8 linearly independent cross sections of η.

Theorem. Suppose

$$
\begin{aligned}
& S q^{3}\left(\nu_{4}(-\eta)+\nu_{4}(-\tau)\right)=0 \\
& \operatorname{Indet}^{n}\left(k_{3}^{3}, M\right)=0 \quad \text { and } \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right)
\end{aligned}
$$

Suppose either

$$
\begin{aligned}
& w_{8}(\eta)=V_{8}(M) \text { and } S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M) \text { or } \\
& S q^{2} H^{5}(M)=0 .
\end{aligned}
$$

Then η admits 8 linearly independent cross sections if and only if

$$
\begin{aligned}
& w_{n-7}(\eta)=0,0 \in \phi_{4}\left(w_{n-9}(\eta)\right), 0 \in \zeta_{8}(U(\eta)), \\
& 0 \in \psi_{5}\left(w_{n-9}(\eta)\right) \quad \text { and } \quad \Omega(U(\eta))=0 .
\end{aligned}
$$

This is a consequence of Theorem 2.6, Theorem 3.5, Theorem 4.7 (2), 6.5 , and the admissible class theorem of [8] applied to 6.5 and the fact that

$$
\operatorname{Indet}^{2 n}(\widetilde{\Omega}, T \eta)=\operatorname{Indet}^{2 n}(\Omega, T \eta)=0
$$

9. Evaluation on Thom complex of the tangent bundle of M. We now specialise to the case when η is the tangent bundle over M. We shall be considering the stable cohomology operation ζ_{6} and the secondary operation ζ_{8} and the tertiary cohomology operation Ω.

Suppose M^{\prime} is a closed, connected and smooth manifold of dimension q and q is odd. Let

$$
g: M^{\prime} \times M^{\prime} \rightarrow T(\tau)
$$

be the map that collapses the complement of a tubular neighbourhood of the diagonal in $M^{\prime} \times M^{\prime}$ to a point. Let $U=g^{*}(U(\tau))$, where $U(\tau)$ is the Thom class of the tangent bundle of M^{\prime}. Then we have the decomposition of Milnor and Wu :

$$
\begin{equation*}
U \bmod 2=\sum_{2 i<q} \sum_{k} \alpha_{i}^{k} \otimes \beta_{q-i}^{k}+\sum_{2 i<q} \sum_{k} \beta_{q-i}^{k} \otimes \alpha_{i}^{k} \tag{9.1}
\end{equation*}
$$

where $\alpha_{i}^{k} \in H^{i}\left(M^{\prime}\right), \beta_{q-i}^{k} \in H^{q-i}(M)$ and $\alpha_{i}^{k} \cup \beta_{q-i}^{j}=\delta_{k j j} \mu, \mu \in$ $H^{q}(M)$ is a generator and $\delta_{k j}$ is the Kronecker function. Then we have

Lemma 9.2. ([15, Section 4]). Let

$$
A=\sum_{2 i<q} \alpha_{i}^{k} \otimes \beta_{q-i}^{k} \in H^{q}\left(M^{\prime} \times M^{\prime}\right)
$$

be as given by 9.1. Then
(i) $U \bmod 2=A+t^{*} A$, where

$$
t^{*}: H^{*}\left(M^{\prime} \times M^{\prime}\right) \rightarrow H^{*}\left(M^{\prime} \times M^{\prime}\right)
$$

is the homomorphism induced by the map that interchanges the factors.
(ii) $A \cup t^{*} A=\chi_{2}\left(M^{\prime}\right) \mu \otimes \mu$.

Then according to Mahowald and Randall ([12]), we have the following

Theorem 9.3. Suppose M^{\prime} is a spin manifold of dimension $n \equiv 7 \bmod 8$ with $n>7$. Let A be as given by Lemma 9.2. Then
(i) $S q^{n-3} A=S q^{n-3} S q^{2} A=\left(S q^{n-3} S q^{3}+S q^{n-1} S q^{1}\right) A=0$.
(ii) ζ_{6} is defined on A and so on $t^{*} A$. In particular $\zeta_{6}(U(\tau))=0$ modulo zero indeterminacy.

Since n is congruent to $7 \bmod 8$, and M^{\prime} is a spin manifold it follows from Wu's formula, 6.6 of $[8]$, that $w_{n-3}\left(M^{\prime}\right)=0$. Thus

$$
S q^{n-3}(U(\tau))=S q^{n-3}\left(A+t^{*} A\right)=S q^{n-3} A+t^{*} S q^{n-3} A=0
$$

But $S q^{n-3} A$ is of bidegree $(n-1, n-2)$ and so

$$
S q^{n-3} A=0
$$

Similarly, it is shown that

$$
S q^{n-3} S q^{2} A=0
$$

Now

$$
\begin{aligned}
& S q^{n-3} S q^{3}=S q^{2}\left(S q^{n-4} S q^{2}\right)+S q^{1}\left(S q^{n-3} S q^{2}\right) \quad \text { and } \\
& S q^{2} S q^{n-2}=S q^{n-1} S q^{1}
\end{aligned}
$$

Therefore since M^{\prime} is a spin manifold, by Wu's duality,

$$
\left(S q^{n-3} S q^{3}+S q^{n-1} S q^{1}\right) A=0
$$

This proves (i). Therefore ζ_{6} is defined on A and so on $t^{*} A$. The last assertion is proved in [12, Section 2].

Now we return to our manifold M. Recall that M is 3 -connected $\bmod 2$. For the rest of this section we shall assume that $w_{4}(M)=0$. Recall that ζ_{8} is a stable cohomology operation if $n \equiv 15(16)>15$ and is non-stable if $n \equiv 7$ (16) $\geqq 23$. We shall exploit the technique of Mahowald [5] to evaluate $\zeta_{8}(U(\tau))$. Note that $\operatorname{Indet}^{2 n}\left(\zeta_{8}, T(\tau)\right)$ is trivial since $w_{8}(M)=V_{8}(M)$, the 8 -th Wu class of M.

Let $A \in H^{n}(M \times M)$ be the class given by the decomposition (9.1). Suppose $w_{n-7}(M)=0$. Then

$$
S q^{n-7}\left(A+t^{*} A\right)=0
$$

But it can be shown that $S q^{n-7} A$ is of bidegree ($n-7, n$). Hence

$$
S q^{n-1} A=0
$$

Since

$$
\begin{aligned}
S q^{n-5} S q^{5}+S q^{n-7} S q^{7} & =S q^{2} S q^{n-7} S q^{5}+S q^{2} S q^{n-8} S q^{6} \\
& +S q^{1} S q^{n-7} S q^{6}, \\
\left(S q^{n-5} S q^{5}+S q^{n-7} S q^{7}\right) A & =0 .
\end{aligned}
$$

Hence we have
Proposition 9.4. Suppose $w_{n-7}(M)=0$. Then
(i) $S q^{n-7} A=0$,
(ii) ζ_{8} is defined on A, hence on $t^{*} A$.

Theorem 9.5. Suppose $w_{n-7}(M)=0$. Then ζ_{8} is defined on $U(\tau)$ and modulo zero indeterminacy,

$$
\zeta_{8}(U(\tau))= \begin{cases}0 & \text { if } n \equiv 15 \bmod 16 \\ \chi_{2}(M) \cdot U(\tau) \cdot \mu & \text { if } n \equiv 7 \bmod 16\end{cases}
$$

To prove 9.5 we shall exploit the technique of Mahowald.
Let $p: P \rightarrow K_{n}$ be the universal example space for ζ_{8} on n-dimensional $\bmod 2$ cohomology classes. Consider $A \in H^{n}(M \times M)$ as a map

$$
A: M \times M \rightarrow K_{n} .
$$

Then 9.4 says that A has a lifting $\bar{A}: M \times M \rightarrow P$ to P. Let $\zeta \in H^{2 n}(P)$ be a representative for ζ_{8}. Note that $\bar{A} \circ t$ is a lifting of $t^{*} A$ represented by $A \circ t$.

Now P is a H-space and so we have a multiplication map

$$
m: P \times P \rightarrow P
$$

Then the map $h=m \circ(\bar{A}, \bar{A} \circ t)$ is a lifting of $A+t^{*} A$ regarded as a map $m \circ(A, A \circ t)$. Let $\zeta \in H^{2 n}(P)$ be a representative for ζ_{8}. Then if ζ_{8} is stable

$$
\begin{aligned}
m^{*} \zeta & =1 \otimes \zeta+\zeta \otimes 1 \quad \text { and } \\
m^{*} \zeta & =1 \otimes \zeta+\zeta \otimes 1+p^{*}{l_{n}}_{n} \otimes p^{*} l_{n}
\end{aligned}
$$

if ζ_{8} is non-stable. Thus

$$
h^{*} \zeta=\bar{A}^{*} \zeta+t^{*} \bar{A} \zeta \quad \text { for } n \equiv 15 \bmod 16
$$

But $t^{*}: H^{2 n}(M \times M) \rightarrow H^{2 n}(M \times M)$ is the identity homomorphism. Therefore

$$
h^{*} \zeta=0 \text { if } n \equiv 15 \bmod 16 .
$$

Similarly if $n \equiv 7 \bmod 16$,

$$
h^{*} \zeta=\bar{A}^{*} \zeta+t^{*} \bar{A}^{* \zeta}+A \cup t^{*} A=\chi_{2}(M)(\mu \otimes \mu) .
$$

Let $U: T(\tau) \rightarrow K_{n}$ represent the Thom class of the tangent bundle of M reduced $\bmod 2$. Let

$$
\bar{U}: T(\tau) \rightarrow P
$$

be any lifting of U to P. Then $f=\bar{U} \circ g$ is a lifting of $A+t^{*} A$. Since g^{*} is a monomorphism in dimension $2 n, \zeta_{8}(U(\tau))$ vanishes if and only if

$$
g^{*} \zeta_{8}(U(\tau))=f^{*}(\zeta)=0
$$

Since f and h are both liftings of $g^{*}(U(\tau) \bmod 2)$, there is a map

$$
l: M \times M \rightarrow \Omega C
$$

where

$$
C=K_{2 n-7} \times K_{2 n-3} \times K_{2 n-1} \times K_{2 n},
$$

unique up to homotopy such that f and $m \circ(i \circ l, h)$ are homotopic, where $i: \Omega C \rightarrow P$ is the inclusion of the fibre. We can identify l with the quadruple (a, b, c, d) where a, b, c, d represent some classes in $H^{2 n-8}(M \times M), H^{2 n-4}(M \times M), H^{2 n-2}(M \times M)$ and $H^{2 n-1}(M \times M)$ respectively.

The class $i \circ l$ is invariant under t since both f and h are obviously invariant under t. Thus the homotopy class $[l]+[l \circ t]$ lies in the image of the homomorphism,

$$
\left[M \times M, K_{n-1}\right] \rightarrow[M \times M, \Omega C] .
$$

I.e., there exists $x \in H^{n-1}(M \times M)$ such that

$$
\begin{align*}
& {[l]+[l \circ t]=\left(S q^{n-7} x,\right.} \tag{9.6}\\
& S q^{n-7} S q^{4} x,\left(S q^{n-3} S q^{2}+S q^{n-7} S q^{2} S q^{4}\right) x \\
& \left.\left(S q^{n-1} S q^{1}+S q^{n-3} S q^{3}+S q^{n-5} S q^{5}+S q^{n-7} S q^{7}\right) x\right) \\
& =\left(S q^{n-7} x, S q^{n-7} S q^{4} x, 0,0\right)
\end{align*}
$$

By the connectivity condition on M we may assume that c and d are trivial. Therefore, since $S q^{4} H^{2 n-4}(M \times M)=0$,

$$
\begin{align*}
f^{* \zeta} & =h^{* \zeta}+S q^{8} a+S q^{4} b \\
& = \begin{cases}S q^{8} a & \text { if } n \equiv 15(16) \\
\chi_{2}(M) \mu \otimes \mu+S q^{8} a & \text { if } n \equiv 7(16)\end{cases} \tag{9.7}
\end{align*}
$$

From (9.6) we have that

$$
\begin{equation*}
a+t^{*} a \in S q^{n-7} H^{n-1}(M \times M) \tag{9.8}
\end{equation*}
$$

Note that $S q^{8}$ is trivial on any class in $H^{i}(M) \otimes H^{2 n-8-i}(M)$ with bidegree $(i, 2 n-8-i)$ different from $(n-8, n)$ and $(n, n-8)$. We shall show that $S q^{8} a=0$. This would prove 9.5 . For this we need the following.

Lemma 9.9. Let M^{\prime} be an orientable closed, connected and smooth manifold of dimension $n \equiv 7 \bmod 8$. Suppose $w_{2}\left(M^{\prime}\right)=0$. Let

$$
p: H^{2 n-8}\left(M^{\prime} \times M^{\prime}\right) \rightarrow H^{n-8}\left(M^{\prime}\right) \otimes H^{n}\left(M^{\prime}\right)
$$

be the projection corresponding to the Künneth formula. Then

$$
S q^{n-7} H^{n-1}\left(M^{\prime} \times M^{\prime}\right) \subset \operatorname{Ker} P
$$

The proof is easy. Let

$$
\alpha \otimes \beta \in H^{n-1}\left(M^{\prime} \times M^{\prime}\right) .
$$

Then by the Cartan formula and Wu-duality we see that $S q^{n-7}(\alpha \otimes \beta)$ does not have any non-trivial element with bidegree $(n-8, n)$ and ($n, n-8$).

Therefore, since

$$
a+t^{*} a \in S q^{n-7} H^{n-1}(M \times M),
$$

by $9.9 a$ is symmetric in the classes with bidegree $(n-8, n)$ and $(n, n-8)$. Therefore $S q^{8} a=0$. And this completes the proof of 9.5 .

Following 6.9 of [8] we can derive the following.
Theorem 9.10. Let $A \in H^{n}(M \times M)$ be as given by the decomposition of 9.1. Suppose $w_{4}(M)=0$. Then
(i) $S q^{n-8} S q^{2} A=S q^{n-9} S q^{2} S q^{1} A=S q^{n-7} S q^{1} A=S q^{n-6} A=0$;
$S q^{n-11} S q^{2} S q^{1} A=0 ;\left(S q^{n-9} S q^{2} S q^{3}+S q^{n-7} S q^{1}\right) A=0$;
(ii) Suppose $0 \in \phi_{4}\left(w_{n-9}(M)\right)$. Then Ω is defined on A. Hence Ω is defined on t^{*}. In particular $\Omega(U(\tau))=0$ modulo zero indeterminacy.
(iii) Suppose $w_{n-7}(M)=0$ and $0 \in \phi_{4}\left(w_{n-9}(M)\right)$, then $\widetilde{\Omega}$ is defined on A and $\widetilde{\Omega}(U(\tau))=0$.

Proof. The proof of (i) is similar to that of 6.9 in [8]. If $n=7+8 s$, then for any $x \in H^{3+4 s}(M), y \in H^{4+4 s}(M)$,

$$
\begin{aligned}
& S q^{4 s-3} S q^{2} S q^{1} x=S q^{4 s-1} S q^{1} x, \\
& S q^{4 s-1} y=S q^{4 s-3} S q^{2} y \text { if } s \text { is odd, and } \\
& S q^{4 s-3} S q^{2} S q^{1} x=S q^{4 s-3} S q^{2} y=0 \text { if } s \text { is even. }
\end{aligned}
$$

Now it can be shown that

$$
\begin{aligned}
S q^{n-11} S q^{2} S q^{1} A & =\sum_{k}\left(S q^{4 s-3} S q^{2} S q^{1} \alpha_{3+4 s}^{k} \otimes S q^{4 s-1} \beta_{4+4 s}^{k}\right. \\
& \left.+S q^{4 s-1} S q^{1} \alpha_{3+4 s}^{k} \otimes S q^{4 s-3} S q^{2} \beta_{4-4 s}^{k}\right)
\end{aligned}
$$

Thus by the above remark

$$
S q^{n-11} S q^{2} S q^{1} A=0
$$

The other cases are similar.
Part (iii) follows from (ii) and naturally since $\widetilde{\Omega} \subset \Omega$ and that $w_{n-7}(M)$ $=0$ implies that

$$
S q^{n-7} A=S q^{n-7} t^{*} A=0
$$

Part (ii) is harder. First we check that ζ_{1} is defined and trivial on A. It can be shown that if $n=7+8 s$, then

$$
\begin{aligned}
S q^{n-9} A & =w_{n-9}(M) \otimes \mu \\
& +\sum_{k}\left(\alpha_{1+4 s}^{k}\right)^{2} \otimes S q^{4 s-3} \beta_{4 s+6}^{k} \\
& +\sum_{k}\left(S q^{4 s+1} \alpha_{4 s+2}^{k} \otimes S q^{4 s-3} \beta_{4 s+5}^{k}\right. \\
& \left.+S q^{4 s} \alpha_{4 s+2}^{k} \otimes S q^{4 s-2} \beta_{4 s+5}^{k}\right) \\
& +\sum_{k}\left(S q^{4 s} \alpha_{4 s+3}^{k} \otimes S q^{4 s-2} \beta_{4 s+4}^{k}\right. \\
& \left.+S q^{4 s-1} \alpha_{4 s+3}^{k} \otimes S q^{4 s-1} \beta_{4 s+4}^{k}\right)
\end{aligned}
$$

ζ_{1} can be chosen in such a way that

$$
\zeta_{1}(U(\tau))=\phi_{4}\left(S q^{n-9} U(\tau)\right)
$$

Hence

$$
\begin{aligned}
g^{*} \zeta_{1}(U(\tau)) & =\zeta_{1}\left(g^{*} U(\tau)\right)=\phi_{4}\left(S q^{n-9}\left(A+t^{*} A\right)\right) \\
& =\phi_{4}\left(S q^{n-9} A\right)+t^{*}\left(\phi_{4}\left(S q^{n-9} A\right)\right)
\end{aligned}
$$

Since M is 3-connected $\bmod 2$ and $w_{4}(M)=0$, by a Cartan formula for ϕ_{4} and the above proceeding,

$$
\begin{align*}
\phi_{4}\left(S q^{n-9} A\right) & =\phi_{4}\left(w_{n-9}(M)\right) \otimes \mu \tag{9.11}\\
& +\sum_{k}\left(\alpha_{4 s+1}^{k}\right)^{2} \otimes \phi_{4}\left(S q^{4 s-3} \beta_{4 s+6}^{k}\right) \\
& +\sum_{k}\left\{\phi_{4}\left(S q^{4 s+1} \alpha_{4 s+2}^{k}\right) \otimes S q^{4 s-3} \beta_{4 s+5}^{k}\right. \\
& \left.+S q^{4 s} \alpha_{4 s+2}^{k} \otimes \phi_{4}\left(S q^{4 s-2} \beta_{4 s+5}^{k}\right)\right\} \\
& +\sum_{k}\left\{\phi_{4}\left(S q^{4 s} \alpha_{4 s+3}^{k}\right) \otimes S q^{4 s-2} \beta_{4 s+4}^{k}\right. \\
& \left.+S q^{4 s-1} \alpha_{4 s+3}^{k} \otimes \phi_{4}\left(S q^{4 s-1} \beta_{4+4 s}^{k}\right)\right\}
\end{align*}
$$

modulo Indet ${ }^{2 n-5}\left(\zeta_{1}, M \times M\right)$.

But by S-duality

$$
\chi \phi_{4}(U(-\tau))=S q^{1} \phi_{1,1}(U(-\tau))=0 .
$$

Therefore ϕ_{4} which is defined on $H^{n-4}(M)$ is trivial on $H^{n-4}(M)$ modulo zero indeterminacy. It follows from (9.11) that

$$
\phi_{4}\left(S q^{n-9} A\right)=\phi_{4}\left(w_{n-9}(M)\right) \otimes \mu .
$$

Thus

$$
0 \in \phi_{4}\left(w_{n-9}(M)\right) \Rightarrow 0 \in \phi_{4}\left(S q^{n-9} A\right) .
$$

Hence $0 \in \zeta_{1}(A)$. Thus Ω is defined on A, hence on $t^{*} A$.
Let $P_{2} \rightarrow P_{1} \rightarrow K_{n}$ be the universal example tower of space for the operation Ω. Let U be the Thom class of τ reduced $\bmod 2$ and represented by a map

$$
U: T(\tau) \rightarrow K_{n} .
$$

Let \bar{U} be lifting of U to P_{1} such that \bar{U} also has a lifting $\overline{\bar{U}}$ to P_{2}. Let

$$
\begin{aligned}
& m_{1}: P_{1} \times P_{1} \rightarrow P_{1} \text { and } \\
& m_{2}: P_{2} \times P_{2} \rightarrow P_{2}
\end{aligned}
$$

be the multiplication maps. Let $A \in H^{n}(M \times M)$ be represented by a map

$$
A: M \times M \rightarrow K_{n}
$$

also denoted by the same symbol. If $0 \in \phi_{4}\left(w_{n-9}(M)\right), \Omega$ is defined on A. Let \bar{A} be a lifting of A to P_{1} and $\overline{\bar{A}}$ a lifting of \bar{A} to P_{2}. Then

$$
h=m_{1} \circ(\bar{A}, \bar{A} \circ t)
$$

is a lifting of $U \circ g$ to P_{1} and

$$
\bar{h}=m_{2} \circ(\overline{\bar{A}}, \overline{\bar{A}} \circ t)
$$

is a lifting of h to P_{2}. Let $f=\bar{U} \circ g$. Then f is also a lifting of $U \circ g$ to P_{1}.

Since f and h are both liftings of $U \circ g$ there is a map

$$
l: M \times M \rightarrow \Omega C_{1}
$$

where

$$
C_{1}=K_{2 n-6} \times K_{2 n-6} \times K_{2 n-8} \times K_{2 n-4} \times K_{2 n-2}
$$

such that f and $h_{1}=m_{1} \circ\left(i_{1} \circ l, h\right)$ are homotopic where

$$
i_{1}: \Omega C_{1} \rightarrow P_{1}
$$

is the inclusion of the fibre.

Consider the following fibre square.

We can represent l as a vector $(y, z, c, d, 0)$, where

$$
\begin{aligned}
& y, z \in H^{2 n-7}(M \times M), \quad c \in H^{2 n-9}(M \times M) \quad \text { and } \\
& d \in H^{2 n-5}(M \times M) .
\end{aligned}
$$

The class $i_{1} \circ l$ is invariant under t since both f and h are obviously invariant under t. Thus the homotopy class $[l]+[l \circ t]$ lies in the image of the homomorphism

$$
\left[M \times M, K_{n-1}\right] \rightarrow\left[M \times M, \Omega C_{1}\right]
$$

Note that since both f and h lift to P_{2}, l must lift to G_{1} with a lifting

$$
\bar{l}: M \times M \rightarrow G_{1} .
$$

There is a class $\theta \in H^{n-1}(M \times M)$ such that

$$
\begin{aligned}
& {[l]+[l \circ t]=\left(S q^{n-6} \theta+S q^{n-7} S q^{1} \theta,\right.} \\
& \left(S q^{n-9} S q^{2} S q^{1}+S q^{n-8} S q^{2}\right) \theta, \\
& S q^{n-11} S q^{2} S q^{1} \theta, \\
& \left.\left(S q^{n-9} S q^{2} S q^{3}+S q^{n-7} S q^{2} S q^{1}\right) \theta, 0\right)
\end{aligned}
$$

It can be easily checked that

$$
S q^{n-6} H^{n-1}(M \times M)=0
$$

and $\left(S q^{n-7} S q^{1} \theta,\left(S q^{n-9} S q^{2} S q^{1}+S q^{n-8} S q^{2}\right) \theta\right)$ is of the form

$$
\begin{aligned}
& \left(\left(S q^{1} \alpha\right)^{2} \otimes \mu+\mu \otimes\left(S q^{1} \alpha\right)^{2}\right. \\
& \left(S q^{4 s-1} S q^{2}+S q^{4 s-2} S q^{2} S q^{1}\right) \alpha \otimes \mu \\
& \left.+\mu \otimes\left(S q^{4 s-1} S q^{2}+S q^{4 s-2} S q^{2} S q^{1}\right) \alpha\right),
\end{aligned}
$$

where $\alpha \in H^{4 s-1}(M)$.
Since

$$
H^{2 n-7}(M \times M) \approx H^{n-7}(M) \otimes H^{n}(M) \oplus H^{n}(M) \otimes H^{n-7}(M)
$$

we can write

$$
y=y^{\prime} \otimes \mu+\mu \otimes y^{\prime \prime}
$$

where $y^{\prime}, y^{\prime \prime} \in H^{n-7}(M)$. Therefore

$$
y+t^{*} y=\left(y^{\prime}+y^{\prime \prime}\right) \otimes \mu+\mu \otimes\left(y^{\prime}+y^{\prime \prime}\right)
$$

Since Γ_{1} is defined on y, Γ_{1} is defined on y^{\prime} and $y^{\prime \prime}$. Therefore modulo zero indeterminacy

$$
\Gamma_{1}\left(y^{\prime}+y^{\prime \prime}\right)=\Gamma_{1}\left(y^{\prime}\right)+\Gamma_{1}\left(y^{\prime \prime}\right)
$$

Now

$$
\Gamma_{1}\left(S q^{1} \alpha\right)^{2}=\Gamma_{1}\left(S q^{4 s} S q^{1} \alpha\right)=\Gamma_{1}\left(S q^{2} S q^{4 s-1} \alpha\right)
$$

But by S-duality pairing,

$$
\begin{aligned}
& \left\langle\Gamma_{1}\left(S q^{2} S q^{4 s-1} \alpha\right), U(-\tau)\right\rangle=\left\langle S q^{2} S q^{4 s-1} \alpha, \chi \Gamma_{1} U(-\tau)\right\rangle \\
& =\left\langle S q^{4 s-1} \alpha, S q^{2}\left(U(-\tau) \cdot S q^{3} \nu_{4}(-\tau)\right)\right\rangle \\
& =\left\langle S q^{4 s-1} \alpha, U(-\tau) S q^{2} S q^{3} \nu_{4}(-\tau)\right\rangle .
\end{aligned}
$$

But $S q^{2} S q^{3} \nu_{4}(-\tau)=0$. Thus $\Gamma_{1}\left(S q^{1} \alpha\right)^{2}=0$. Hence $\Gamma_{1}\left(y^{\prime}+y^{\prime \prime}\right)=0$ and so

$$
\Gamma_{1}\left(y^{\prime}\right)=\Gamma_{1}\left(y^{\prime \prime}\right)
$$

Thus

$$
\Gamma_{1}\left(y^{\prime} \otimes \mu+\mu \otimes y^{\prime \prime}\right)=\Gamma_{1}\left(y^{\prime}\right) \otimes \mu+\mu \otimes \Gamma_{1}\left(y^{\prime \prime}\right)=0
$$

Similarly we can show that $\Gamma_{2}(z)=0$. The proof of Theorem 6.5 shows that $\Gamma_{3}(c)=0, \Gamma_{5}(d)=0$. Hence

$$
\Gamma_{1}(y)+\Gamma_{2}(z)+\Gamma_{3}(c)+\Gamma_{5}(d)=0
$$

Now $\overline{\bar{h}}=m_{2} \circ\left(\bar{i}_{1} \circ \bar{l}, \bar{h}\right)$ is a lifting of $m_{1} \circ\left(i_{1} \circ l, h\right) \sim f$. Let w be a representative for the operation Ω. Then

$$
\overline{\bar{h}}^{*} w=\bar{h}^{*} w+\bar{l}^{*} \bar{i}_{1}^{*} w .
$$

Now

$$
\bar{l}^{*} \bar{i}_{1}^{*} w \in \Gamma_{1}(y)+\Gamma_{2}(z)+\Gamma_{3}(c)+\Gamma_{5}(d)=0
$$

Therefore

$$
\overline{\bar{h}}^{*} w=\bar{h}^{*} w=\overline{\bar{A}}^{*} w+t^{*} \overline{\bar{A}}^{*} w=0 .
$$

Now $\bar{f}=\overline{\bar{u}} \circ g$ is a lifting of

$$
f \sim m_{1} \circ\left(i_{1} \circ l, h\right)
$$

Since the primary piece of the indeterminacy of Ω is trivial,

$$
\bar{f}^{*} w=\overline{\bar{h}}^{*} w=0
$$

That is

$$
g^{*} \overline{\bar{U}}^{*} w=0 .
$$

Since g^{*} is injective,

$$
\overline{\bar{U}}^{*} w=0 .
$$

Thus $\Omega(U(\tau))=0$ modulo zero indeterminacy.
10. Vector fields on manifolds. We shall now prove Theorem 1.1 and Theorem 1.2.

Suppose $w_{4}(M)=0$. Recall that then

$$
\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)=\Gamma_{1} D^{n-7}
$$

for the case $k=7$.
10.1. Proof of Theorem 1.1. $\operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) \mathrm{im}-$ plies that

$$
\operatorname{Indet}^{n-4}\left(\phi_{1,1}, M\right)=S q^{2} H^{n-6}(M)
$$

Furthermore if $n \equiv 7 \bmod 8$,

$$
\delta w_{n-7}(M)=0, w_{n-5}(M)=0
$$

In particular if $n \equiv 15 \bmod 16$,

$$
w_{n-7}(M)=w_{n-9}(M)=0 .
$$

If $\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right) \neq 0$, the hypothesis of Theorem 7.1 is satisfied. Thus it follows from 7.1 and 9.3 (ii) that $\operatorname{Span}(M) \geqq 7$ if and only if

$$
\begin{aligned}
& 0 \in \phi_{4}\left(w_{n-9}(M)\right), 0 \in \phi_{1,1}\left(w_{n-7}(M)\right) \quad \text { and } \\
& 0 \in \psi_{5}\left(w_{n-9}(M)\right)
\end{aligned}
$$

Thus by the above remark if $n \equiv 15 \bmod 16, \operatorname{Span}(M) \geqq 7$. If $n=7+16 s$ with $n>7$, then $w_{n-7}(M)=V_{8 s}^{2}$, where $V_{8 s} \in H^{8 s}(M)$ is the $8 s$-th Wu class of M. It is easily seen that

$$
S q^{1} V_{8 s}=S q^{2} V_{8 s}=0
$$

Therefore by a Cartan formula for $\phi_{1,1}$,

$$
\phi_{1,1}\left(w_{n,-7}(M)\right)=\phi_{1,1}\left(V_{8 s}\right) \cdot V_{8 s}+V_{8 s} \cdot \phi_{1,1}\left(V_{8 s}\right)=0
$$

modulo indeterminacy of $\phi_{1,1}$. Thus

$$
0 \in \phi_{1,1}\left(w_{n-7}(M)\right) .
$$

This proves the assertion in (ii) when $n \equiv 7 \bmod 16$ and

$$
\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right) \neq 0
$$

The case when $\operatorname{Indet}^{n}\left(k_{4}^{3}, M\right)=0$ follows from 8.1, 9.3 and 9.10. This completes the proof.

Notice, if $S q^{3} \nu_{4}(-\tau) \in S q^{2} H^{5}(M)$, in applying 8.1 we only require that

$$
\operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right)
$$

for the case $k=7$. We have actually proved a stronger result.
Theorem 10.2. (The case $k=7$.) Suppose

$$
\begin{aligned}
& w_{4}(M)=0, \\
& S q^{3} \nu_{4}(-\tau) \in S q^{2} H^{5}(M), \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) \quad \text { and } \\
& S q^{2} H^{n-7}(M ; \mathbf{Z})=S q^{2} H^{n-7}(M) .
\end{aligned}
$$

Then:
(i) If $n \equiv 15 \bmod 16, \operatorname{span}(M) \geqq 7$;
(ii) If $n \equiv 7 \bmod 16>7, \operatorname{span}(M) \geqq 7$ if and only if

$$
0 \in \phi_{4}\left(w_{n-9}(M)\right) \quad \text { and } \quad 0 \in \psi_{5}\left(w_{n-9}(M)\right) .
$$

The proof of 1.2 is similar to that of 1.1 , using Theorem 8.2, 9.5 and 9.10. We have in fact a stronger result:

Theorem 10.3. (The case $k=8$). Suppose

$$
\begin{aligned}
& w_{4}(M)=0, \\
& S q^{3} \nu_{4}(-\tau) \in S q^{2} H^{5}(M), \\
& S q^{2} H^{n-7}(M)=S q^{2} S q^{1} H^{n-8}(M) \quad \text { and } \\
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=\operatorname{Indet}^{n-4}\left(k_{1}^{3}, M\right) .
\end{aligned}
$$

(i) If $n \equiv 15 \bmod 16$ with $n>15$, then $\operatorname{span}(M) \geqq 8$;
(ii) If $n \equiv 7 \bmod 16>7$, then $\operatorname{span}(M) \geqq 8$ if and only if

$$
\begin{aligned}
& w_{n-7}(M)=0,0 \in \phi_{4}\left(w_{n-9}(M)\right) \\
& 0 \in \psi_{5}\left(w_{n-9}(M)\right) \quad \text { and } \quad \chi_{2}(M)=0 .
\end{aligned}
$$

11. Application. It is well known that $\operatorname{Span}\left(S^{8 s+3}\right)=3$. Let us consider

$$
M=S^{3+8 s} \times Q P^{1+2 k}, \quad s \geqq 1, k \geqq 0
$$

where $Q P^{j}$ is the quaternionic projective space of real dimension $4 j$. Then

$$
\begin{aligned}
& \operatorname{Indet}^{n-4}\left(\psi_{5}, M\right)=0, \\
& H^{8(s+k)}(M)=H^{8(s+k)+1}(M)=0,
\end{aligned}
$$

$$
\begin{aligned}
& H^{7}(M)=H^{8(s+k)-2}(M)=0 \text { and } \\
& \chi_{2}(M)=0 .
\end{aligned}
$$

By 1.2 we have the following immediate result.
Theorem 11.1.

$$
\operatorname{Span}\left(S^{3+8 s} \times Q P^{1+2 k}\right) \geqq 8 \text { for } s \geqq 1, k \geqq 0 .
$$

References

1. J. Adém and S. Gitler, Secondary characteristic classes and the immersion problem, Bol. Soc. Mat. Mex. 8 (1963), 53-78.
2. M. F. Atiyah, Thom complexes, Proc. London Math. Soc. 11 (1961), 291-310.
3. S. Gilter and M. E. Mahowald, The geometric dimension of real stable vector bundles, Bol. Soc. Mat. Mex. 11 (1960), 85-106.
4. A. Hughes and E. Thomas, A note on certain secondary cohomology operations, Bol. Soc. Mat. Mex. 13 (1968), l-17.
5. M. E. Mahowald, The index of a tangent 2-field, Pacific Journal of Maths. 58 (1975), 539-548.
6. C. R. F. Maunder, Cohomology operations of the N-th kind, Proc. London Math. Soc. (1960), 125-154.
7. J. Milgram, Cartan formulae, Ill. J. of Math. 75 (1971), 633-647.
8. Tze Beng, Ng , The existence of 7 -fields and 8 -fields on manifolds, Quart. J. Math Oxford 30 (1979), 197-221.
9. The mod 2 cohomology of $B \hat{S} O_{n}\langle 16\rangle$, to appear in Can. J. Math.
10. ——Fourth order cohomology operations and the existence of 9 -fields on manifolds, to appear.
11. D. G. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
12. D. Randall, Tangent frame fields on spin manifolds, Pacific Journal of Mathematics 76 (1978), 157-167.
13. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. 85 (1967), 184-217.
14. - Real and complex vector fields on manifolds, J. Math. and Mechanic. 16 (1967), 1183-1205.
15. - The index of a tangent 2-fields, Comment. Math. Helv. 42 (1967), 86-110.
16. -_The span of a manifold, Quart. J. Math. 19 (1968), 225-244.
17. -Steenrood square and H-space, Ann. of Math. 77 (1963), 306-317.

National University of Singapore, Kent Ridge, Singapore

