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Abstract

We prove some new bounds for the size of the maximal dissociated subset of structured (having small
sumset, large energy and so on) subsets of an abelian group.
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1. Introduction

Let G be an abelian group. A finite set Λ ⊆ G is called dissociated if any equality of
the form ∑

λ∈Λ

ελλ = 0

for ελ ∈ {−1, 0, 1} implies ελ = 0 for all λ. The notion of dissociativity appeared
naturally in analysis; see [12]. In many problems of additive combinatorics (see for
example [1, 2, 4, 5, 8, 17, 19, 20]) it is important to control the size of the largest
dissociated subset of A, which we call the (additive) dimension of the set A and denote
by dim(A). There are other possible variants of additive dimension and we discuss
them in Section 8, for example

d(A) = min{|S | : S ⊆ A, A ⊆ Span S }, d∗(A) = min{|S | : A ⊆ Span S },

and

d̃(A) = min{|Λ| : Λ ⊆ A,Λ is a maximal (by inclusion) dissociated subset of A},
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where, for S = {s1, . . . , sl}, we define

Span (S ) :=
{ l∑

j=1

ε js j : ε j ∈ {0,−1, 1}
}
.

In the group Fn
2, all these dimensions coincide with the usual dimension. Thus,

the notions of dissociativity and additive dimension generalize the ordinary linear
dependence and dimension, correspondingly, and Span (S ) corresponds to the linear
span. All the dimensions are closely connected to each other, see Section 8, and we
refer the interested reader to the recent paper [7].

Additive dimension can be considered as a measure of the ‘structure’ of a set and
the main aim of the paper is to find some connections between the dimension and other
natural quantitative measures of structure such as doubling constant and various types
of additive energy; see for example Theorems 1.1 and 1.2 below.

Historically, the first general theorem on dimension of the so-called large spectrum
of a set, that is, the characters at which the Fourier transform of a set is large, was
obtained by Chang [8]. Chang used dimension dim in her proof and that is why we
are concentrating on this definition of dimension in our paper. For further results
in this direction, see [1–3, 5, 16, 20, 27]. For example, new theorems of Bateman
and Katz [1, 2] on the structure of the large spectrum of sets having no arithmetic
progressions of length three, namely, new results on dimensions of subsets of such sets,
allowed them to achieve remarkable progress in the long-standing cap set problem.
Here we use the additive dimension as a measure of additive structure; however, there
other natural measures of structure like doubling constant and additive energy. The
following theorems, proved in [20, 27], offer a useful connection between the types of
additive structure.

Theorem 1.1. Let A, B ⊆ G be finite sets and suppose that |A + B| 6 K|A|. Then
dim(B)� K log |A|.

Theorem 1.2. Let A, B ⊆ G be finite sets and suppose that E(A, B) > |A||B|2/K. Then
there exists a set B1 ⊆ B such that dim(B1)� K log |A| and

E(A, B1) > 2−5E(A, B). (1.1)

In particular, |B1| > 2−3K−1/2|B|. If B = A, then E(B1) > 2−10E(A) and, consequently,
|B1| > 2−4K−1/3|A|.

One of the aims of this paper is to obtain some further estimates on dimensions
of sets. First of all, we give a simple combinatorial proof of Theorem 1.1 and refine
the result in the case of small doubling constant K (see Theorem 4.2). Furthermore,
we generalize Theorem 1.2 for the case of another type of energy and improve it by
finding a subset having even smaller additive dimension (see Theorems 5.2 and 5.5).
As a demonstration of how our method could be used, we present an application of
our results to obtain a new bound in an interesting problem of Konyagin. We show
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that for every A ⊆ Fp such that |A| 6 ec
√

log p, there exists x with 0 < (A ∗ A)(x)�
e−O(log1/4 |A|)|A|. In the last section we reformulate some results from the papers [1, 2] in
terms of the additive dimensions and prove them for general abelian groups.

The polynomial Freiman–Ruzsa conjecture (PFRC) roughly states (see [9] for
details) that every set A with |A + A| 6 K|A| contains a highly structured subset of
size |A|/KO(1). This is a very important conjecture in additive combinatorics, which
implies a series of new results in number theory, theory of functions, computer science
and additive combinatorics of course; see for example [9, 18, 21]. Roughly speaking,
it states that any set with small doubling contains a polynomially large subset which is
really structured. So, it is not surprising that such strong structural results have many
applications in different fields.

If PFRC holds, then for every set A with |A + A| 6 K|A| there is a subset B ⊆ A,
|B| � K−C |A| with dim(B)� Ko(1) log |A|, as K →∞. Our results provide bounds of
the form dim(B)� Kc log |A|, where c > 0 is some constant, which is much weaker
than one could expect from PFRC. However, our theorems are still applicable because
in our results the size of the set B is large and explicit, which is crucial, for example,
in problems concerning sets without solutions to a linear equation (see for example
[2, 20]).

2. Notation

Let G be a finite abelian group and denote by N the cardinality of G. It is well
known [12] that the dual group Ĝ is isomorphic to G in this case. Let f be a function
from G to C. We denote the Fourier transform of f by f̂ ,

f̂ (ξ) =
∑
x∈G

f (x)e(−ξ · x),

where e(x) = e2πix. We rely on the following basic identities:∑
x∈G

| f (x)|2 =
1
N

∑
ξ∈Ĝ

| f̂ (ξ)|2,

∑
y∈G

∣∣∣∣∣∑
x∈G

f (x)g(y − x)
∣∣∣∣∣2 =

1
N

∑
ξ∈Ĝ

| f̂ (ξ)|2 |̂g(ξ)|2, (2.1)

and
f (x) =

1
N

∑
ξ∈Ĝ

f̂ (ξ)e(ξ · x).

If
( f ∗ g)(x) :=

∑
y∈G

f (y)g(x − y) and ( f ◦ g)(x) :=
∑
y∈G

f (y)g(y + x),

then

f̂ ∗ g = f̂ ĝ and f̂ ◦ g = f̂ cĝ = f̂ ĝ,
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where, for a function f : G→ C, we put f c(x) := f (−x). Clearly, ( f ∗ g)(x) = (g ∗ f )(x)
and ( f ◦ g)(x) = (g ◦ f )(−x), x ∈ G. The k-fold convolution, k ∈ N, we denote by ∗k,
so ∗k := ∗(∗k−1).

We denote the characteristic function of a set S ⊆ G by S (x). Write E(A, B) for the
additive energy of sets A, B ⊆ G (see for example [28]), that is,

E(A, B) = |{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}|.

If A = B, we simply write E(A) instead of E(A, A). Clearly,

E(A, B) =
∑

x

(A ∗ B)(x)2 =
∑

x

(A ◦ B)(x)2 =
∑

x

(A ◦ A)(x)(B ◦ B)(x)

and, by (2.1),

E(A, B) =
1
N

∑
ξ

|Â(ξ)|2|B̂(ξ)|2.

Let
Tk(A) := |{a1 + · · · + ak = a′1 + · · · + a′k : a1, . . . , ak, a′1, . . . , a

′
k ∈ A}|.

Clearly, Tk(A) = (1/N)
∑
ξ |Â(ξ)|2k. For A1, . . . , A2k ⊆ G, let

Tk(A1, . . . , A2k) := |{a1 + · · · + ak = ak+1 + · · · + a2k : ai ∈ Ai, i ∈ [2k]}|.

Put also
σk(A) := (A ∗k A)(0) = |{a1 + · · · + ak = 0 : a1, . . . , ak ∈ A}|.

Notice that for a symmetric set A (that is, A = −A), one has σ2(A) = |A| and σ2k(A) =

Tk(A).
For a sequence s = (s1, . . . , sk−1), put AB

s = B ∩ (A − s1) · · · ∩ (A − sk−1). If B = A,
then write As for AA

s . Let

Ek(A) =
∑
x∈G

(A ◦ A)(x)k =
∑

s1,...,sk−1∈G

|As|
2 (2.2)

and
Ek(A, B) =

∑
x∈G

(A ◦ A)(x)(B ◦ B)(x)k−1 =
∑

s1,...,sk−1∈G

|BA
s |

2 (2.3)

be the higher energies of A and B. The second formulas in (2.2) and (2.3) can be
considered as the definitions of Ek(A) and Ek(A, B) for noninteger k, k > 1.

For a positive integer n, we set [n] = {1, . . . , n}. All logarithms used in the paper are
to base 2. Signs� and� are the usual Vinogradov symbols. If p is a prime number,
then write Fp for Z/pZ and F∗p for (Z/pZ) \ {0}. For a positive integer N, we put ZN

for Z/NZ.
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3. Preliminaries

In this section we recall some results that we will need in the paper.
First of all, it was proved by Rudin [12] that all Lp norms of the Fourier transform

of a function whose transform is supported on a dissociated set are equivalent.

Lemma 3.1. Let Λ ⊆ ZN be a dissociated set and let an be any complex numbers. Then,
for each p > 2,

1
N

N−1∑
x=0

∣∣∣∣∣∑
n∈Λ

ane−2πinx/N
∣∣∣∣∣p 6 (Cp)p/2

(∑
n∈Λ

|an|
2
)p/2

for some absolute constant C.

A consequence of the above lemma is the following result due to Sanders [16].
(Similar results were obtained by Bourgain [3] and by the second author [24].)

Lemma 3.2. Let G be a finite abelian group, Q ⊆ G be a set and l be a positive integer.
There is a partition Q = Qstr ∪ Qdiss such that dim(Qstr) < l and Qdiss is a union of
dissociated sets of size l. Moreover, for all p > 2, the following holds:( 1

N

∑
ξ

|Q̂diss(ξ)|p
)1/p
�

√
p/l · |Q|.

We will also make use of a covering lemma due to Chang [8] and the Plünnecke–
Ruzsa inequality; see [15], [14] or [28].

Lemma 3.3. Let L, K be real numbers, and A, B ⊆ G be two sets. If |A + A| 6 K|A|
and |A + B| 6 L|B|, then there are sets S 1, . . . , S l each of size at most 2K such that
A ⊆ B − B + (S 1 − S 1) + · · · + (S l − S l) and l 6 log(2KL).

Lemma 3.4. Let j < k be positive integers. Let also A, B be finite set of an abelian
group such that |A + jB| 6 K|A|. Then there is a nonempty set X ⊆ A such that

|X + kB| 6 Kk/ j|X|.

Furthermore, if |A + A| 6 K|A|, then

|mA − nA| 6 Kn+m|A| (3.1)

for all n,m ∈ N. Moreover, for fixed j > 1 and arbitrary 0 < δ < 1, there exists X ⊆ A
such that |X| > (1 − δ)|A| and

|X + kB| 6 (K/δ)k|X|.

We will also make use of some results concerning higher additive energies (see [23]
and [26]).
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[6] Additive dimension and a theorem of Sanders 129

Lemma 3.5. Let A be a subset of an abelian group. Then, for every k, l ∈ N,∑
s,t:

‖s‖=k−1, ‖t‖=l−1

E(As, At) = Ek+l(A),

where ‖x‖ denotes the number of components of the vector x.

Theorem 3.6. Let A be a finite subset of an abelian group. Suppose that E(A) = |A|3/K,
and E3+ε(A) = M|A|4+ε/K2+ε, where ε ∈ (0,1]. Put P := {x : (A ◦ A)(x) > |A|/2K}. Then
|P| � K|A|/M2/(1+ε) and E(P)� M−β|P|3, where β = (3 + 4ε)/(ε(1 + ε)).

Theorem 3.7. Let A ⊆ G be a finite set and l > 2 be a positive integer. Then(
|A|8

8E3(A)

)l
6 Tl(A)|A − A|2l+1.

Other relations between Es and Ts can be found in [23, 25].

Theorem 3.8. Let A ⊆ G be a finite set. Suppose that Es(A) = |A|s+1/K s−1, s ∈ (1, 3/2]
and T4(A) := M|A|7/K3; then

E4(A)�s−1
|A|5

MK
.

By an arithmetic progression of dimension d and size L, we mean a set of the form
Q = {a0 + a1x1 + · · · + ad xd : 0 6 x j < l j}, (3.2)

where L := l1 · · · ld. The progression Q is said to be proper if all of the sums in (3.2)
are distinct. In the latter case we have, in particular, |Q| = L. It is easy to see that any
proper progression Q of dimension d satisfies |mQ| 6 md |Q| for any positive integer m.
By a proper coset progression of dimension d, we will mean a subset of G of the form
Q + H, where H ⊆ G is a subgroup, Q is a proper progression of dimension d and the
sum is direct in the sense that q + h = q′ + h′ if and only if h = h′ and q = q′. By the
size of a proper coset progression, we mean simply its cardinality.

Finally, let us recall the main result proved in [18].

Theorem 3.9. Suppose that G is an abelian group and A, S ⊆ G are finite nonempty
sets such that |A + S | 6 K min{|A|, |S |}. Then (A − A) + (S − S ) contains a proper
symmetric d(K)-dimensional coset progression P of size exp(−h(K))|A + S |. Moreover,
we may take d(K) = O(log6 K) and h(K) = O(log6 K log log K).

4. Additive dimension of sets with small doubling
In the beginning, we derive a consequence of Theorem 3.9.

Lemma 4.1. Let A be a subset of an abelian group such that |A + A| 6 K|A|. Then

|kA| 6
(3ek

K

)O(K log6(2K) log log(4K))
|A|

for every k > K.
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Proof. By Theorem 3.9, there exists a proper generalized arithmetic progression P of
dimension d� log6 K and size at least |A|/KO(log5(2K) log log(4K)) such that P ⊆ 2A − 2A.
Thus, applying the Plünnecke–Ruzsa inequality (3.1),

|A + P| 6 |3A − 2A| 6 K5|A| 6 KO(log5(2K) log log(4K))|P|.

By Lemma 3.3,
A ⊆ P − P + (S 1 − S 1) + · · · + (S l − S l)

with l� log6(2K) log log(4K). Therefore,

|kA| 6 |kP − kP + (kS 1 − kS 1) + · · · + (kSl − kSl)| 6
(
2K + k − 1

k

)2l

|kP − kP|

6

(
2K + k − 1

k

)2l

(2k)d |P| 6
( 3ek
2K − 1

)4lK
(2k)d |P| 6

(3ek
K

)O(K log6(2K) log log(4K))
|A|,

provided that k > K. �

Our first result refines Sanders’ theorem (Theorem 1.1), provided that K is not too
large.

Theorem 4.2. Let A ⊆ G be a finite set and suppose that |A + A| 6 K|A|. Then

dim(A)� K log |A|

and
dim(A)� log |A| + K log6(2K) log log(4K) · log log |A|.

Proof. Let Λ ⊆ A be a dissociated set such that |Λ| = dim(A). Then, by Lemma 3.1
(or simple counting arguments) and Lemma 3.4, we have for some absolute constant
C > 0,

|Λ|k

(Ck)k 6 |kΛ| 6 |kA| 6 Kk|A|.

Taking k ∼ log |A|, we obtain the first assertion.
Similarly, by Lemma 4.1,

|Λ|k

(Ck)k 6
(3ek

K

)O(K log6(2K) log log(4K))
|A|

for k > K. Thus, putting

k ∼ log |A| + K log6(2K) log log(4K) log log |A|,
|Λ| � log |A| + K log6(2K) log log(4K) log log |A|,

as required. �

Note that using recent advances of Konyagin, see [21], one can obtain further
improvements of powers of logarithms in Lemma 4.1 and Theorem 4.2.
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In the above proof the hardest case is when the size of kA attains its maximal value
Kk|A|. However, we show that if it is the case then one can find a huge subset of A with
very small additive dimension.

Theorem 4.3. Let A ⊆ G be a set and K > 1, ε > 0 be real numbers. Suppose that
|A + A| 6 K|A| and |kA| > Kk−ε|A| for some k > 3. Then there exists a set A′ ⊆ A of size
at least |A|/2 such that dim(A′)� 2kKε log |kA|.

Proof. From Lemma 3.4, it follows that there exists a set X, |X| > |A|/2 such that
|X + kA| 6 (2K)k|A|. Therefore,

|X + kA| 6 2kKε|kA|.

By Sanders’ theorem (Theorem 1.1), we have dim(X)� 2kKε log |kA|. This completes
the proof. �

We recall the following result, which appeared as [22, Lemma 3].

Theorem 4.4. Let A be a finite set of an abelian group such that |A + A| 6 K|A|. Then,
for every k ∈ N, there exist sets X ⊆ A and Y ⊆ A + A such that |X| > (2K)−2k+1

|A|,
|Y | > |A| and E(X,Y) > K−2/k|X|2|Y |.

Combining Theorem 4.4 with Theorem 1.2, we obtain the following consequence.

Corollary 4.5. Let A be a finite set of an abelian group such that |A + A| 6 K|A|.
Then, for every k ∈ N, there exists a set X ⊆ A such that |X| � (2K)−2k+1

|A|/K1/2 and
dim(X)� K2/k log |A|.

Using a well-known lemma of Croot and Sisask, Sanders proved the following
result [18, Proposition 3.1].

Theorem 4.6. Let A be a finite subset of an abelian group with |A + A| 6 K|A|. Then,
for every k ∈ N, there exists a set X ⊆ A − t for some t of size at least e−O(k2 log2 2K)|A + A|
such that kX ⊆ 2A − 2A.

Applying Theorem 4.6, we show that every set with small sumset contains a
relatively large subset with very small additive dimension.

Corollary 4.7. Let A be a finite subset of an abelian group with |A + A| 6 K|A|. Then,
for every k ∈ N, there exists a set X ⊆ A of size at least e−O(k2 log2 2K)|A + A| such that

dim(X)� K4/k log |A|.

Proof. Observe that we can assume that k 6 log |A|, because otherwise our theorem is
trivial. Let X be the set given by Theorem 4.6. By the Plünnecke–Ruzsa inequality,

|klX| 6 |2lA − 2lA| 6 K4l|A|.
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Now, we argue as in Theorem 4.2. Let Λ ⊆ X be a dissociated set with |Λ| = dim(X).
By Rudin’s inequality, we have for some absolute constant C1 > 0,

|Λ|kl

(C1kl)kl 6 |klΛ| 6 |klX| 6 K4l|A|.

Putting l = [log |A|/k],
dim(X)� K4/k log |A|,

which completes the proof. �

5. Additive dimension of sets with large additive energy

The aim of this section is to refine Theorem 1.2, in the sense that under the
same assumption E(A) = |A|3/K, we find a possibly large subset of A having additive
dimension O(K1−γ log |A|), where γ > 0 is an absolute constant. Observe that in the
symmetric case A = B such, although quantitatively weaker, results would follow
from the previous section combined with the Balog–Szemerédi–Gowers theorem; see
for example [28]. The point of the current section is that it is far more efficient to
work with the assumption of large energy directly. Moveover, as we mentioned in
the introduction, our results give an explicit effective lower bound for the size of the
structured subset B, which is crucial in some additive-combinatorial problems [2, 20].

Our first result refines Theorem 1.2.

Theorem 5.1. Let A, B be subsets of a finite abelian group. Suppose that E(A, B) =

|A||B|2/K; then there exist a set B∗ ⊆ B such that

dim(B∗)� K(log K)2 log |A| ·
(
|B∗|
|B|

)2
(5.1)

and
E(A, B∗) > 2−2E(A, B). (5.2)

Proof. We establish Theorem 5.1 using the following algorithm.
At zero step we put B0 := B, ε0(x) = 0 and β0 = 1. At step j > 1 we apply Lemma 3.2

to the set B j−1 with parameters p = 2 + log |A| and

l j = K(log K)2β2
j−1 log |A|.

Lemma 3.2 gives us a new set B j ⊆ B j−1, where B j = Bstr; in other words, B j−1 \ B j
is a disjoint union of all dissociated subsets each of size l j. After that, put ε j(x) =

B j−1(x) − B j(x), β j = |B j|/|B| and iterate the procedure. The described algorithm will
satisfy the following property:

E(A, B j) > 2−2E(A, B). (5.3)

Obviously, at the first step inequality (5.3) is satisfied. If at some step j we get β j >
1
2β j−1, then our algorithm terminates with the output B∗ = B j. In view of inequality
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(5.3), it is clear that the total number of steps k does not exceed log K. Further, if our
iteration procedure terminates with the output B∗, then E(A, B∗) > 2−2E(A, B) and

dim(B∗) = dim(B j) 6 l j = K(log K)2β2
j−1 log |A|

6 4K(log K)2β2
j log |A|

� K(log K)2 log |A| ·
(
|B∗|
|B|

)2
.

Thus, the constructed set B∗ satisfies (5.1), (5.2).
It remains to check (5.3) and, clearly, it is sufficient to do it for the final step k. We

have

N · E(A, B) =
∑
ξ

|Â(ξ)|2|B̂(ξ)|2

=
∑
ξ

|Â(ξ)|2|B̂k(ξ)|2

+

( k∑
j=1

∑
ξ

|Â(ξ)|2B̂ j(ξ)̂ε j(ξ) +

k∑
j=1

∑
ξ

|Â(ξ)|2B̂ j(ξ)̂ε j(ξ)
)

+

k∑
j=1

∑
ξ

|Â(ξ)|2 |̂ε j(ξ)|2

= σ0 + σ1 + σ2. (5.4)

By the Hölder inequality, the Parseval identity and our choice of parameters,

σ2 6
k∑

j=1

(∑
ξ

|̂ε j(ξ)|2p
)1/p
·

(∑
ξ

|Â(ξ)|2p/(p−1)
)1−1/p

6
k∑

j=1

|A|1+1/p|B j−1|
2N

p
l j
� k(log K)−2K−1|A||B|2N

6 2−4k−1K−1|A||B|2N.

Next, we estimate σ1 in a similar way. Let us consider only the first term in σ1; the
second one can be bounded in the same manner. By the Cauchy–Schwarz inequality,

N−1
∣∣∣∣∣ k∑

j=1

∑
ξ

|Â(ξ)|2B̂ j(ξ)̂ε j(ξ)
∣∣∣∣∣ 6 k∑

j=1

E1/2(A, B j)E1/2(A, ε j)

6
( k∑

j=1

E(A, B j)
)1/2
·

( k∑
j=1

E(A, ε j)
)1/2

6 k1/2E1/2(A, B)σ1/2
2 6 2−2E(A, B).

So, by (5.4), we obtain E(A, Bk) > 2−2K−1|A||B|2. This completes the proof. �
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Theorem 5.2. Let A be a finite subset of an abelian group. Suppose that E(A) = |A|3/K;
then there exists a set B ⊆ A such that |B| � |A|/K25/8 and dim(B)� K7/8 log |A|.

Proof. Let E4(A) = M|A|5/K3 and P := {x : (A ◦ A)(x) > |A|/2K}. By Theorem 3.6,
|P| � K|A|/M and E(P)� |P|3/M7/2. By Theorem 1.2, there exists P′ ⊆ P of size
�|P|/M7/6 such that dim(P′)� M7/2 log |P|. We have∑

x∈A

(P′ ◦ A)(x) >
|A|
2K
|P′| �

|A|
K
|P|

M7/6 �
|A|2

M13/6 .

Therefore, (P′ ◦ A)(x)� |A|/M13/6 for some x. Putting B = A ∩ (P′ + x),

|B| � |A|/M13/6 (5.5)

and
dim(B)� M7/2 log(K|A|)� M7/2 log |A|. (5.6)

On the other hand, by Lemma 3.5,

κ4|A|5 =
M|A|5

K3 = E4(A) =
∑
‖s‖=2

E(A, As) 6 2
∑

|As |>(1/2)κ4 |A|

E(A, As)

6 2 max
|As |>(1/2)κ4 |A|

E(A, As)
|As|

2 ·
∑
|As|

2 6 max
|As |>(1/2)κ4 |A|

E(A, As)
|As|

2 · E3(A)

and similarly

κ3|A|4 = E3(A) =
∑
‖t‖=1

E(A, At) 6 2 max
|At |>(1/2)κ3 |A|

E(A, At)
|At |

2 · E(A),

so there exist |As| >
1
2κ4|A| and |At | >

1
2κ3|A| such that E(A, As) � κ4κ

−1
3 |A||As|

2 and
E(A, At)� κ3K|A||At |

2. But κ4κ
−1
3 κ3K = M/K2, so either κ4κ

−1
3 > M1/2/K or κ3K >

M1/2/K. Hence, by Theorem 1.2, there is a set B ⊆ A such that

|B|
|A|
� min{κ4(κ4κ

−1
3 )1/2, κ3(κ3K)1/2} > min{M3/2K−7/2,M3/2K−5/2} = M3/2K−7/2

(5.7)
and

dim(B)�
K

M1/2 log |A|. (5.8)

Combining (5.6), (5.8) and (5.5), (5.7), we obtain the required result. �

Clearly, using Theorem 5.1 instead of Theorem 1.2 in the proof, one can estimate
the dimension of the set B in terms of the size of B.

To prove the next result, we need a generalization of Theorem 1.2 for the energies
Tk(A).
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Proposition 5.3. Let A ⊆ G be a finite set, k > 2 be a positive integer and suppose that
Tk(A) = c|A|2k−1. Then there is a set A∗ ⊆ A such that

Tk(A, . . . , A, A∗, A∗) > 2−5Tk(A) (5.9)

and

dim(A∗)�
Tk−1(A)|A|2

Tk(A)
log(c−1|A|) 6 c−1/(k−1) log(c−1|A|). (5.10)

In particular, |A∗| � c1/(2k−1)|A|.

Proof. For any l 6 k, let Tl(A) = cl|A|2l−1 and hence ck = c. By Fourier transform,

Tk(A) =
1
N

∑
ξ

|Â(ξ)|2k.

We apply Lemma 3.2 to the set A with parameters p = 2 + log(c−1|A|) and l =

η−1c−1ck−1 log(c−1|A|), where η > 0 is an appropriate constant to be specified later.
Write ε(x) = A(x) − A∗(x), where A∗ = Astr; in other words, A \ A∗ is a disjoint union
of all dissociated subsets each of size l. We have

N · Tk(A) =
∑
ξ

|Â(ξ)|2k−2|Â(ξ)|2

=
∑
ξ

|Â(ξ)|2k−2|Â∗(ξ)|2

+

(∑
ξ

|Â(ξ)|2k−2Â∗(ξ)̂ε(ξ) +
∑
ξ

|Â(ξ)|2k−2Â∗(ξ)̂ε(ξ)
)

+
∑
ξ

|Â(ξ)|2k−2 |̂ε(ξ)|2

= σ0 + σ1 + σ2.

By the Hölder inequality, the Parseval identity and our choice of parameters,

σ2 6
(∑

ξ

|̂ε(ξ)|2p
)1/p
·

(∑
ξ

|Â(ξ)|(2k−2)p/(p−1)
)1−1/p

�
p
l
|A|2 · Tk−1(A)

(
|A|2k−2

Tk−1(A)

)1/p
N (5.11)

6 2−1ck|A|2k−1N.

To obtain the last inequality, we have used a simple bound Tk−1(A) > c|A|2k−3. Hence,
either σ0 or σ1 is at least 2−2ck|A|2k−1N. In the first case we are done. In the second
case an application of the Cauchy–Schwarz inequality yields

2−6N2T2
k(A) 6 N · Tk(A, . . . , A, A∗, A∗) · σ2.

Combining the inequality above with (5.11),

Tk(A, . . . , A, A∗, A∗) > 2−5Tk(A).
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Using the last estimate and the Hölder inequality, we see that |A∗| � c1/(2k−1)|A|.
Furthermore, we have dim(A∗) 6 l = η−1c−1ck−1 log(c−1|A|), which proves the first
inequality in (5.9). Applying the Hölder inequality again, we see that ck−1 6 c(k−2)/(k−1),
which gives the second inequality in (5.9). This completes the proof of Proposition 5.3.

�

Remark 5.4. One can also obtain an asymmetric version of the result above as well as
a variant of Theorem 5.1 for the energies Tk.

Let us also remark that the bound on the size of A∗ in Proposition 5.3 is sharp up
to a constant factor (see example at the end of Section 2 in [27]). Indeed, let G = Fn

2
and A = H ∪ Λ, where H is a subspace, |H| ∼ c1/(2k−1)|A|, Λ is a dissociated set (basis)
and c is an appropriate parameter. Then Tk(A) > Tk(H) = |H|2k−1 � c|A|2k−1, any set
A∗ ⊆ A satisfying (5.10) has large intersection with H and hence it cannot have size
much greater than c1/(2k−1)|A|.

If one replaces the condition of Theorem 5.2 on E(A) by a similar one on E3/2(A),
then the the following result can be proved.

Theorem 5.5. Let A be a finite subset of an abelian group and suppose that E3/2(A) =

|A|5/2/K1/2. Then there exists a set B ⊆ A such that

|B| � |A|/K2

and
dim(B)� K3/4 log |A|.

Proof. Write T4(A) = M|A|7/K3, M > 1; then, by Theorem 3.8,

E4(A) := κ4|A|5 �
|A|5

MK
.

Furthermore, ∑
|As |6(1/4)κ4 |A|

E(As, At) 6
∑

|As |6(1/4)κ4 |A|

|As|
2|At | 6

1
4

E4(A)

and hence by Lemma 3.5

1
2

E4(A) 6
∑

|As |, |At |>(1/4)κ4 |A|

E(As, At) 6 max
|As |, |At |>(1/4)κ4 |A|

E(As, At)
|As|

3/2|At |
3/2 ·

∑
s,t

|As|
3/2|At |

3/2.

Therefore, there are |As|, |At | �
1
4κ4|A| such that

E(As, At)� |As|
3/2|At |

3/2 ·
E4(A)

E3/2(A)2 >
|As|

3/2|At |
3/2

M
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and, by the Cauchy–Schwarz inequality, we see that either E(As) � |As|
3/M, or

E(At)� |At |
3/M. Applying Theorem 1.2 in the symmetric case, we find B ⊆ A such

that
|B| �

κ4|A|
M1/3 �

|A|
M4/3K

(5.12)

and
dim(B)� M log |A|. (5.13)

On the other hand, using Proposition 5.3, we get a set B′ ⊆ A such that |B′| �
M1/7K−3/7|A| and

dim(B′)� KM−1/3 log |A|.

Combining the last inequalities with (5.12) and (5.13), we obtain the required result.
�

Again, using Theorem 5.1 instead of Theorem 1.2 in the proof, one can estimate the
dimension of the set B in terms of the size of B.

The last result of this section shows that small E3(A) energy implies that a large
subset of A has small dimension.

Theorem 5.6. Let A be a finite subset of an abelian group. Suppose that |A − A| 6 K|A|
and E3(A) = M |A|4/K2. Then there exists A∗ ⊆ A such that |A∗| � |A|/M1/2 and

dim(A∗)� M(log |A| + log K log M).

Proof. By Theorem 3.7, for every l > 2 we have Tl(A) > |A|2l−1/(K(8M)l). Applying
Proposition 5.3 with l ∼ log K, we obtain the result. �

6. An application

Konyagin posed the following interesting problem. Is it true that there is a constant
c > 0 such that if A ⊆ Fp and |A| 6

√
p, then there exists x such that 0 < (A ∗ A)(x)�

|A|1−c? The first nontrivial results toward this conjecture were obtained in [11]. It was
proved that there exists x such that 0 < (A ∗ A)(x)� e−O((log log |A|)2)|A| provided that
|A| 6 ec log1/5 p. Our next result improves the above estimate as well as the condition on
the size of A.

Theorem 6.1. Suppose that A ⊆ Fp and |A| 6 ec
√

log p. Then there exists x such that

0 < (A ∗ A)(x)� e−O(log1/4 |A|)|A|

for some absolute constant c > 0.

Proof. Let us write |A|/K = minx∈A+A(A ∗ A)(x); then clearly |A + A| 6 K|A|. Let
X ⊆ A be a set given by Corollary 4.7 for k = [log K]. Then |X| � e−O(log4 K)|A| and
dim(X)� log |A|. Suppose that Λ satisfies |Λ| = dim(X) and X ⊆ Span (Λ). By the
Dirichlet approximation theorem, there exists r ∈ F∗p such that

‖rt/p‖ 6 p−1/|Λ|
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for every t ∈ Λ and therefore

‖rx/p‖ 6 |Λ|p−1/|Λ| � (log |A|)p−O(1/ log |A|) <
1

K|A|

for every x ∈ X. We can assume that there is a set X′ ⊆ X ⊆ A of size at least |X|/2 such
that for each x ∈ X′ we have {rx/p} < 1/(K|A|).

Notice that for every r ∈ F∗p there is a large gap in the set r · (A + A), that is, there
exists s ∈ A + A such that

{rs + 1, . . . , rs + l} ∩ r · (A + A) = ∅,

where l = p − |A + A|/|A + A| � p/K|A|. Since (A ∗ A)(s) > |A|/K, it follows that there
are at least |A|/K elements a ∈ A such that

{ra + 1, . . . , ra + l} ∩ (r · A) = ∅.

Denote the set of such a by Y ⊆ A. Thus,

K|A| > |A + A| = |r · A + r · A| > |X′ + Y | = |X′||Y | > e−O(log4 2K)|A|2,

so that K � eO(log1/4 |A|) and the assertion follows. �

Bukh proved [6] that if A ⊆ G and λi ∈ Z \ {0}, then

|λ1 · A + · · · + λk · A| 6 KO(
∑

i log(1+|λi |))|A|,

where K = |A ± A|/|A|. We also prove here an estimate for sums of dilates. It is not
directly related with the additive dimension of sets but it is another consequence of
Theorem 3.9.

Theorem 6.2. Let A ⊆ G be a finite set and λi ∈ Z \ {0}. Suppose that |A + A| 6 K|A|;
then

|λ1 · A + · · · + λk · A| 6 eO(log6(2K) log log(4K))(k+log(
∑

i |λi |))|A|.

Proof. From Sanders’ theorem (Theorem 3.9), it follows that there is a O(log6 K)-
dimensional arithmetic progression P of size |P| � |A|/KO(log5(2K) log log(4K)) contained
in 2A − 2A. By the well-known Ruzsa covering lemma, there is a set S with
|S | � KO(log5(2K) log log(4K)) such that

A ⊆ S + P − P.

Therefore,

|λ1 · A + · · · + λk · A| 6 KO(k log5(2K) log log(4K))|λ1 · (P − P) + · · · + λk · (P − P)|

6 KO(k log5(2K) log log(4K))
∣∣∣∣∣(∑
λi>0

λi

)
(P − P) +

(∑
λi<0

λi

)
(P − P)

∣∣∣∣∣
6 KO(k log5(2K) log log(4K))(|λ1| + · · · + |λk|)log6 K |P − P|

6 eO(log6(2K) log log(4K))(k+log(
∑

i |λi |))|A|,

which completes the proof. �
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7. A result of Bateman and Katz
In this section we reformulate some results from [1, 2] in terms of additive

dimension. Although in [1, 2] the authors deal with the case G = Fn
p, where p is a

prime number, it is easy to see that their arguments work in more general groups. We
will follow their arguments with some modifications.

The main result of the section is Corollary 7.5 below and it was an important step of
the Bateman–Katz proof of a new bound for the size of a set in Fn

3 without arithmetic
progressions of length three.

Let A ⊆ G and s be a positive integer. A 2s-tuple (x1, . . . , x2s) ∈ A2s is called an
additive 2s-tuple if x1 + · · · + xs = xs+1 + · · · + x2s. We say that an additive 2s-tuple
(x1, . . . , x2s) is trivial if at least two variables are equal. Otherwise we say that the 2s-
tuple is nontrivial. Let T∗s(A) denote the number of nontrivial 2s-tuples. We will often
use the following inequality: Tl(A)s−1 6 Ts(A)l−1|A|s−l, which holds for every s > l > 2.

Lemma 7.1. Let A ⊆ G and s > 4. Suppose that Ts(A)� 10ss2s|A|s. Then T∗s(A) >
1
2 Ts(A).

Proof. We proceed as in the proof of [13, Theorem 5.1]. Let (A∗̃sA)(x) denote
the number of representations x = x1 + · · · + xs in distinct xi ∈ A. Observe that∑

x(A∗̃sA)(x)2 equals T∗s(A) plus the number of additive tuples (x1, . . . , x2s) such that
for some i 6 s and j > s we have xi = x j. Hence,∑

x

(A∗̃sA)(x)2 − T∗s(A) 6 s2|A|
∑

x

(A∗̃s−1A)(x)2 6 s2|A|Ts−1(A). (7.1)

Notice that (A ∗s A)(x) − (A∗̃sA)(x) is the number of representations x = x1 + · · · + xs
for which xi = x j for some i < j. Thus,

(A ∗s A)(x) − (A∗̃sA)(x) 6 s2q(x), (7.2)

where q(x) is the number of solutions of x = 2x1 + · · · + xs−1. By Fourier inversion,∑
x

q(x)2 =

∫
|Â(2α)|2|Â(α)|2s−4 dα 6 |A|2Ts−2(A) 6 |A|2+2/(s−1)Ts(A)(s−3)/(s−1)

= |A|2+2/(s−1)Ts(A)−2/(s−1)Ts(A) 6
1

100
s−4Ts(A). (7.3)

Therefore, by the triangle inequality and the inequalities (7.2) and (7.3),∑
x

(A∗̃sA)(x)2 > Ts(A)1/2
(
Ts(A)1/2 − 2s2

(∑
x

q(x)2
)1/2)

> Ts(A)1/2
(
Ts(A)1/2 −

1
5

Ts(A)1/2
)

>
4
5

Ts(A). (7.4)

Finally, using the assumption that Ts(A)� 10ss2s|A|s and the bounds (7.1) and (7.4),

T∗s(A) > 4
5 Ts(A) − s2|A|Ts−1(A) > 4

5 Ts(A) − s2|A|s/(s−1)Ts(A)(s−2)/(s−1) > 1
2 Ts(A)

and the assertion follows. �
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We will also use the following simple lemmas.

Lemma 7.2. Let A ⊆ G be a finite set and let s > 0 be an even integer. Suppose that
A contains a family of nontrivial s-tuples, involving at least rs elements of A. Then
dim(A) 6 |A| − r.

Proof. Let S denote the given family of s-tuples and let M ⊆ A be the set of all
elements of A involved in some s-tuple of S. To prove the lemma, it is sufficient to
show that there are s-tuples S 1, . . . , S r ∈ S and elements a j ∈ S j, j ∈ [r] such that each
a j does not belong to S i, i , j. Indeed, it is easy to see that A ⊆ Span (A \ {a1, . . . , ar}).

We use induction on r > 0. The result is trivial for r = 0. Now assume that
r > 1. In view of the assumption |M| > rs, there is an element a ∈ M belonging to
at most k := s|S|/|M| 6 |S|/r tuples from S. Let S 1, . . . , S k be all these tuples and put
S′ = S \ {S 1, . . . , S k}. One can suppose that the minimum of such k is attained on
the element a ∈ M. Notice that S′ involves at least rs − s elements of A. Indeed,
otherwise |S 1 ∪ · · · ∪ S k| > s + 1 and each element of S 1 ∪ · · · ∪ S k belongs to at
least k sets from S, so that it belongs to all sets S 1, . . . , S k. But this implies that
|S 1 ∪ · · · ∪ S k| 6 ks/k = s, which gives a contradiction. By the induction assumption,
there are tuples S ′1, . . . , S

′
r ∈ S

′ and elements a′j ∈ S ′j, j 6 r − 1 such that each a′j
does not belong to S ′i , i , j. Hence, the sets S 1, S ′1, . . . , S

′
r ∈ S and the elements

a1, a′1, . . . , a
′
r−1 possess the required property. �

Lemma 7.3. Let M ⊆ G be a finite set and suppose that M = X ∪ D, where D is
a dissociated set. Then there is an absolute constant C > 0 such that Ts(M) 6
C sss|D|s + 22s|X|2s−1.

Proof. By Rudin’s inequality,

Ts(M) =

∫
|M̂(α)|2s dα 6 22s

∫
|D̂(α)|2s dα + 22s

∫
|X̂(α)|2s dα

6 C sss|D|s + 22s|X|2s−1. �

Proposition 7.4. Let A ⊆ G be a finite set such that Tk(A) > 10k s2k|A|k, where 2 6 k <
s = blog |A|c. Furthermore, let σ > 1 and d be such that

|A|1−(s−k)/2s(k−1) log3/2 |A|
Tk(A)(s−1)/2s(k−1) � d 6

|A|1/2

σ1/2 . (7.5)

Then there is a set A′ ⊆ A such that dim(A′) 6 d and

|A′| > σd.

Proof. Suppose that for all sets A′ ⊆ A such that dimA′ = m 6 d we have |A′| < dσ.
We choose d elements from A uniformly and at random. We show that

P( dim({x1, . . . , xd}) 6 d − l) = O(l)−l. (7.6)
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Indeed, suppose that we have chosen x1, . . . , xm for some m 6 d. Put

A′ := Span (W) ∩ A,

where W is a maximal dissociated subset of {x1, . . . , xm}. Clearly, |W | 6 m and
hence dim(A′) 6 m. By our assumption, d 6 |A|1/2/σ1/2 and therefore the probability
that xm+1 belongs to A′ is at most |A′|/|A| 66 dσ/|A| 6 1/d. Observe that if
dim({x1, . . . , xd}) 6 d − l, then there are at least l elements xi+1 such that xi+1 ∈

Span (Wi) ∩ A, where Wi is a maximal dissociated subset of {x1, . . . , xi}. Thus, the
required probability is bounded from above by

d∑
j=l

(
d
j

)
1
d j 6

∞∑
j=l

(ed
j

) j 1
d j = O(l)−l

and (7.6) is proved.
Next, suppose that the tuple (x1, . . . , xd) ∈ Ad has dimension d − l. Let M be the

set that consists of all elements of {x1, . . . , xd} which are involved in some nontrivial
2s-tuple. Then, by Lemma 7.2, |M| 6 2sl. Since M contains an (|M| − l)-element
dissociated subset, it follows by Lemma 7.3 that T∗s(M) 6 Ts(M) 6 C sss(2sl)s +

22sl2s−1. Therefore, the expected number of nontrivial 2s-tuples in (x1, . . . , xd) is
bounded from above by

C s
1

d∑
l=0

(s2sls + l2s−1)O(l)−l 6 C s
2s3s, (7.7)

where C1,C2 > 0 are absolute constants.
On the other hand, the expected number of nontrivial 2s-tuples in (x1, . . . , xd) equals

T∗s(A)(d/|A|)2s and, by Lemma 7.1,

T∗s(A)
( d
|A|

)2s
>

1
2

Ts(A)
( d
|A|

)2s
>

Tk(A)(s−1)/(k−1)

2|A|(s−k)/(k−1)

( d
|A|

)2s
.

Comparing the last estimate with (7.7) (recalling that s = blog |A|c), we obtain a
contradiction. This completes the proof. �

Finally, let us formulate the Bateman–Katz theorem for a general abelian group G.

Corollary 7.5. Let A ⊆ G be a finite set and let k be a fixed integer, 2 6 k < blog |A|c.
Suppose that Tk(A) = c|A|2k−1 > 10k|A|k log2k |A|. Then there is a set A′ ⊆ A such that

|A′| �
c1/2(k−1)|A|

log3/2 |A|

and
dim(A′)�k c−1/2(k−1) · log3/2 |A|.
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Proof. As in Proposition 7.4, put s = blog |A|c. In view of k < s, we have Ts(A)�
10ss2s|A|s and Ts(A) > c(s−1)/(k−1)|A|2s−1. We apply Proposition 7.4 with

d ∼ |A|T−1/2s
s (A) log3/2 |A| � c−1/2(k−1) log3/2 |A| and σ ∼ |A|d−2.

Then the conditions (7.5) are satisfied. Thus, there exists a set A′ ⊆ A of dimension at
most d such that

|A′| > σd � |A|c1/2(k−1) log−3/2 |A|.

This completes the proof. �

8. Further remarks

We finish the paper with some remarks on other possible variants of additive
dimension, which we considered here. Recall that

d(A) = min{|S | : S ⊆ A, A ⊆ Span S }, d∗(A) = min{|S | : A ⊆ Span S }

and

d̃(A) = min{|Λ| : Λ ⊆ A,Λ is a maximal (by inclusion) dissociated subset of A}.

Example 8.1. Let x , y be integers and let A1 = {x, y, x + y, 2x + y}, A2 = {y, x + y,
2x + y}. Clearly, A2 ( A1 and dim(A1) = 3, d(A) = d∗(A1) = 2, dim(A2) = d(A2) = 3
and d∗(A2) = 2. Thus, every kind of dimension can differ from another one. Note also
that d(A2) > d(A1) and d̃(A2) > d̃(A1), but A2 ( A1.

Observe that
d∗(A) 6 d(A) 6 d̃(A) 6 dim(A).

On the other hand,

dim(A)� d∗(A) log d∗(A) 6 d(A) log d(A)

(see [10]). Indeed, let Λ ⊆ A be a maximal dissociated subset of A, |Λ| = dim(A) and
let |S | = d∗(A). There are 2|Λ| different subset sums of Λ and any element of A and
hence any element of Λ belongs to Span S , so that

2|Λ| 6 (2|Λ| + 1)|S |

and the result follows.
Each of the dimensions has useful properties: dim(A), d∗(A) are monotone (but d(A)

is not, as Example 8.1 shows); furthermore, all dimensions are subadditive:

dim(C1 ∪ · · · ∪Cn) 6
n∑

j=1

dim(C j)

and the same holds for d∗(A), d(A) and the dimension d(A) is ‘subadditive’ in the
following sense:

d(C1 + · · · + Cn) 6
n∑

j=1

d(C j)

for any disjoint sets C j.
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