
Can. J. Math., Vol. XXIV, No. 6, 1972, pp. 1019-1026 

COHOMOLOGY THEOREMS FOR BOREL-LIKE 
SOLVABLE LIE ALGEBRAS IN ARBITRARY 

CHARACTERISTIC 

G. LEGER AND E. LUKS 

1. Introduction. This paper develops some techniques for the study of 
derivation algebras and cohomology groups of Lie algebras. We are especially 
concerned with solvable algebras over arbitrary fields with structural proper
ties like those of the Borel subalgebras of complex semi-simple Lie algebras. 
In particular, these algebras are semi-direct sums of nilpotent ideals and 
abelian subalgebras which act on the ideals in a semi-simple fashion. We make 
strong use, in our discussion, of a cohomology theorem of Hochschild-Serre. 
This result is stated herein (§2) in a modified form which allows us to omit 
the original hypothesis that the base field have characteristic 0. 

Sections 3 and 4 are devoted mainly to the study oi H1 (B, B) for our class 
of algebras B, and to completeness theorems. As one application of these 
results we are able to obtain Hl{B, B) quickly in the case where B is the Lie 
algebra, in arbitrary characteristic, of all triangular matrices or that of all 
trace 0 triangular matrices. This result was derived previously [7] only by a 
rather formidable computation. In addition, we shall apply these results in 
[4] and elsewhere. 

In § 5 we turn to H2(B, B) and more generally to H(B, B) for "Borel-like" 
solvable algebras. We obtain H2(B, B) = 0 for a wide class of such algebras 
which exist in any characteristic 9^2. Thus, by a rigidity theorem of Nijenhuis-
Richardson [5], these form a large collection of solvable rigid Lie algebras. 
Finally, our technique, coupled with a result of Kostant, gives H{B, B) = 0 
for Borel subalgebras of semi-simple Lie algebras over fields of characteristic 0. 

We shall be considering cochain complexes C(K, M), where K is a Lie 
algebra, M a X-module, with the usual coboundary [1] ; in the case when K is 
a subalgebra of a Lie algebra H, M an ideal in H, K will be understood to act 
on M via the adjoint representation. Depending on our point of view we shall 
use either A(K) or Z1(K, K) to denote the derivation algebra of the Lie 
algebra K; I(K) will denote the algebra of inner derivations. £(K) will denote 
the centre of K and, as usual, K will be called complete if £>{K) = 0 and 
A(K) = I{K) (i.e., H°(K,K) = H^K^K) = 0). An ideal of K is called 
characteristic if it is invariant under derivations of K. If M is a K-module, 
MK = {m in M\K • m = 0}. We recall that an exact sequence X —> Y —> Z of 
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semi-simple i£-modules gives rise to the exact sequence XK —» YK —» ZK. A 
linear Lie algebra is called toroidal if it can be diagonalized over an algebraic 
closure of the base field; a representation p of K is called toroidal if p(K) is 
toroidal. We remark, finally, that all algebras considered will be finite 
dimensional. 

2. A theorem of Hochschild-Serre. In this section we present a result 
extracted from [1, Theorem 13] of Hochschild-Serre. Our contribution is 
merely the observation that the proof in [1] does not, for our statement, 
require characteristic 0. 

2.1 THEOREM. Let B = A + L be a semi-direct sum of an abelian subalgebra, 
A, and an ideal, L, and let M be a B-module. Suppose that &dLA and the repre
sentation of A on M are toroidal. Then, for n ^ 0, 

Hn(B,M)^ £ H\A,F) ®Hj(L,M)A 

where the base field is considered as a trivial A -module. 

We note, for future reference, the obvious consequence: 

2.2 Remark. H*(B, M) = 0 for 0 ^ i ^ n if and only if H*(L, M)A = 0 
for 0 S i ^ w. 

3. A(B) and completeness. Throughout this section we consider a Lie 
algebra B, over an arbitrary base field, which is a semi-direct sum B = A + L 
of an abelian subalgebra A and a (not necessarily nilpotent) ideal L such that 
didLA is toroidal. 

We have an injection 

Z\LyB)A-^A(B) 

which extends a cocycle z in Zl(L, B)A so that e(z)(A) = 0 and e(z)\L = z. 
We shall often identify Z :(L, B)A with its image under e in A(J3). We note 
also that if L is a characteristic ideal and LA = 0 then Zl(L, B)A ^ Zl(L, L)A. 
Further, we may clearly identify Horn {A, &{B)) with the set of derivations 
of B which vanish on L and map A into £(B). Since B = A • B © 5 A a s a n 
,4-module and £(B) Pi BA we have Horn(4, £(B)) H 1(B) = 0. As our first 
application of Theorem 2.1 we see that to determine A(B) it suffices to know 
these derivations. 

3.1 PROPOSITION. A(B) = Zl(L, B)A + Horn(4, £(B)) + 1(B). 

Proof. Letting denote cohomology class in Hl(B, B), we show that 

Zi(L,B)A 0 Hom(A,£(B)) = IP(B, B) 

This result is essentially contained in 2.1 and may be verified by tracing the 
actual identifications involved in the theorems leading to [1, Theorem 13]. 
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However, for the reader's convenience we verify the equality by checking 
dimensions. Note that Zl(L,B)A = Hl(L,B)A and dim Horn (A, 3 ( 5 ) ) = 
dim Hom(A, £(B)). Then, applying Theorem 2.1 with M = B and n = 1 
and noting that H°(L, B)A == £(B), we see that both spaces have dimen
sion = dimH*(LfB)A+ (dim 4 ) (dim 3 ( 3 ) ) . 

3.2 COROLLARY. Suppose L is a characteristic ideal in B = A + L, £(B) = 0, 
and the derivations of L which commute with adLA are contained in a.dLA + I(L). 
Then B is complete. 

Proof. It suffices to show that H1(L,B)A = 0. But from the short exact 
sequence 

O^L-^B-^ B/L -> 0 

of ^-modules we obtain the exact sequence 

H\L, L)A £ H\L, B)A K H\L, B/L)A. 

By hypothesis the image of Zl(L,L)A in C1(L,B)A is in Bl(L,B). Thus 
i* = 0. Since L is characteristic, an element of Zl(L, B)A maps L into L and 
hence p* = 0. 

Our search for the following proposition was motivated by the Schenkman-
Wielandt Tower Theorem: In a finite number of steps the derivation tower, 
K, A(K), A(A(K))y . . . , etc., of a centreless Lie algebra K yields a complete 
algebra. Proposition 3.3 illustrates that for a large class of algebras A(K) is 
already complete. We first make the following observation. 

Remark. If K is a Lie algebra with £(K) = 0 then, with the usual identi
fications, K C A(K) C A(A(K)). Note that A(K) is complete if and only if 
K is an ideal in A(A(K)). 

3.3 PROPOSITION. Suppose the centre of B = A + L is 0 and B2 = L. Then 
A(B) is complete. 

Proof. We show that B is an ideal in A (A (B)). Take c in A(A(B)). Since 
L = B2, [Cj L] C B. A(A(B)) is a semi-simple ad A module and so we can 
write c = ci + c2 with [cu A] = 0 and c2 G [A, A(A(B))] C A(B). Then 
[c, A] = [a, A] C B. 

3.4 Example. We demonstrate the necessity of the hypothesis B2 = L in 
Proposition 3.3; e.g., it does not suffice just to assume that L is a characteristic 
ideal in B. Let L be the 5-dimensional nilpotent algebra over any field F, of 
characteristic not 2 or 3, with basis xi, x2, x3, x4, X5 such that 

[xi, xz] = x4; [xi, x4] = [x2, xz] = x6 

and [xt, Xj] = 0 for i < j , otherwise. 
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The linear transformation, a, of L given by a = diag(0, 0, 1, 1, 1) with 
respect to this basis is a derivation of L. Let A = Fa and form the semi-direct 
sum B = A + L. Proposition 3.1 and consideration of the weight spaces for A 
quickly reveal that dim Hl(B, B) — 2. We choose representative outer deri
vations b and y in Z1(L1 B)A where b(x\) = xi, b(x2) = 2x2, b(x^) = 0, 
b(x±) = XA, b(xh) = 2x5 and y{x{) = x2, y(x2) = 0, y{x%) = 0, y(x±) = x5, 
y(x&) = 0. Thus A (5) = B = Â + L where A = Fb ®A, L = Fy + L. 
B being of the "right" form, Proposition 3.1 leads now to a single representative 
outer derivation, c, in Zl(L,B)A where c(y) = y, c(x\) = y, c(x2) = x2, 
c(xs) = 0, C(XA) = 0, c(x&) = x5. Thus, in particular, A(B), is not complete. 
Note, finally, that A (A (5)) = (Fc © Â) + L is complete by Corollary 3.2 
(This also follows from Proposition 3.3 since B2 = L.) 

4. Applications. The following proposition is useful in the application of the 
results of section 3. 

4.1 PROPOSITION. Let L be a Lie algebra, A a maximal toroidal sub algebra of 
A(L) and A' a subalgebra of A of codimension m. Suppose the weight spaces 
(after passing to an algebraic closure of the base field) of Ar are one dimensional 
and that zero is not a weight of A'. Then dimi71(^4/ + L, A' + L) = m. 
In particular, A + L is complete. 

Proof. Since zero is not a weight, £>(Af + L) = 0. Then Proposition 3.1 
yields A(A' + L) = Zl(L, A' + L)A' + I(Af + L). Since (Af + L)2 = L, 
L is a characteristic ideal and so Zl(L, A' + L)A' ^Zl(L,L)A'. But the 
hypothesis on the weight spaces implies that Zl(L,L)A' is toroidal. Thus, 
because A is maximal, Zl(L, L)A' = A. Note that A is the unique maximal 
toroidal extension of A'. Since the elements of A' induce inner derivations of 
A' + L, the conclusion follows. 

4.2 Remark. In the situations herein to which we apply Proposition 4.1 the 
maximality of A will be assured by the fact that L will be nilpotent and 
dim ,4 = dim (L/L2). 

4.3 COROLLARY. A Borel subalgebra of a semi-simple Lie algebra over a field 
of characteristic 0 is complete. 

In the particular case of a Borel subalgebra of At this result appears in 
[2, Exercise 3.3]. More generally, the derivation algebra of the Lie algebra of 
trace zero triangular matrices has been obtained in arbitrary characteristic 
by Togo [7] via a lengthy computation. We shall show how our methods 
facilitate the latter author's results. There are actually three algebras of 
interest: T, the Lie algebra of all triangular matrices, T0 the trace zero matrices 
in T, and 7\ = T/^{T). We introduce some notation: let N be the set of 
strictly triangular n X n matrices (i.e., with only zero entries on or below the 
diagonal) over a field of arbitrary characteristic p\ D the set of diagonal 
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matrices; D0 the trace zero matrices in D; D\ any fixed vector space complement 
in D to the subspace spanned by the identi ty, i; eij the n X n matr ix with 1 in 
the i th row and j t h column and zero elsewhere. Now T = D + N,T0 = D0 + N 
and it is clear t ha t £(T) = FL SO T1^D1 + N; also, Tx ^ T0 if and only if 
n ^ 0 mod p. 

T h e next lemma seems to pinpoint the reason for the existence of excep
tional cases in [7, Theorem 1(h)] or our Proposition 4.5 (iii). 

4.4 LEMMA. The weight spaces for adND and adNDi are one dimensional. 
Further, if n ^ 3 or 4 the weight spaces for ad^Do are one dimensional. 

Proof. Clearly, the weight spaces for adND = ad^-Di are precisely the Fe{j 

with i < j . Suppose tha t the weight spaces for a d ^ o are not one dimensional 
(then, of course, n = O m o d ^ ) . Since Do C D there is a pair etj, ekt with 
(i*j) ** (̂ > 0 belonging to the same weight space for a d ^ o - We may choose 
r in the set {i,j} and not in {k, 1} ; bu t then, if there were an s, 1 ^ s ^ n, not 
in {i,j, k, / } , etj and ekï would be in different weight spaces for a d ^ ^ r r — ess). 
T h u s n = 3 or 4. 

PROPOSITION (Togo), (i) Ti(^T0 if n ^ 0 mod p) is complete. 
(ii) The outer derivation algebra of T has dimension n. 

(iii) If n = 0 mod p and n ^ 2, 3, 4, //&£ oz//er derivation algebra of T0 has 
dimension n. 

Proof. By 4.2 and 4.4 we see t ha t we may apply 4.1 to conclude tha t 
T\ = D\ + N is complete; thus (i) is proved. Because of (i) and the decom
position T = FL © (Di + N) the outer derivation algebra of T may be 
identified with the space H o m ( D , FL); this proves (ii). Wi th T0 as in (iii), 
4 .1 , 4.2 and 4.4 yield dim Hl(D* C\ Dx + N, D0 H Dx + N) = 1 (n ^ 2 is 
required to assure t ha t zero is not a weight) . T h u s (iii) follows from the 
observation T0 = FL 0 (D0 C\ Di + N) (when n = 0 mod £ ) . 

5. H2(B, B) a n d h i g h e r c o h o m o l o g y . 

5.1 In the ensuing proposition and its corollary, L will denote a ni lpotent 
Lie algebra over a field, F, of characteristic not 2, i a subalgebra of A(L), 
I? the semi-direct sum B = A + L and we shall assume the following proper
ties ( i ) - ( iv) hold. 

(i) A is diagonalizable over F and dim A = d i m ( L / L 2 ) = n. 
Let W denote the set of weights of A in L and, for each a in W, denote by La 

the weight space for a. 
(ii) For a in W, dim L a = 1 and, it a, f$, a + ($ are all in W, [Laj L$\ = La+p. 

We fix au oi2, . . . } an in W and Xi, x2, . . . , xn in L so tha t L = ^ Fxt + L2 

(vector space direct sum) and a • Xj = aj(a)xj for a in A. The weights 
«i, a2, . . . , an will be called primitive. Every weight in W has the form 
Y^i=iri(Xi where the rt are non-negative integers. 
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(iii) If the characteristic of F is p ^ 0 we assume further, for every a in W, 
t h a t 0 ^ r% < p/2 for each i. 

Since each weight in L2 is the sum of two weights, it follows from (iii) t h a t zero 
is not in W. 

(iv) If a, (3, 7, 5, a + 7, fi + ô are all in W with a, /3 primit ive and unequal 
and with a + 7 = 0 + ô, then there is some /x in W such t h a t ô = a + /x, 
7 = jS + /x and a t least one of the following is satisfied: 

Case 1. a + fi is not in W. 
Case 2. a + f$ is in 17 bu t a + 2/3 is not in IF and /x = /3 + i> for some v in 17. 
Case 3. a + /3 is in 17 bu t 2a + /3 is not in 17 and /x = a + v for some 1/ in 17. 

5.2 Remark. Propert ies ( i ) - ( iv) are abstracted from twro large classes of 
solvable algebras. T h e first is the class of Borel subalgebras of semi-simple 
Lie algebras in characteristic 0. T h e second is a class of algebras, introduced 
in [4], in characteristic not 2, in which the weights are in one-one corres
pondence with the subtrees of any tree graph, the primitive weights corres
ponding to the vertices. In all these examples, cases 2 and 3 of (iv) occur only 
in the presence of Borel subalgebras of the simple algebras Cx and FA. 

5.3 PROPOSITION. Suppose A, L are as in 5.1, ( i ) - ( iv ) . Let M be an A + L 

module such that the representation of A on M is toroidal and the weights of A 
in M are in W. Then H2(L, M)A = 0. 

Proof. Since La • Mp C Ma+p, L operates on M by means of ni lpotent 
t ransformation and so M has a one dimensional A + L submodule. Since one 
always has the exact cohomology sequence 

H2(L, M')A->H2{L, M)A->H2(L, MI M')A 

arising from an A + L submodule M' of M, it suffices to consider dim M = 1. 
Suppose then M = Fm and denote the weight of A on M by A. Choose, for 

each a in W, a non-zero xa in La. Let the scalar c(a, /3), for a, /3 in Horn (A, F), 
be defined by 

[xa, Xp] — c(&, P)xa+p, if a, /3, a + /3 are all in W, 

c(a, /3) = 0, otherwise. 

Le t / Ç H2(L, M)A. We choose a representat ive cocycle / £ / such t h a t 
A - f = 0. W e shall show / cobounds. Define the scalar $ ( « , #) , for a, 0 in 
Horn ( 4 , F) by 

/ (#«, xp) = 3>(Û!, /3)ra, if a, /3 are in 17, 

<ï>(a, /3) = 0, otherwise. 

Since A • / = 0, 3>(a, 0) ^ 0 only if a + 0 = A. 
Let p, a, r be in W. T h e Jacoby ident i ty and the cocycle condition applied to 

xPJ x<,} xT g i v e : 

(a) c(p, <r)c(p + o-, r ) + c(<r, T)C(<T + r, p) + C(T, p)c(r + p, a) = 0, 

c(p, <r)$(p + <r, T) + c(o-, T ) $ ( O - + r, p) + c(r, p ) $ ( r + p, cr) = 0. 
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Suppose, in particular, t ha t p + a, a + r are in W and r + p is not in W. 

Then c(r + p, o-) = $ ( r + p, or) = 0, and (a) yields: 

(b) c(a + r, p)$(p + a,T) = c(p + <r, r)$(cr + r, p). 

Now let a, jô, 7, 5 be in W with a, /3 primitive and a + y — (3 + ô=A. We 
claim t h a t 

(*) c(a,y)*(P,ô) = c O M ) $ ( a , 7 ) . 

By 5.1 (iv), 7 = jS + /x, ô = a + /i for some n in W. In case 1 of (iv), (b) 
applied with p = a, a = /x, r = /3 is precisely (*). In case 2, (a) applied with 
p = a, a = fx} T = 13 and (b) applied with p = fi, a = v, T = a + (3 yield the 
cla im; case 3 is similar. Considering (*) we may then consistently define g in 
0{L,M) so tha t 

g(xp) = 0 for p ?* A 

and 

c («»7kW = — $(«, y)m 

for any a, 7 in W such tha t a: is primitive and a + 7 = A. 
Let f = f — àg> By construction, / ( x a , L) = 0 if a is primitive. Bu t then, 

by the cocycle condition, f(xp, L) = 0 implies, for a primitive, t h a t 
f([xa, Xp], L) = 0. Thus one sees inductively t h a t / = 0, i.e., / = 8g. 

5.4 COROLLARY. Let B = A + L as described in 5.1, ( i ) - ( iv ) . Then 
H2(B,B) = 0. 

Proof. Since, by Proposition 4.1, B is complete, it suffices by 2.2 to show t h a t 
H2(L, B)A — 0. For this we need only consider the exact cohomology sequence 

H2(L, L)A-+H2(L, B)A-+H2(L, B/L)A 

Now H2(L, L)A = 0 by Proposition 5.3; and C2(L, B/L)A = 0 since B/L is 
a trivial A -module while, by 5.1 (iii), zero is never the sum of two weights of 
A in L. 

5.5 Remark. One consequence of the corollary is the existence of a large 
class of solvable rigid Lie algebras. This seems unexpected in view of the 
remarks in the introduction of [6]. 

T h e essential point in the proof of Corollary 5.4 was the fact t h a t 
H2(L,L)A = 0. Now, a result of Kos tan t [3, Corollary 5.3.3] includes, in 
the part icular case of a Borel subalgebra, B = A + L, of a semi-simple Lie 
algebra in characteristic 0 the more general s ta tement , Hl{L, L)A = 0 for 
i ^ 2. Wi th this, an analogous proof to t ha t of 5.4 (using 2.2 and induction) 
yields: 

5.6 PROPOSITION. Let B be a Borel subalgebra of a semi-simple Lie algebra 
over a field of characteristic 0. Then H(B, B) = 0. 
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Remark. It is shown similarly in [8] that, in characteristic 0, the tree algebras 
mentioned in Remark 5.2 have the same property. 
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