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EXCHANGE OF EQUILIBRIA IN TWO SPECIES
LOTKA-VOLTERRA COMPETITION MODELS

K. GOPALSAMY1
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Abstract

Sufficient conditions are obtained for the existence of a unique asymptotically stable
periodic solution for the Lotka-Volterra two species competition system of equations
when the intrinsic growth rates are periodic functions of time.

1. Introduction

Suppose an ecosystem is modelled by the following system of autonomous
ordinary differential equations

where / j , , / i2 , . . . , / im are certain parameters with values in a bounded closed
subset fi of the nonnegative cone in Rm. We assume that (1.1) has an asymptoti-
cally stable steady state at (xf, x j , . . . ,x*) where

xf = jcl*(jiil,ji2,•••./»„) > 0 , ( , i 1 ) / i 2 , . . . , / i j E f i . (1.2)

The parameters ju],/x2,. . . ,fim are usually considered to represent the effects of
the environmental as well as the interspecific and intraspecific interactions. We
ask the following question: if the parameters /x,, n2,...,fim are replaced by
continuous periodic functions say /J,(0> &(')>•• • > An(0>' G R respectively with a
common period w where

{fit(t),p2(t),...,Pm(t)}eQ forreR, (1.3)
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12) Exchange of equilibria 161

is there a periodic solution {j>,-(0»' — l>2, . . . ,n} of (1.1) such that

where R+ is the nonnegative octant of R"? If such a periodic solution exists and is
asymptotically stable we will say that an exchange of equilibrium of (1.1) occurs.

Such a problem of exchange of equilibrium has recently been considered by
Rosenblat [11] and Gopalsamy [6] where the periodic parameters j8,-(f)» ' =

1,2,..., m, are considered to be perturbations of the form

P,(t) = n, + ep,(t), i = l , 2 , . . . , m , (1.5)

e being a perturbation parameter while />,(•), /' = l,2,...,m, are periodic in t with
a common period. In a number of articles, Cushing [4, 5] has investigated the
dynamics of systems of the type

by converting (1.6) into a problem of bifurcation for periodic solutions and
identifying the average of one of the periodic parameters /? , , . . . ,/?m as a bifurca-
tion parameter. Recently Mottoni and Schiaffino [9] have investigated the be-
haviour of the Lotka-Volterra two species competition model with periodic
coefficients and compared the behaviour with that of the corresponding "aver-
aged" system.

We remark that in model ecosystems exchange of equilibria need not always
occur as can be verified for a simple system of the form

* ( / ) } ; (1.7)

if y is a positive constant, all solutions of (1.7) with positive initial values are such
that x(t) -» 1 as t -» oo; if we replace y by a(t) where a() is a strictly positive
valued continuous periodic function then all solutions of

&p y(t)) (1.8)

with positive initial values are such that y(t) -» 1 as t -> oo. Thus (1.7) does not
possess the property of "exchange of equilibrium".

The existing literature on the theory of both autonomous and nonautonomous
systems, including differential equations with periodic coefficients, does not
answer the above mentioned question of "exchange of equilibrium" except when
the periodicity involved is a perturbation of an autonomous case.
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Recently Coleman [2] and Coleman et al. [3] have considered the logistic
equation

^ = r(/)*(/){l - * ( / ) / * ( / ) } 0-9)

where r and K are strictly positive continuous periodic functions with a common
period. Boyce and Daley [1] have considered (1.9) with r a positive constant. By a
change of the dependent variable in (1.9), one can solve explicitly the equation
(1.9) for arbitrary r and K and, using such a technique, existence of a unique
asymptotically stable periodic solution is established in [2] and [3]. Such an
explicit solution is rarely possible for multispecies Lotka-Volterra model systems
even in the case of constant coefficients.

2. A two species competition model in periodic environments

One of the classical models describing the dynamics of two species competing
for a common supply of resources is described by a system of autonomous
differential equations

dx , .
~dJ^x{b] -anx-any)

-£=y(b2-a2lx-a22y)
(2.1)

where it is usually assumed that bit a,j (/, j = 1,2) are positive constants. If the
intraspecific and interspecific coefficients satisfy the relation

an/a21 > bjb2 > an/a22 (2.2)

then it is known from phase plane techniques or from the method of Lyapunov
functions that the solutions of (2.1) are such that

(x(t), y(t)) ^(a,P)ast-* oo if x(0) > 0 andj>(0) > 0 (2.3)

where

a = {bxa22 - b2an)/ (aua22 - a , 2 a 2 , ) |

P = (a\\b2 - a2lbt)/ (aua22 - al2a2l) ) '

Let us now suppose that the intrinsic growth rates bx and b2 in (2.1) are strictly
positive continuous periodic functions of time with a common period to > 0 so
that

bt(t + u) = bx(t), b2(t + u) = b2{t) for-oo<r<oo. (2.5)
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We will assume that the competitive interaction coefficients a,y (/, j = 1,2) are
positive constants; if some or all of atJ are also strictly positive continuous
periodic functions our analysis below can easily be modified to suit such a
possibility. We will however assume in the following that atj (/', j = 1,2) are
positive constants. Thus instead of (2.1) we will consider the periodic system

(2.6)

(2.7)

~ a22y(t)]

and in the place of (2.2) we assume the following:

au/a2} > b\/b2l, bu/b^ > an/a22

where

max
-oo<r<oo

min = bu> 0

max b2{t) = b2
1>0

-oo<r<oo

min b2(t) = b2l>0
-00 </<O0

(2.8)

One can consider (2.7) to be a generalization of (2.2) to the periodic case of (2.6).
It is easy to see that the system (2.6) leaves the nonnegative quadrant {(x, y) G
R2 | x > 0, y s= 0} invariant and hence we have

dy{t)
dt

It follows from (2.9) that

>y{t){b»2-a22y{t)}
for / > 0. (2.9)

0 < x(0) < b»/an

0 < y(0) < b"2/b22

b»/au = *"]
b"2/a22 = y" \

for / > 0. (2.10)

Similarly we derive

dx{t)
dt -anb

u
2/a22)-aux{t)}

>2l-a2M/au)-a22y{t)}
(2.11)
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As a consequence of (2.10) and (2.7) we derive

x(0)>
aua22 '\ fort>0. (2.12)

aua22

We thus conclude that the rectangle PQRS where

P = (x,,yl), Q = (x",y,), R = (x",yu) and S = (x,, y")

(2.13)

is an invariant set for the nonautonomous periodic system (2.6). Such a rectangle
lies in the interior of the nonnegative cone {(x, y) G R2 | x > 0, y 3= 0}.

At this stage one can apply Theorem 2 of Massera [8] to assert the existence of
periodic solutions of (2.6); since Massera's theorem does not provide uniqueness
of the periodic solution and its stability, we will follow the method of concave
operators below.

3. Existence of a periodic solution

Let us consider the system (2.6) in R2 with the norm in R2 being defined by

(x,y)(ER2. (3.1)

We know that when (2.7) holds there exists (for all finite values of t) a unique
solution of (2.6) corresponding to every initial value Xo = (x0, y0) G R2; let such
a solution be denoted by

X(t, Xo) = {x(t, x0, yo),y(t, x0, y0)} where ^(0, Xo) = Xo. (3.2)

We define a shift operator also known as Poincare's period map A: R2 -» R2 by
the formula

AX0 = X(a, Xo) (3.3)

where a denotes the period of the periodic functions bx and b2 in (2.6). If one can
show that the operator A has a fixed point say X$ = (x$, y£) then it will follow
that for the system (2.6) there is a solution X*(t) defined for t G [0, u] satisfying
the condition

X*(u>) = X*(0) = X$ (3.4)

or equivalently

x*(u, xj, y$) = xj, y*(o>,xo,yo) - y^. (3.5)

Since the right side of (2.6) is periodic in t with period w, it will then follow that
X*(t) can be extended for t > w by periodicity in the sense that

X*(nu + t) = X*(t) forn = 0,1,3, . . .
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for all values t and such an extension will be a solution of (2.6). Thus the
existence of periodic solutions of (2.6) will follow from the existence of fixed
points of the shift operator A defined above.

Since we are interested only in positive periodic solutions of (2.6) we will
restrict the domain of definition of the operator A to a suitable subset of R2;
usually the nonnegative quadrant

will be considered. For our purposes this cone Ko of nonnegative vectors of R2 is
too big and we choose instead the following set K C Ko where

K= {(x, y) <=R2\(x, y)=\(u,v),(u,v) (E PQRS,\^0). (3.6)

From our previous analysis we note that the shift operator A is positive with
respect to the cone in the sense that AK C K.

The following result is well known.

THEOREM (Brouwer). Suppose that a continuous operator U maps a closed
bounded convex set G c R " into itself. Then R contains at least one fixed point of U;
that is there exists at least one z £ i ! for which Uz = z holds.

THEOREM 1. Suppose the conditions (2.7) hold for the system (2.6). Then (2.6) has
at least one strictly positive periodic solution.

PROOF. Consider the sets B, = {(x, y) G R2, (x, y) G PQRS} and fi2 = K.
The intersection ii = B, D R2 is a closed bounded convex set in R2 and the
operator A maps fl into itself since the set fi is invariant with respect to the
system (2.6). This means that

(x0ty0)eQ=>{x(t,x0,y0),y(t,x0,y0)} GQ for all / ̂  0 (3.7)

and hence (x(u, x0, yQ), y(u, x0> y0)) G Q which implies that ASl C J2. The
solution operator of (2.6) is continuous with respect to the initial values for all
values of t from which the continuity of the operator A follows. Now by the
Brouwer theorem the existence of at least one fixed point of A in fl follows. Since
such a fixed point has positive coordinates the corresponding periodic solution is
strictly positive by the invariance of fi.

To examine the uniqueness and stability of the periodic solution of Theorem 1
we introduce the following definitions.

DEFINITION 1. An operator U: D C R 2 ^ R 2 is said to be monotonic if X{ =
(jC|, >»,) G D, X2 — (x2, y2) G D and Xt < X2 in the sense x{ < x2, yl <y2 im-
plies UXX < UX2.
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DEFINITION 2. An operator U: D C R2 -> R2 is said to be positive with respect to
a cone K in R2 // U: K -» K and is said to be strictly positive if UK G interior of K.

DEFINITION 3. A positive operator U defined on a cone K in R2 is said to be
strongly concave if for an arbitrary interior element X G K and any number
T G (0,1) there exists a positive number i\ such that

U{rX) >(\+ 7))TUX. (3.8)

THEOREM 2. The shift operator A corresponding to (2.6) and (2.7) is monotonic,
strictly positive and strictly concave with respect to the cone K; A cannot have more
than one fixed point in K and the corresponding periodic solution is uniformly
asymptotically stable.

PROOF. A set of sufficient conditions have been derived by Krasnoselskii
[Theorem 10.2 of [7], p. 204] for the shift operator A of systems of the form (2.6)
to be monotone, strictly positive and strictly concave with respect to the cone K.
Since the cone K is narrower than Ko, positivity of A and strict positivity of A are
equivalent on K. Since Xo G K, Xo ¥= (0,0) implies that the components of Xo are
positive and hence X(a, Xo) — AX0 G interior of K. If we rewrite the system
(2.6) in the form

~r =/r(*> x, y), —r=fo(t,x,y), (3.9)

then a sufficient condition for the monotonicity and strict concavity of A is that
the functions Ft and F2 defined by

(3.10)

are strictly positive in the sense that

I for 0 < T ? | ; TJ2 < oo and/ >0. (3.11)

A direct verification of the conditions (3.10)—(3.11) for (2.6) reveals that the
periodic operator A is strictly concave. It is known by Theorem 10.1 of Krasno-
selskii [7] that A cannot have more than one fixed point in K and hence the
periodic solution corresponding to the fixed point of A is unique; the uniform
asymptotic stability of the unique periodic solution follows now by Theorem 10.6
of Krasnoselskii [7].
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(8) Exchange of equilibria 167

We conclude with a comment that the existence of unique asymptotically stable
periodic solutions of ecosystems has some relevance to natural selection and
evolution particularly to the way a species will utilise the resources and optimise
its reproductive strategies. For more details of this aspect we refer to Boyce and
Daley [1] and Nisbet and Gurney [10].

4. An example

The following example has been numerically solved for different initial condi-
tions and the solutions are graphically illustrated in Figures 1, 2, 3, 4, 5.

— = x[2 + sin irt — 2x — y]

— = y[4 + cos Tit — x — 6y]
(4.1)

CO
LJJ

Q.

1.20 -i

1.00 -

-60 -

• 60 -

• 20
.HO

I I I I I
.80 1-20 1.60 2 . 0 0 2.HO

SPECIES X

Figure 1. The solution of (4.1) with the initial conditions (JC(O), y(0)) — (2.0, 1.0).
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X

LU

I.ZO -

1.00 -

.60 -

60 -

• HO

. 9 0 1.80 2.70 3.60 i*.SO S.40 6.30
TIME

Figure 2. The value of x as a function of t for the system (4.1) subject to the initial conditions

e.w

8.00 -

1.60 -

10.00 1S.O0 20.00 35.00 30.00 3S.O0
.40

0.00

Figure 3. As for Figure 2 showing^ as a function of /.
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2.40 n

2.00 -

1.60 -

CO
UJ

1.20 -

.63 .12 .81
SPECIES X

90 .99

Figure 4. As for Figure 1 with (jt(O), y(0)) = (0.8, 2.0).

.70 -,

85

• 5 6 -

• 19 -

.60 .80 1.00 1.20
SPECIES X

Figure 5. As for Figure 1 with (x(0), y(0)) = (1.0, 0.5).
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