NOTES ON THE BINDING NUMBERS FOR (a,b,k)-CRITICAL GRAPHS

SIZHONG ZHOU AND JIASHANG JIANG

Let G be a graph of order n, and let a, b, k be nonnegative integers with $1 \leq a < b$. An [a, b]-factor of graph G is defined as a spanning subgraph F of G such that $a \leq d_F(x) \leq b$ for each $x \in V(F)$. Then a graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. In this paper, it is proved that G is an (a, b, k)-critical graph if the binding number

$$bind(G) > \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}$$

and

$$n \ge \frac{(a+b-1)(a+b-2)}{b} + \frac{bk}{b-1}$$

Furthermore, it is showed that the result in this paper is best possible in some sense.

1. INTRODUCTION

All graphs considered in this paper will be finite and undirected simple graphs. Let G be a graph with vertex set V(G) and edge set E(G). For $x \in V(G)$, the neighbourhood $N_G(x)$ of x is the set vertices of G adjacent to x, and the degree $d_G(x)$ of x is $|N_G(x)|$. The minimum vertex degree of V(G) is denoted by $\delta(G)$. For $S \subseteq V(G)$, $N_G(S) = \bigcup_{x \in S} N_G(x)$ and we denote by G[S] the subgraph of G induced by S, by G-S the subgraph obtained from G by deleting vertices in S together with the edges incident to vertices in S. A vertex set $S \subseteq V(G)$ is called independent if G[S] has no edges. If $S \subseteq V(G)$, then $P_j(G-S)$ denotes the set of vertices in G-S with degree j and $|P_j(G-S)| = p_j(G-S)$. The binding number bind(G) of G is the minimum value of $|N_G(X)|/|X|$ taken over all non-empty subsets X of V(G) such that $N_G(X) \neq V(G)$. Let a and b be integers with $0 \leq a \leq b$. An [a, b]-factor of graph G is defined as a spanning subgraph F of G such that $a \leq d_F(x) \leq b$ for every vertex x of G (Where of course d_F denotes the degree in F). If a = b = k, then an [a, b]-factor is called a k-factor. A graph G is called an (a, b, k)-critical graph if after deleting any k vertices of G the remaining graph of G has an [a, b]-factor. If G is an (a, b, k)-critical graph, then we also say that G is (a, b, k)-critical. If a = b = n,

Received 19th March, 2007

This research was supported by Jiangsu Provincial Educational Department.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/07 \$A2.00+0.00.

S. Zhou and J. Jiang

then an (a, b, k)-critical graph is simply called an (n, k)-critical graph. In particular, a (1, k)-critical graph is simply called a k-critical graph. The other terminologies and notations not given in this paper can be found in [1].

Many authors have investigated (g, f)-factors [10, 11, 12, 7]. The following results on k-factors and [a, b]-factors and (a, b, k)-critical graphs are known.

In [4], Katerinis and Woodall proved the following result for the existence of k-factors.

THEOREM 1. ([4]) Let $k \ge 2$ be an integer and let G be a graph of order $p \ge 4k-6$ and binding number bind(G) such that kp is even and

$$bind(G) > \frac{(2k-1)(p-1)}{k(p-2)+3}$$

Then G has a k-factor.

In [6], Li and Cai gave the following result for the existence of [a, b]-factors.

THEOREM 2. ([6]) Let a and b be integers such that $1 \le a < b$. Suppose that G is a graph of order $n \ge 2a + b + (a^2 - a)/b$. If $\delta(G) \ge a$ and

$$\max\bigl\{d_G(x),d_G(y)\bigr\}\geqslant \frac{an}{a+b}$$

for any two nonadjacent vertices x and y of G, then G has an [a, b]-factor.

In [9], Matsuda showed the following result for the existence of [a, b]-factors.

THEOREM 3. ([9]) Let $1 \leq a < b$ be integers and G a graph of order

$$n \ge \frac{(a-1)(a+1)(a+b)(a+b-1)}{a(b-1)} - \frac{(a+b)(ab+b-1)}{ab(b-1)}.$$

Suppose that $\delta(G) \ge a$ and

$$\max\bigl\{d_G(x),d_G(y)\bigr\} \geqslant \frac{an}{a+b}$$

for any vertices x and y of G with d(x, y) = 2. Then G has an [a, b]-factor.

In [3], Kano proved the following result for the existence of [a, b]-factors.

THEOREM 4. ([3]) Let a and b be integers such that $2 \le a < b$, and let G be a graph of order n with $n \ge 6a + b$. Put $\lambda = (a - 1)/b$. Suppose for any subset $X \subset V(G)$, we have

$$N_G(X) = V(G) \quad \text{if } |X| \ge \lfloor \frac{n}{1+\lambda} \rfloor; \text{ or}$$
$$|N_G(X)| \ge (1+\lambda)|X| \quad \text{if } |X| < \lfloor \frac{n}{1+\lambda} \rfloor.$$

Then G has an [a, b]-factor.

In [5], Li obtained the following result for the existence of (a, b, n)-critical graphs.

THEOREM 5. ([5]) Let a, b, m and n be integers such that $1 \le a < b$, and let G be a graph of order m with

$$m \geqslant \frac{(a+b)(k(a+b)-2)}{b} + n$$

If $\delta(G) \ge (k-1)a + n$, and

$$|N_G(x_1) \cup N_G(x_2) \cup \cdots \cup N_G(x_k)| \ge \frac{am+bn}{a+b}$$

for any independent subset $\{x_1, x_2, \dots, x_k\}$ of V(G), where $k \ge 2$, then G is an (a, b, k)-critical graph.

THEOREM 6. ([5]) Let a, b, m and n be integers such that $1 \le a < b$, and let G be a graph of order m with

$$m \ge \frac{(a+b)(a+b+k-3+(a-2)(k-2)+1}{b}+n.$$

If $\delta(G) \ge (k-1)a + n$, and

$$\max\{d_G(x_1), d_G(x_2), \cdots, d_G(x_k)\} \ge \frac{am+bm}{a+b}$$

for any independent subset $\{x_1, x_2, \dots, x_k\}$ of V(G), where $k \ge 2$, then G is an (a, b, k)-critical graph.

In [13], Zhou obtained the following result for the existence of (a, b, k)-critical graphs.

THEOREM 7. ([13]) Let a, b, k be integers with $1 \le a < b, k \ge 0$, and let G be a graph of order $n \ge a + k + 1$. If

 $\delta(G) > n + a + b - 2\sqrt{bn - bk + 1},$

then G is an (a, b, k)-critical graph.

In this paper, we discuss a binding number condition for a graph to be (a, b, k)critical. The main results will be given in the following section.

2. The Proof of Main Theorems

Now we give our main theorems.

THEOREM 8. Let G be a graph of order n, and let a, b and k be nonnegative integers such that $1 \leq a < b$. If the binding number

$$bind(G) > \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}$$

and

$$n \ge \frac{(a+b-1)(a+b-2)}{b} + \frac{bk}{b-1},$$

then G is an (a, b, k)-critical graph.

In Theorem 8, if k = 0, then we get the following Corollary.

COROLLARY 1. Let G be a graph of order n, and let a and b be two integers such that $1 \le a < b$. If the binding number

bind(G) >
$$\frac{(a+b-1)(n-1)}{bn-(a+b)+2}$$

and

$$n \geqslant \frac{(a+b-1)(a+b-2)}{b}$$

then G has an [a, b]-factor.

According to Corollary 1, the following theorem obviously holds.

THEOREM 9. ([2]) Let G be a graph of order $n, 1 \le a < b$. If the binding number

$$bind(G) > \frac{(a+b-1)(n-1)}{bn-2b+3}$$

and

$$n \geqslant \frac{(a+b-1)(a+b-2)}{b}$$

then G has an [a, b]-factor.

Let a, b and k be nonnegative integers such that $1 \le a < b$. The proof of Theorem 8 relies heavily on the following lemma.

LEMMA 2.1. ([8]) Let G be a graph of order $n \ge a + k + 1$. Then G is (a, b, k)-critical if and only if for any $\subseteq V(G)$ and $|S| \ge k$

$$\sum_{j=0}^{a-1} (a-j)p_j(G-S) \leq b|S| - bk, \quad \text{or}$$

$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| \geq bk,$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq a-1\}.$

PROOF OF THEOREM 8: Suppose a graph G satisfies the condition of the theorem, but it is not an (a, b, k)-critical graph. Then, by Lemma2.1, there exists a subset S of V(G) with $|S| \ge k$ such that

(1)
$$\delta_G(S,T) = b|S| + d_{G-S}(T) - a|T| \leq bk - 1,$$

where $T = \{x : x \in V(G) \setminus S, d_{G-S}(x) \leq a-1\}$. We choose subsets S and T such that |T| is minimum and S and T satisfy (1).

If $T = \emptyset$, then by (1), $bk - 1 \ge \delta_G(S,T) = b|S| \ge bk$, a contradiction. Hence, $T \ne \emptyset$. Let

$$h=\min\{d_{G-S}(x):x\in T\}.$$

310

According to the definition of T, we have

$$0 \leq h \leq a-1$$
.

We shall consider various cases according to the value of h and derive contradictions. CASE 1. h = 0.

At first, we prove the following claim.

CLAIM 1. (bn - (a + b) - bk + 2)/(n - 1) > 1.

PROOF: Since

$$n \ge \frac{(a+b-1)(a+b-2)}{b} + \frac{bk}{b-1},$$

then we have

$$bn - (a + b) - bk + 2 - (n - 1) = (b - 1)n - (a + b) - bk + 3$$

$$\ge (b - 1)(\frac{(a + b - 1)(a + b - 2)}{b} + \frac{bk}{b - 1})$$

$$-(a + b) - bk + 3$$

$$= \frac{(b - 1)(a + b - 1)(a + b - 2)}{b} - (a + b) + 3$$

$$\ge (a + b - 2) - (a + b) + 3 > 0$$

Thus, we have

$$\frac{bn - (a + b) - bk + 2}{n - 1} > 1.$$

Let $m = |\{x : x \in T, d_{G-S}(x) = 0\}|$, and let $Y = V(G) \setminus S$. Then $N_G(Y) \neq V(G)$ since h = 0. In view of the definition of the binding number bind(G), we get that

 $|N_G(Y)| \ge \operatorname{bind}(G)|Y|.$

Thus, we obtain

$$n-m \ge |N_G(Y)| \ge \operatorname{bind}(G)|Y| = \operatorname{bind}(G)(n-|S|),$$

that is,

(2)
$$|S| \ge n - \frac{n-m}{\operatorname{bind}(G)}.$$

Using $|S| + |T| \leq n$ and (1) and (2) and Claim 1, we have

$$bk - 1 \ge \delta_G(S, T) = b|S| + d_{G-S}(T) - a|T|$$
$$\ge b|S| - (a - 1)|T| - m$$
$$\ge b|S| - (a - 1)(n - |S|) - m$$

$$= (a+b-1)|S| - (a-1)n - m$$

$$\ge (a+b-1)\left(n - \frac{n-m}{bind(G)}\right) - (a-1)n - m$$

$$= bn - (a+b-1)\left(\frac{n-m}{bind(G)}\right) - m$$

$$> bn - (a+b-1)\left(\frac{(n-m)(bn-(a+b)-bk+2)}{(a+b-1)(n-1)}\right) - m$$

$$= bn - \left(\frac{(n-m)(bn-(a+b)-bk+2)}{n-1}\right) - m$$

$$\ge bn - \left(\frac{(n-1)(bn-(a+b)-bk+2)}{n-1}\right) - 1$$

$$= bk + (a+b) - 3$$

$$\ge bk,$$

which is a contradiction.

CASE 2. $1 \leq h \leq a - 1$.

Let x_1 be a vertex in T such that $d_{G-S}(x_1) = h$, and let $Y = (V(G) \setminus S) \setminus N_{G-S}(x_1)$. Then $x_1 \in Y \setminus N_G(Y)$, so $Y \neq \emptyset$ and $N_G(Y) \neq V(G)$. In view of the definition of the binding number bind(G), we obtain

$$\frac{|N_G(Y)|}{|Y|} \ge \operatorname{bind}(G).$$

Thus, we get that

$$n-1 \ge |N_G(Y)| \ge \operatorname{bind}(G)|Y| = \operatorname{bind}(G)(n-h-|S|)$$

that is,

$$|S| \ge n - h - \frac{n-1}{\operatorname{bind}(G)}.$$

By $|S| + |T| \leq n$ and (1) and (3), we obtain

$$bk - 1 \ge \delta_G(S, T) = b|S| + d_{G-S}(T) - a|T|$$

$$\ge b|S| - (a - h)|T|$$

$$\ge b|S| - (a - h)(n - |S|)$$

$$= (a + b - h)|S| - (a - h)n$$

$$\ge (a + b - h)\left(n - h - \frac{n - 1}{bind(G)}\right) - (a - h)n$$

$$\ge (a + b - h)\left(n - h - \frac{bn - (a + b) - bk + 2}{a + b - 1}\right) - (a - h)n.$$

Let

(4)

$$f(h) = (a+b-h)\left(n-h-\frac{bn-(a+b)-bk+2}{a+b-1}\right) - (a-h)n.$$

۵

[6]

313

In fact, the function f(h) attains its minimum value at h = 1 since $1 \le h \le a - 1$ is an integer. Then, we have

$$f(h) \ge f(1).$$

Combining this with (4), we obtain

$$bk - 1 > f(1) = (a + b - 1)\left(n - 1 - \frac{bn - (a + b) - bk + 2}{a + b - 1}\right) - (a - 1)n$$

= $(a + b - 1)(n - 1) - (bn - (a + b) - bk + 2) - (a - 1)n$
= $bk - 1$,

that is a contradiction.

[7]

From the argument above, we deduce the contradictions, so the hypothesis can not hold. Hence, G is (a, b, k)-critical.

Completing the proof of Theorem 8.

REMARK. Let us show that the condition

$$bind(G) > \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}$$

in Theorem 8 can not be replaced by

$$\operatorname{bind}(G) \ge \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}$$

Let $b > a \ge 2, k \ge 0$ be three integers such that a + b + k is odd, and let

$$n = \frac{(a+b-1)(a+b-2) + (a+b-2) + (a+2b-1)k}{b}$$

is an integer, and let l = (a + b + k - 1)/2 and

$$m = n - 2l = n - (a + b + k - 1) = \frac{(a + b - 1)(a - 2) + (a + b - 2) + (a + b - 1)k}{b}.$$

Clearly, m is an integer. Let $H = K_m \bigvee lK_2$. Let $X = V(lK_2)$, for any $x \in X$, then $|N_H(X \setminus x)| = n - 1$. By the definition of bind(H),

bind(H) =
$$\frac{|N_H(X \setminus x)|}{|X \setminus x|} = \frac{n-1}{2l-1} = \frac{n-1}{a+b+k-2} = \frac{(a+b-1)(n-1)}{bn-(a+b)-bk+2}.$$

Let $S = V(K_m) \subseteq V(H)$, $T = V(lK_2) \subseteq V(H)$, then $|S| = m \ge k$, |T| = 2l. Thus, we get

$$\begin{split} \delta_H(S,T) &= b|S| - a|T| + d_{H-S}(T) \\ &= b|S| - a|T| + |T| = b|S| - (a-1)|T| \\ &= b\frac{(a+b-1)(a-2) + (a+b-2) + (a+b-1)k}{b} \\ &- (a-1)(a+b+k-1) \\ &= bk-1 < bk. \end{split}$$

By Lemma 2.1, H is not an (a, b, k)-critical graph. In the above sense, Theorem 8 is best possible.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph theory with applications (The Macmillan Press, London, 1976).
- C. Chen, 'Binding number and minimum degree for [a, b]-factor', J. Systems Sci. Math. Sci. 6 (1993), 179-185.
- [3] M. Kano, 'A sufficient condition for a graph to have [a, b]-factors', Graphs Combin. 6 (1990), 245-251.
- [4] P. Katerinis and D.R. Woodall, 'Binding numbers of graphs and the existence of k-factors', Quart. J. Math. Oxford 38 (1987), 221-228.
- J. Li, 'Sufficient conditions for graphs to be (a, b, n)-critical graphs', Mathematica Applicata (Wuhan) 17 (2004), 450-455.
- Y. Li and M. Cai, 'A degree condition for a graph to have [a, b]-factors', J. Graph Theory 27 (1998), 1-6.
- [7] G. Liu, (g < f)-factors of graphs', Acta Math. Sci. (Chinese) 14 (1994), 285–290.
- [8] G. Liu and J. Wang, '(a, b, k)-critical graphs', Adv. Math. (China) 27 (1998), 536-540.
- H. Matsuda, 'Fan-type results for the existence of [a, b]-factors', Discrete Math. 306 (2006), 688-693.
- [10] S. Zhou, 'Some sufficient conditions for graphs to have (g, f)-factors', Bull. Austral. Math. Soc. 75 (2007), 447–452.
- [11] S. Zhou and X. Xue, '(g, f)-factors of graphs with prescribed properties', J. Systems Sci. Math. Sci. (Chinese) (to appear).
- S. Zhou and X. Xue, 'Complete-factors and (g, f)-covered graphs', Australas. J. Combin. 37 (2007), 265-269.
- [13] S. Zhou, 'Sufficient conditions for (a, b, k)-critical graphs', J. Jilin Univ. Sci. 43 (2005), 607-609.

School of Mathematics and Physics Jiangsu University of Science and Technology Mengxi Road 2, Zhenjiang Jiangsu 212003 People's Republic of China e-mail address: zsz_cumt@163.com