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ISHIKAWA AND MANN ITERATION METHODS FOR
NONLINEAR STRONGLY ACCRETIVE MAPPINGS

M.O. OSILIKE

Let X be a real Banach space with a uniformly convex dual, X*, and let C be a
nonempty closed convex and bounded subset of X. Let T: C —• C be a strongly
accretive and a continuous mapping. For any / £ C, let 5 : C —• C be defined by
Sx — f + x — Tx for each x € C. Then, the iteration process xo 6 C,

xn+i = (1 - an)xn + anSxn, n ^ 0

under suitable conditions on the real sequence {an}JTLo converges strongly to a
solution of the equation Tx = f in C. Furthermore, if T is strongly accretive and
Lipschitz with Lipschitz constant L ^ 1 then the iteration process xo e C,

*„+! = (1 - an)xn + anS[(l - 0n)xn + pnSxn], n > 0,

under suitable conditions on the real sequences {atn}JTLo ar»d {/3n}JTLo converges
strongly to a solution of the equation Tx = f in C. Explicit error estimates are
obtained.

1. INTRODUCTION

Let X be a real Banach space. A mapping T with domain D(T) and range R(T)
in X is said to be accretive (see for example [2, 11, 16, 23]) if the inequality,

(1) \\x-y\\^\\x-y + t[Tx-Ty)\\,

holds for each x, y in D(T) and for all t > 0. T is said to be m-accretive if T is
accretive and (I + rT)(X) = X for all r > 0, where / denotes the identity operator
on X. If X = H, a Hilbert space, the accretive condition (1) is equivalent to the
monotonicity of T in the sense of Browder [3] and Minty [20]. The accretive operators
were introduced independently in 1967 by Browder [2] and Kato [16] and the firm
connection of this class of operators with the existence theory for nonlinear equations
of evolution in Banach spaces is now well-known (see for example, [6, 13, 16, 19]). An
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early fundamental result in the theory of accretive operators due to Browder [5], states
that the initial value problem,

(2) £ ^ + T u = 0 , U(0) = U0

is solvable when T is locally Lipschitzian and accretive on X. Utilising the existence
result for (2), Browder [5] proved that if T is locally Lipschitz and accretive on X, then
T is m-accretive, so that for any / in X, the equation,

(3) x + Tx = f

has a solution in X. Recently, Ray [23] gave an elementary proof of this result by
employing a fixed point theorem of Caristi [7]. In [19] Martin proved that (2) is solvable
if T is continuous and accretive, and utilising the result he proved that if T is continuous
and accretive, then T is m-accretive. Zarantonello [27] also proved that if H is a
Hilbert space and T is an accretive and Lipschitzian mapping of H into itself, then the
equation (3) has a unique solution in H.

For a Banach space X, let J denote the normalised duality mapping from X to
2X' given by

where X* denotes the dual space of X and (, ) denotes the generalised duality pairing.
It is well-known that if X* is strictly convex, then J is single-valued and if X* is
uniformly convex, then J is uniformly continuous on bounded sets (see for example,
[6, 26]).

In terms of the duality mapping, a mapping T with domain D(T), and range R{T)
in X is accretive (see for example, [2, 16, 23]) if for each x, y in D(T), there exists
j G J(x — y) such that,

(Tx - Ty, j) 2 0.

A strong notion of accretiveness has been defined. A mapping T with domain
D(T) and range R(T) in X is said to be strongly accretive with constant k (see for
example, [1, 21, 12]) if for each x, y in D(T), there exists j E J(x — y) such that

(4) (Tx-Ty,j)>k\\x-y\\2.

Without loss of generality we may assume fc £ (0, 1). Strongly accretive mappings have
been studied extensively by various authors (see for example, [1, 2, 6, 12, 21, 22]). In
[2] Browder proved the following result.
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THEOREM B. Let X be a Banach space and let T: X -> X be a Lipschitz and
strongly accretive mapping. Then T maps X onto X.

An obvious consequence of Theorem B is that for each f inX, the equation

(5) Tx=f

has a solution in X. Recently, Morales [21] generalised the result of Theorem B to
continuous strongly accretive mappings.

Methods for iteratively approximating solutions of equations (3) and (5) (when
they are known to exist) have been investigated by several authors (see for example,
[8, 9, 11, 12, 14]). We consider the two fixed point iteration methods given by the
following:

(A) THE ISHIKAWA ITERATION PROCESS. (See for example [15, 25]) defined as follows:

For C a convex subset of a real Banach space, and T a mapping of C into itself,

the sequence {xn}^=0
 IS defined by

x0 £ C,

xn+i = (1 - an)xn + anTyn, n^O,

yn = (1 - Pn)xn + (3nTxn, n ^ 0

oo

and {on}~= 0, {f3n}%L0 satisfy 0 ^ an < j3n < 1 for all n, Urn 0n = 0 and £ an/3n =
n—°° n=0

oo; and

( B ) T H E MANN ITERATION PROCESS. (See for example [18, 25]) which is similar to
the iteration process (A) but with /?„ = 0 for all n ^ 0, and different conditions placed
o n {«n}~= 0 •

The iteration processes described in (A) and (B) have been used extensively by
several authors for approximating solutions of several nonlinear operator equations in
Banach spaces (see for example, [9, 10, 11 , 12, 14, 15, 18, 22, 25]). In [25] Rhoades
compared the performance of these two iteration processes, and showed that even though
they are similar, they may exhibit different behaviours for different classes of nonlinear
mappings. In particular, there are examples where the Mann iteration process may fail
to converge and the Ishikawa process converges. Also, there are problems for which the
Mann process converges and the Ishikawa process does not. Furthermore, for the case
where the two processes converge, the rate of convergence may differ. (For a detailed
comparison of the two methods, the reader may consult [25]). Thus, it is of interest to
examine the behaviour of the two processes for any given class of nonlinear mappings.

We note here that the Ishikawa iteration process was actually introduced in [15] to
approximate a fixed point of Lipschitz Tpseudo-contractive maps in Hilbert space. For
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C a compact subset of a Hilbert space, and T: C —* C a Lipschitz pseudo-contractive
mapping, it is still an open question whether or not the Mann iteration process converges
to a fixed point of T.

For the operator equation (3) Dotson [14] proved that if T: H —+ H is monotone
and Lipschitz with Lipschitz constant 1, (in this case T is called nonexpansive in the
terminology of Kirk) an iteration process of the Mann-type converges strongly to the
unique solution of the equation. This result has recently been extended in a series of
papers by Chidume [8, 9, 11] to the case where x is now any real Banach space with
a uniformly convex dual X*, and T is accretive and continuous.

For the operator equation (5), Chidume [12, Theorem 1] recently proved that
if X — Lp, p ^ 2, and T: X —> X a strongly accretive and Lipschitz mapping with
Lipschitz constant L ^ 1, then an iteration process of the Mann-type converges strongly
to a solution of the equation.

It is our purpose in this paper to examine the Ishikawa and Mann iteration processes
for the operator equation (5) in Banach space much more general than Lp spaces, p ^ 2.
In particular our results will include all Lp spaces for 1 < p < oo. Let X be a real
Banach space with a uniformly convex dual X*, and C a nonempty closed, convex and
bounded subset of X. Let T: C —» C be continuous and strongly accretive. We prove
that under suitable conditions on the real sequence {an}jJL0 , the Mann iteration process
converges strongly to a solution of equation (5). Furthermore, if T is strongly accretive
and Lipschitz with Lipschitz constant L ^ 1, then the Ishikawa iteration process, under
suitable conditions on the real sequences {an}jJL0 and {/3n}^>-0, converges strongly to
a solution of equation (5). For some particular choices of the real sequence {an}%LQ,
explicit error estimates are obtained.

2. PRELIMINARIES

In the sequel we shall need the following remarks.

REMARK 1. In [24, p.89], Reich proved that if X* is uniformly convex, then there
exists a continuous nondecreasing function,

b: [0, oo)-» [0, oo),

such that 6(0) = 0, b(ct) < cb(t), for all c ^ 1,

and

(6) \\x + yf < | |* f + 2(y, j[x)) + max{||x|| , 1} ||y|| b(\\y\\).

REMARK 2. Nevanlinna and Reich [22] have shown that for any given continuous non-
decreasing function 6 with b(0) = 0, sequences {An}^_0 always exist such that

(i) 0 < A B < l , n ^ 0
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oo
(ii) £3 An = oo, and

7>=0

(iii) £ An6(An)<oo.
n=0

If X = Lp, 1 < p < oo, we can choose any sequence {An}jJL0 in /* \ V with s = p
if 1 < p ^ 2 and s — 2 if p ^ 2.

For the rest of this paper, the Lipschitz constant of T is denoted by L (^ 1) and
the constant appearing in the definition of a strongly accretive mapping is denoted by

3. MAIN RESULTS

We prove the following theorems.

THEOREM 1. Let X be a real Banach space with a uniformly convex dual, X*,
and let C be a closed convex and bounded subset of X. Let T: C —» C be a continuous
and strongly accretive mapping. For any f in C, define S': C —» C by Sx = f + x — Tx,
x £ C. Let {an}%L0 be a real sequence satisfying

(i) 0 < an < 1, n > 0
OO

(ii) X) a n = oo, and
oo

(iii) Y, an6("n) < oo.
71=0

Then, given any f in C, the iteration process, xo in C,

(7) a:n+i = (1 - an)xn + anSxn, n ^ 0

converges strongly to a solution of the equation, Tx = f in C.
PROOF: The existence of a solution x* of Tx = f in C follows from Morales [21]

(see also [12]). Observe that x* is a fixed point of 5 and since T is strongly accretive,
then for each i , j in C,

(8) (Sx - Sy, j(x - y)) = \\x - i/||2 - (Tx - Ty, j(x - y))

<Z(l-k)\\x-y\\2.

Using inequality (6) and equation (7), we obtain

||xn+1 - z*||2 = ||(1 - an)(xn - x*) + an(Sxn - x*)\\2

^ (1 - an)
2 \\xn - x*f + 2an(l - an)(Sxn - x*, j{xn - x*))

+ max{(l - an) \\xn - x*\\ l}an \\Sxn - s ' | | b(an \\Sxn - x'\\)

< (1 - an)2 ||zn - x*\\2 + 2an(l - an)(Sxn - x\ j(xn - x*))

-r max{(l - an) ||xn - *'|| , l}an ||SxB - x*\\ max{||Sxn - **||, l}b(an),

^ (1 - an)
2 \\xn - x*||2 + 2a B ( l - an)(Sxn - x\ j(xn - x')) + Manb(an),
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for M > 0, since C is bounded.

Using inequality (8), we obtain

\\xn+1 - * 1 2 < (1 - a n ) 2 | |xn - x*\\2 + 2a B ( l - a n ) ( l - k) \\xn - x*\\2 + Mo:nb(an)

= [(1 - a n ) 2 + 2oB(l - aB)(l - fc)l ||*n - x' | |2 + Manb(ccn)

< [(1 - a n ) 2 + 2aB(l - aB)(l - fc) + a2 (1 - fc)2] ||*B - x*\\2

= [1 -kan}
2 \\xn -x* ||2

< [1 - fcan] H^ - x*||2 + Man6(an) .

Thus

(9) ||a!B+1 - x*||2 < [1 - kan] \\xn - x*||2 + Manb{an).

Following the method of proof of Theorem 1 of [10], (see also [11]), we set pn =
\\xn — x*\\ , Sn = kant and an = Manb(an). Then inequality (9) reduces to

(10) pn+i ^ [1 - Sn]pn + <rn,

and as in [10] we obtain pn —» 0 as n —> oo, so that

xn —* x* as n —» oo.

D
COROLLARY 1 . Let X — Lv, 1 < p ^ 2, and let C, T and S be as in TAeo-

rem 1. Let {an}^=o ^ e a r e a^ sequence satisfying

(i) 0 < an < 1, n ^ 0
OO

(ii) X) "n = °°» a^^
n=0

(iii) £aB<oo.
n=0

Tien, for any f in C, the iteration process, xo £ C,

xn+1=(l-an)xn + anSxn, n > 0,

converges strongly to a solution of the equation Tx = f in C.
PROOF: The existence of a solution x* of Tx = f in C follows from Morales [21].

oo

Remark (2), conditions (ii) and (iii), imply Ẑ anb(an) < oo, and the result follows
n=0

from Theorem 2. D
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COROLLARY 2 . Let X = Lp, p ^ 2 and let C, T and S be as in Theorem 1.

Let {an}JJLo ^e a r e a^ sequence satisfying

(i) 0 < a n < 1, n ^ 0
oo

(ii) 53 a = oo, and
n=0

(iii) E<4<°°.
n=0

TAen, for any f in C, the iteration process, xo in C,

Xn+i — (1 - an)xn + anSxn, n ^ O

converges strongly to a solution of the equation Tx = f in C.

PROOF: The proof follows as in the proof of Corollary 1. 0

ERROR ESTIMATES. The sequence {xn}%L0 generated in our theorem satisfies

In particular, if E = Lp, 1 < p < oo, we have,

\\xn-x'\\=0(n-to-1V2), if Kp^ 2,
) J

and

The convergence rates are obtained as in [10], and hence the proof is omitted.

REMARK 3. The only use made of the continuity of T in Theorem 1 and Corollaries 1
and 2 is to obtain the existence of a solution to the equation Tx = / . Thus, for C and
5 as in Theorem 2, if T: C —» C is strongly accretive, and the equation Tx = / has a
solution x* in C, then the iteration process defined in Theorem 1 converges strongly
to x*.

THEOREM 2 . Let X be a real Banach space with uniformly convex dual X*, and
C a nonempty closed convex and bounded subset of X. Let T: C —> C be a Lipschitz
and strongly accretive mapping. For any f G C, define S: C —» C by,

Sx-f + x-Tx, for each x e C.

Let {an}|JL0 and {/3n}^L0
 oe rea^ sequences satisfying

(i) 0 < a n < l , n ^ 0 ,

(i i) 0 ̂  0n ^ a n ( l - A : ) 2 [ 2 I , ( 1 + L,)]'1 ,n^0, where L» = l + L ,
oo

(iii) 53 a = °
n=0
oo

(iv) J2 anK<*
n=0
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Then, for any f in C, the iteration process, XQ € C,

(11) Xn+1 = {1 - Ctn)xn + anS[(l - 0n)xn + 0nSxn], " ^ 0

converges strongly to a solution of Tx = / in C.

PROOF: The existence of a solution, say x* of Tx = f, follows from Browder
[2] (see also Bogin [1]). Moreover, x* is a fixed point of 5 and S is Lipschitz with
Lipschitz constant L, = 1 + L.

Rewrite (11) as,

(12) xn+1 = (1 - an)xn + anSyn, n > 0

where

(13) yn = (1 - 0n)xn + 0nSxn, n^O.

Using inequality (6), and equations (12) and (13), we obtain

| |* n + 1 - s i 2 = ||(1 - «„)(*„ - **) + an(Syn - x*)\\2

< (1 - anf \\xn - x*\? + 2er»(l - an){Syn - x*, j(xn - x*))

+ max{(l - an) ||xn - **||, l}an ||5yn - x*\\ b(an )\Syn - x*||)

< (1 - an)2 ||a!n - x*\f + 2an{l - an){Syn - x\ j{xn - x*))

+ Manb(an),

for M > 0, since C is bounded. That is,

(14) | |*n + 1 - x*f < (1 - an)2 ||xn - x l 2

+ 2aB(l - an)(Syn - x\ j(xn - as*)) + Man6(an).

Using inequality (8) we obtain,

{Syn - x\ j(xn - x*)) = (Syn - Sxn, j(xn - x*)) + (Sxn - x\j{xn - x*))

- Sxn\\ \\xn - x*\\ + (1 - k) \\xn - x'\\2

< L. \\yn - xn\\ \\xn - x'\\ + (1 - k) \\xn - x'f

= L.(3n \\Sxn - xn\\ \\xn - x*|| + (1 - Jfe) ||xn - x*|

^ L.0n[\\SXn - X*\\ + ||xn - X'||] ||XB - X*||

< L.(l + L,)fin \\xn - x*\\2 + (1 - Jb) ||xB - x*||2 .

That is,

(15) (Syn - x\ j(xn - x*)) < L.(l + L.)fin ||xB - s*||2 + (!
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Using (15) in (14) we obtain

| |x n + 1 - x*\\2 < (1 - a n ) 2 | |xn - x'\\2 + 2oB(l - a B ) £ . ( l + £.)£» ||x« - x*||2

+ 2 a n ( l - a B ) ( l - Jb) ||xB - x ' | | 2 + Manb(an)

< (1 - a n ) 2 | |xn - x ' | | 2 + a 2 ( l - a n ) ( l - fc)2 ||xn - x*||2

+ 2a n ( l - a n ) ( l - A) ||xB - x*||2 + Manb(an), using condition (ii)

^ (1 - a n ) 2 ||xB - x ' | | 2 + a 2 ( l - fc)2 | | , n - x*||2

+ 2aB( l - a B ) ( l - fc) ||xn - x ' f + J f a B i ( a n )

= [(1 - a n ) 2 + 2aB( l - a B ) ( l - fc) + a2 (1 - fc)2] | |xn - *• ||2 + ¥ a n 6 ( a . )

= [l-fcan]2| |xn-x' | |2+A/an6(an)

< [1 - fcan] ||xn - x*||2 + Man6(an).

Thus,

and the result follows as in the proof of Theorem 1. D

COROLLARY 3 . Let X = Lp, 1 < p ^ 2, and let C, T and S be as in Theo-

rem 2. Let {an}JJL0 and {/3n}^Lo ^ e r e a^ sequences satisfying

(i) 0 < an < 1, n ^ 0

(ii) 0 ̂  pn H an(l - fc)2[2L»(l + I . ) ] " 1 , n ^ 0
oo

(iii) 53 an = oo, and
n=0

(iv) Ea^<°o-

TAen for any f in C, the iteration process XQ E C

x n + 1 = ( 1 - a n ) x n + a n 5 [ ( l - ^ n ) x n + 0 n S z n ] , n ^ O

converges strongly to a solution of Tx = f in C.

PROOF: The existence of a solution to Tx = f follows from Browder [2] (see also
oo

Bogin [1]). Remark (2), conditions (iii) and (iv) imply £) anb(an) < oo. The result
n=0

follows from Theorem 2. D

COROLLARY 4 . Let E = Lp, p ^ 2, and let C, T and S be as in Theorem 1.

Let {an}SLo anc^ {Pn}%Lo ^ e r e a^ sequences satisfying

(i) 0 < a n < l , n ^ 0

(ii) 0 ̂  pn ^ a B ( l - fc)2[2i.(l + i * ) ] - 1 , n ^ 0
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CO

(iii) ]T) «n = oo, and
n=0

(iv) £a»<oo.
n=0

Then, for any f in C, the iteration process, XQ £ C,

xn+1 = (1 - <xn)xn + on5[(l - Pn)xn + 0nSxn], n^O,

converges strongly to a solution of Tx = f in C.
PROOF: The proof follows exactly as in the proof of Corollary 3. D
The special case of Theorem 2 for which /?„ = 0 for all n ^ 0 yields a special case

of Theorem 1 for which T is Lipschitz and strongly accretive.

REMARK 4. The error estimates for Theorem 2 and Corollaries 3 and 4 are as in
Theorem 1 and Corollaries 1 and 2.

REMARK 5. It is a consequence of the proofs of Theorems 1 and 2 that, under the
hypothesis of the theorems, the solution of the given equation must be unique (see for
example [11]).

REMARK 6. If X is a real Banach space with a uniformly convex dual, X*, and C
a closed, convex, and bounded subset of X, our results show that either the Mann or
the Ishikawa iteration processes can be used to approximate a solution of the equation
Tx = f if T: C —•> C is strongly accretive and Lipschitzian. Furthermore, the error
estimates obtained for the two methods for this class of nonlinear equations are of the
same order, so that for computational purposes, the Mann process may have some
advantage due to its simplicity.

PROBLEM. If X is a real Banach space with a uniformly convex dual X*, and C a
closed, convex and bounded subset of X, the result of Theorem 1 shows that the Mann
iteration process can be used to approximate a solution of the equation Tx = f if
T: C —* C is continuous and strongly accretive. The result of Theorem 2 shows that
the Ishikawa iteration process can be used to approximate a solution of the equation
if T: C —* C is Lipschitz and strongly accretive. This leads naturally to the following
question.

Can the Ishikawa iteration process be used to approximate a solution of the equa-
tion Tx = f, for any / i n C, if T: C —> C is continuous and strongly accretive?
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