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Abstract
We determine the density of integral binary forms of given degree that have squarefree discriminant, proving for the
first time that the lower density is positive. Furthermore, we determine the density of integral binary forms that cut
out maximal orders in number fields. The latter proves, in particular, an ‘arithmetic Bertini theorem’ conjectured
by Poonen for P1

Z
.

Our methods also allow us to prove that there are � 𝑋1/2+1/(𝑛−1) number fields of degree n having associ-
ated Galois group 𝑆𝑛 and absolute discriminant less than X, improving the best previously known lower bound
of � 𝑋1/2+1/𝑛.

Finally, our methods correct an error in and thus resurrect earlier (retracted) results of Nakagawa on lower
bounds for the number of totally unramified 𝐴𝑛-extensions of quadratic number fields of bounded discriminant.
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1. Introduction

In the first article [11] of this two-part series, we proved that when monic integer polynomials 𝑓 (𝑥) =
𝑥𝑛 + 𝑎1𝑥

𝑛−1 + · · · + 𝑎𝑛 of fixed degree n are ordered by max{|𝑎1 |, . . . , |𝑎𝑛 |1/𝑛}, a positive proportion
have squarefree discriminant. The purpose of this article is to prove the analogous result for integral
binary n-ic forms.

Recall that the discriminant Δ ( 𝑓 ) of a binary n-ic form over a field K is a homogeneous polynomial of
degree 2𝑛−2 in the coefficients of f, whose nonvanishing is equivalent to f having n distinct linear factors
over an algebraic closure𝐾 of K. We order integral binary n-ic forms 𝑓 (𝑥, 𝑦) = 𝑎0𝑥

𝑛+𝑎1𝑥
𝑛−1𝑦+· · ·+𝑎𝑛𝑦𝑛

by their height 𝐻 ( 𝑓 ) given by 𝐻 ( 𝑓 ) := max{|𝑎0 |, . . . , |𝑎𝑛 |}, (i.e., the maximum of the absolute values
of the coefficients). Then a natural question is as follows: When ordered by height, what is the density of
integral binary n-ic forms whose discriminant is squarefree? For 𝑛 = 2, classical methods in sieve theory
yield the answer. For 𝑛 = 3 and 𝑛 = 4, results of Davenport–Heilbronn [15] and the first and second
authors [10], respectively, answer the question in the related setting in which we consider GL2(Z)-orbits
on binary n-ic forms. However, for 𝑛 ≥ 5, it has not previously been known whether this density exists
or even whether the lower density is positive. In this paper, we prove the following:

Theorem 1. Let 𝑛 ≥ 2 be an integer. When integral binary n-ic forms 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1𝑦 + · · · +
𝑎𝑛𝑦

𝑛 are ordered by 𝐻 ( 𝑓 ) := max{|𝑎0 |, . . . , |𝑎𝑛 |}., the density of forms having squarefree discriminant
exists and is equal to

1
2

∏
𝑝>2

(
1 − 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝3

)
≈ 38.97% if 𝑛 = 2;

3
8

∏
𝑝>2

(
1 − 1

𝑝

)2 (
1 + 1

𝑝

)2
≈ 24.64% if 𝑛 = 3;

3
8

∏
𝑝>2

(
1 − 1

𝑝

)2 (
1 + 2

𝑝
− 2
𝑝4 + 1

𝑝5

)
≈ 21.18% if 𝑛 = 4;

3
8

∏
𝑝>2

(
1 − 1

𝑝

)2 (
1 + 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝2

)
≈ 20.83% if 𝑛 ≥ 5.

To any nonzero integral binary n-ic form 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + · · · + 𝑎𝑛𝑦𝑛, we may naturally attach a

rank-n ring 𝑅 𝑓 (see Birch–Merriman [12], Nakagawa [24] and Wood [38]), defined as follows when
𝑎0 ≠ 0. Let 𝜃 denote the image of x in 𝐾 𝑓 := Q[𝑥]/( 𝑓 (𝑥, 1)). Let 𝑅 𝑓 be the free rank-𝑛Z-submodule
of 𝐾 𝑓 generated by 1, 𝑎0𝜃, 𝑎0𝜃

2 + 𝑎1𝜃, . . . , 𝑎0𝜃
𝑛−1 + · · · + 𝑎𝑛−1𝜃. Then 𝑅 𝑓 is in fact closed under

multiplication and forms a ring whose discriminant is equal to the discriminant of 𝑓 (𝑥). Our next result
determines the density of irreducible integral binary forms f for which 𝑅 𝑓 is the maximal order in its
field of fractions.

Theorem 2. Let 𝑛 ≥ 2 be an integer. When irreducible integral binary n-ic forms 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 +

𝑎1𝑥
𝑛−1𝑦 + · · · + 𝑎𝑛𝑦𝑛 are ordered by 𝐻 ( 𝑓 ) := max{|𝑎0 |, . . . , |𝑎𝑛 |}, the density of forms f such that 𝑅 𝑓

is the ring of integers in its field of fractions exists and is equal to
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∏
𝑝

(
1 − 1

𝑝2 − 1
𝑝3 + 1

𝑝4

)
≈ 53.59% if 𝑛 = 2;

𝜁 (2)−1𝜁 (3)−1 ≈ 50.57% if 𝑛 ≥ 3.

In particular, Theorem 2 yields the first unconditional Bertini theorem for arithmetic schemes of
dimension ≥ 2 as conjectured by Poonen [28, §5]. Indeed, for a quasiprojective subscheme X of P𝑛

Z

that is regular of dimension m, Poonen conjectured that the density of hyperplane sections of X that are
regular of dimension 𝑚 − 1 should equal 𝜁𝑋 (𝑚 + 1), where 𝜁𝑋 denotes the zeta function of X. Since the
subscheme of P1

Z
cut out by an integral binary n-ic form f is regular if and only if 𝑅 𝑓 is maximal, and

the zeta function of P1
Z

is given by 𝜁P1
Z
(𝑠) = 𝜁 (𝑠)𝜁 (𝑠− 1), we have 𝜁P1

Z
(dim(P1

Z
) + 1)−1 = 𝜁 (2)−1𝜁 (3)−1.

Therefore, Theorem 2 yields an unconditional proof of [28, Theorem 5.1] for the case 𝑋 = P1
Z

with the
usual ‘box ordering’ on the forms defining the hyperplane sections. In fact, we prove the stronger result
that for every fixed 𝑛 ≥ 3, the density of regular binary n-ic forms is 𝜁 (2)−1𝜁 (3)−1, while arithmetic
Bertini only claims this in the limit as 𝑛→ ∞.

As a further application of our methods, we obtain the following theorem:

Theorem 3. For each 𝑛 ≥ 3, the number of isomorphism classes of number fields of degree n with
associated Galois group 𝑆𝑛 and absolute discriminant less than X is � 𝑋1/2+1/(𝑛−1) .

Our lower bound in Theorem 3 on the number of degree-𝑛𝑆𝑛-number fields of absolute discriminant
less than X improves the previous best-known lower bound of 𝑋1/2+1/𝑛 obtained in [11]. We note that
the number fields constructed in Theorem 3 can all be taken to have squarefree discriminant.

Our results also correct an error in, and thus resurrect, all the results of Nakagawa [24] and [26] that
had been subsequently retracted in [25] and [27]. Specifically, the retracted theorems [24, Theorems 3–4]
and [26, Theorem 2] regarding binary forms and 𝐴𝑛-extensions of quadratic fields can now be taken to
be true. In particular, we obtain the following:

Theorem 4. For 𝑛 ≥ 3, the total number of unramified 𝐴𝑛-extensions of real (resp., imaginary)
quadratic fields F, across all such F such that |Disc(𝐹) | < 𝑋 , is � 𝑋 (𝑛+1)/(2𝑛−2) .

Theorem 4 yields the best-known lower bounds on the number of unramified 𝐴𝑛-extensions of
quadratic fields when 𝑛 > 5. For improved bounds in the cases 𝑛 ≤ 5, see [4, Theorem 1.4]. For the
best-known bounds on the number of quadratic fields of bounded discriminant admitting an unramified
𝐴𝑛-extension, see Kedlaya [21, Corollary 1.4]. Other related works include Uchida [37], Yamamoto
[40] and Yamamura [41].

The main technical ingredient required to prove all the above results is a ‘tail estimate’ which shows
that not too many discriminants of integral binary n-ic forms f are divisible by 𝑝2 when p is large relative
to the discriminant of f (here, large means larger than 𝐻 ( 𝑓 ), say). It is these tail estimates that were
missing in Nakagawa’s work. For a prime p, and an integral binary n-ic form f such that 𝑝2 | Δ ( 𝑓 ), we
say that 𝑝2 strongly divides Δ ( 𝑓 ) if 𝑝2 | Δ ( 𝑓 + 𝑝𝑔) for every integral binary n-ic form g; otherwise, we
say 𝑝2 weakly divides Δ ( 𝑓 ). For any squarefree integer 𝑚 > 0, let W (1)

𝑚 (resp., W (2)
𝑚 ) denote the set of

integral binary n-ic forms whose discriminants are strongly divisible (resp., weakly divisible) by 𝑝2 for
every prime factor p of m.

We prove the following tail estimates:

Theorem 5. For an integer 𝑛 ≥ 3, a positive real number M and any 𝜖 > 0, we have

(a) #
⋃

𝑚>𝑀
𝑚 squarefree

{ 𝑓 ∈ W (1)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋} = 𝑂 𝜖

( 𝑋𝑛+1+𝜖

𝑀
+ 𝑋𝑛

)
;

(b) #
⋃

𝑚>𝑀
𝑚 squarefree

{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋} = 𝑂 𝜖

( 𝑋𝑛+1+𝜖

𝑀
+ 𝑋𝑛+1−1/(2𝑛)+𝜖

)
, if 2 � 𝑛;
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(c) #
⋃

𝑚>𝑀
𝑚 squarefree

{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋} = 𝑂

( 𝑋𝑛+1+1/(88𝑛5)
√
𝑀

+ 𝑋𝑛+1−1/(88𝑛6)
)
, if 2 | 𝑛.

The estimate in the strongly divisible Case (a) of Theorem 5 follows from geometric techniques –
namely, the quantitative version of the Ekedahl geometric sieve as developed by the first author [4].
The estimates in the weakly divisible Cases (b) and (c) of Theorem 5 are considerably more difficult
(particularly (c)), and we describe their proofs in the next section. Our tail estimate, in fact, allows us to
prove Theorems 1 and 2 with power-saving error terms:

Theorem 6. Let 𝑉𝑛 = Sym𝑛 (2) denote the space of binary n-ic forms. Define 𝜂𝑛 to be 1/(2𝑛) when n
is odd and 1/(88𝑛6) when n is even. Then

#{ 𝑓 ∈ 𝑉𝑛 (Z) : 𝐻 ( 𝑓 ) < 𝑋 and Δ ( 𝑓 ) squarefree}= 𝛼𝑛 · (2𝑋)𝑛+1 +𝑂 𝜖 (𝑋𝑛+1−𝜂𝑛+𝜖 );

#{ 𝑓 ∈ 𝑉𝑛 (Z) : 𝐻 ( 𝑓 ) < 𝑋 and 𝑅 𝑓 maximal} = 𝛽𝑛 · (2𝑋)𝑛+1 +𝑂 𝜖 (𝑋𝑛+1−𝜂𝑛+𝜖 ).

These power saving bounds have applications towards level-of-distribution questions when counting
integral binary n-ic forms f of bounded height with Δ ( 𝑓 ) squarefree (resp., 𝑅 𝑓 maximal) satisfying
splitting conditions at finitely many primes. Such level-of-distribution results in turn have applications
towards a host of problems in analytic number theory, such as studying statistics of Artin L-functions
attached to binary n-ic forms and proving lower bounds on the number of degree-n number fields which
are ramified only at a bounded number of primes, among many others. For examples of such applications
of level-of-distribution results, see, for example, [1, 13, 33, 34, 36].

We remark that our methods imply that the analogues of all of the above results also hold when
local conditions are imposed at finitely many places (including at infinity); the orders of magnitudes in
these theorems remain the same, provided that no local conditions are imposed that force the sets being
counted in Theorems 1 and 2 to be empty.

Finally, the methods introduced in [11] and in the current article have applications beyond just
squarefree values of polynomial discriminants. They have been recently adapted in [9] to determine the
density of squarefree discriminants of elliptic curves over Q having two marked rational points. Other
applications include determining the density of conductors in some families of elliptic curves [32] and
the density of squarefree values taken by 𝑎4 + 𝑏3 [29].

2. Outline of proof

As mentioned in the introduction, the uniformity estimate in Theorem 5 is the key to deducing Theorems
1, 2 and 6 via a squarefree sieve. Case (a) of Theorem 5 follows directly from the results in [4]. Case
(b), which pertains to odd degrees n, can be proven using methods similar to those developed in our
previous work [11]. However, these methods fail to work for Case (c), which pertains to even degrees n,
and a number of new ideas are required to handle this case. It is the proof of this case to which the bulk
of our paper is devoted; it requires, in particular, the introduction of a new technique in the geometry
of numbers – namely, the techniques of Eskin–Katznelson [17] used in counting singular symmetric
matrices. We believe that this combining of methods may also be useful in other contexts.

In this section, we give a detailed outline of the proof of Case (b) pertaining to odd n. We then explain
why this strategy breaks down (quite spectacularly!) when n is even, and finally we describe the new
techniques required to complete the proof of Theorem 5(c).

Sketch of the proof of the tail estimate for odd n

Our proof of Theorem 5(b) makes use of the representation of 𝐺 = SL𝑛 on the space𝑊 = 2 ⊗ Sym2(𝑛)
of pairs (𝐴, 𝐵) of symmetric 𝑛 × 𝑛 matrices, studied in detail in [39, 5, 7, 8]. The group G acts on W
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via 𝛾 · (𝐴, 𝐵) = (𝛾𝐴𝛾𝑡 , 𝛾𝐵𝛾𝑡 ) for 𝛾 ∈ 𝐺 and (𝐴, 𝐵) ∈ 𝑊 . We define the invariant binary form of an
element (𝐴, 𝐵) ∈ 𝑊 by

𝑓𝐴,𝐵 (𝑥, 𝑦) = (−1)𝑛(𝑛−1)/2 det(𝐴𝑥 − 𝐵𝑦).

Then 𝑓𝐴,𝐵 is a binary n-ic form satisfying 𝑓𝛾 (𝐴,𝐵) = 𝑓𝐴,𝐵. Moreover, the ring of polynomial invariants
for the action of G on W is freely generated by the coefficients of the invariant binary form. Define
the discriminant Δ (𝐴, 𝐵) and height 𝐻 (𝐴, 𝐵) of an element (𝐴, 𝐵) ∈ 𝑊 by Δ (𝐴, 𝐵) = Δ ( 𝑓𝐴,𝐵) and
𝐻 (𝐴, 𝐵) = 𝐻 ( 𝑓𝐴,𝐵).

The first step of our proof is the construction, for every squarefree integer 𝑚 > 0, of a map

𝜎𝑚 : W (2)
𝑚 → 𝑊 (Z),

such that 𝑓𝜎𝑚 ( 𝑓 ) (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) for every 𝑓 ∈ W (2)
𝑚 . In our construction, the image of 𝜎𝑚, in fact, lies

in 𝑊0 (Z), where 𝑊0 is the subspace of W consisting of pairs of matrices whose top left 𝑔 × 𝑔 blocks
are 0, where 𝑛 = 2𝑔 + 1. The action of the group G does not preserve 𝑊0, and we take 𝐺0 to be the
maximal parabolic subgroup of G that does preserve𝑊0. When the discriminant polynomial Δ ∈ Z[𝑊]
is restricted to 𝑊0, it is no longer irreducible but rather is divisible by the square of a polynomial
𝑄 ∈ Z[𝑊0]. This polynomial Q is a relative invariant for the action of 𝐺0 on𝑊0. Its significance is that,
by construction of 𝜎𝑚, every element in the image of 𝜎𝑚 has Q-invariant equal to m. To prove Part (b)
of Theorem 5, it therefore suffices to estimate the number of 𝐺0 (Z)-orbits on𝑊0 (Z) having height less
than X and Q-invariant greater than M.

Bounding the number of these orbits is complicated by the fact that𝐺0 is not reductive. We are rescued
by using the full action of 𝐺 (Z) on𝑊 (Z). This necessitates expanding the definition of the Q-invariant
from𝑊0 (Z) to all ‘distinguished’ elements of𝑊 (Z). An element (𝐴, 𝐵) ∈ 𝑊 (Z) is distinguished if A and
B have a common isotropic g-dimensional subspace defined over Q. Thus, every element in𝑊0 (Z) (and
thus every element in the image of 𝜎𝑚) is distinguished. The Q-invariant, though defined initially on𝑊0,
can be extended as a function on the set of all triples (𝐴, 𝐵,Λ), where (𝐴, 𝐵) ∈ 𝑊 (Z) is distinguished,
and Λ is a common isotropic subspace of A and B. For all but a negligible number of distinguished
elements (𝐴, 𝐵) ∈ 𝑊 (Z), A and B have exactly one common isotropic subspace Λ defined overQ. Thus,
we may define a 𝐺 (Z)-invariant function Q on the set of distinguished pairs (𝐴, 𝐵) ∈ 𝑊 (Z) outside
a negligible number of them. It then suffices to bound the number of 𝐺 (Z)-orbits on distinguished
elements in𝑊 (Z) having bounded height and large Q-invariant.

To obtain such a bound, we construct fundamental domains for the action of 𝐺 (Z) on elements in
𝑊 (R) with height less than X. Such a fundamental domain has a natural partition into three parts that
we term the main body, the shallow cusp and the deep cusp. We have little control over the Q-invariants
of elements in the main body and the shallow cusp. However, it is known [20, Proposition 4.3] that there
are a negligible number of integral elements in the shallow cusp. Meanwhile, distinguished elements
occur rarely in the main body, a fact we prove via the large sieve.

Finally, the deep cusp lies in𝑊0, where an upper bound for the Q-invariant can be obtained. Imposing
the condition that this upper bound is greater than M, and counting the number of such points in the
deep cusp using the averaging method of [3], gives the desired saving for the number of elements in the
deep cusp having Q-invariant larger than M. Combining the estimates for the main body, the shallow
cusp and the deep cusp yields Part (b) of Theorem 5.

Sketch of the proof of the tail estimate for even n

With W again denoting the space of pairs of symmetric 𝑛 × 𝑛 matrices, we may attempt to proceed in
the same manner as in the case of odd n, by constructing a map

𝜎𝑚 : W (2)
𝑚 → 𝑊 (Z)
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such that 𝑓𝜎𝑚 ( 𝑓 ) (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) for every 𝑓 ∈ W (2)
𝑚 . However, such a map does not exist in the case that

n is even! Indeed, there exist integral binary n-ic forms 𝑓 (𝑥, 𝑦) that cannot be expressed as det(𝐴𝑥−𝐵𝑦)
– even up to sign – for any integral 𝑛×𝑛 symmetric matrices A and B. This phenomenon was extensively
studied in [5, 7, 8]. It is in this sense that the strategy to prove Theorem 5(b) for odd n fails spectacularly
for even n – and at the very first step.

We address this issue by replacing 𝑓 (𝑥, 𝑦) ∈ W (2)
𝑚 by 𝑥 𝑓 (𝑥, 𝑦), which is a reducible binary (𝑛+1)-ic

form whose discriminant, at least generically, remains weakly divisible by𝑚2. For these forms 𝑥 𝑓 (𝑥, 𝑦),
we can use the lift 𝜎𝑚 constructed in the odd case. However, since 𝑥 𝑓 (𝑥, 𝑦) has vanishing 𝑦𝑛+1 term,
the image of 𝜎𝑚 lies within the set of pairs (𝐴, 𝐵) where B is singular.

The singularity of B introduces additional difficulties with respect to both the algebraic and the
analytic aspects of the proof. On the algebraic side, the main new problem is that distinguished elements
(𝐴, 𝐵) with B singular have at least two values for the Q-invariant, since they share at least two different
common isotropic (𝑔 + 1)-dimensional subspaces, where 𝑛 = 2𝑔 + 2. So it is no longer well defined
to impose the condition that Q is large. Imposing the condition that the maximum value of Q is large
does not yield sufficient savings to prove an analogue of Theorem 5(b). We thus instead construct a new
invariant, termed q, such that for all but a negligible number of elements (𝐴, 𝐵) in the image of our map
𝜎𝑚, the invariant q is the minimum value taken by Q, and it satisfies 𝑞(𝜎𝑚(𝑥 𝑓 (𝑥, 𝑦))) = ±𝑚.

As in the odd degree case, we once again construct fundamental domains F𝑋 for the action of 𝐺 (Z)
on𝑊 (R) with height less than X, and partition such a domain into three parts: the main body, the shallow
cusp and the deep cusp. However, we must now only count integer elements (𝐴, 𝐵) where B is singular.
The beautiful work of Eskin and Katznelson [17] provides asymptotics for the number of singular
symmetric matrices in homogenously expanding domains, but this work is not directly applicable to
our case since we need to estimate the number of singular symmetric matrices B in skewed domains. To
achieve this, we provide a simplification of the proof of the upper bounds in [17], at the cost of some
extra log factors, which gives us a flexible method by which to obtain upper bounds on the number of
singular symmetric matrices in arbitrarily skewed domains.

Accounting for the singularity of the B’s introduces complications in each region of the fundamental
domain. In the main body, the fact that the singular matrices B lie on the subvariety cut out the
determinant means that we cannot directly apply the large sieve, and the lack of an exact count with
a power-saving error term means we also cannot directly apply a Selberg sieve to bound the number
of distinguished elements. Instead, we fiber over the singular matrices B and apply the large sieve to
bound the number of possible A’s. This requires us to prove new density estimates on the number of
distinguished elements (𝐴, 𝐵) over F𝑝 , when B is fixed.

Furthermore, unlike in the odd degree case, we no longer have an automatic power-saving on the
number of pairs (𝐴, 𝐵) ∈ 𝑊 (Z) lying in the shallow cusp of the fundamental domain and where B is
singular. As we go closer to the deep cusp, there are regions in which imposing the condition that B is
singular yields no saving whatsoever. To obtain the required bounds, we isolate this region of the shallow
cusp and prove that integral elements (𝐴, 𝐵) in them either satisfy Δ (𝐴, 𝐵) = 0 or |𝑞(𝐴, 𝐵) | is small.

Finally, for the deep cusp of F , we once again use the condition that the q-invariant is large to
obtain a power saving. Unlike the situation with the Q-invariant in the odd-degree case, the invariant
q in the even degree case behaves more wildly and is much harder to control. This is because q is not
a polynomial in the coefficients of 𝑊0 but rather is a minimum of the different possible values of Q.
In fact, there are regions within the deep cusp where the q-invariant of elements (𝐴, 𝐵) are not small.
However, we show that these regions correspond to an archimedean condition on the invariant binary
form f of (𝐴, 𝐵) – namely, that the discriminant of f is much smaller than is typical for the height bound
on f. Separately bounding the number of such binary forms yields the desired result.

Organization of the paper

This paper is organized as follows. We begin in §3 by recalling the arithmetic invariant theory for the
representations𝑊𝑛 := 2 × Sym2 (𝑛) of SL𝑛 and 2 ⊗ 𝑔 ⊗ (𝑔 + 1) of SL2 × SL𝑔 × SL𝑔+1. In particular, we
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define the fundamental invariants Q and q. We then construct our maps from W (2)
𝑚 into𝑊𝑛 (Z) when n

is odd and into𝑊𝑛+1 (Z) when n is even.
The analytic parts of the paper are carried out in §4–6. In §4, we prove the tail estimates of Theorem 5

for odd degrees n using geometry-of-numbers techniques. In §5, we carry out the necessary groundwork
to count the number of singular symmetric matrices that lie in skewed domains. Using these results, we
prove the tail estimates for even degrees n in §6, completing the proof of Theorem 5. In §7, we deduce the
main results, Theorems 1–4, from the tail estimates using a squarefree sieve, although the exact constants
occurring in Theorems 1 and 2 remain conditional upon certain local density computations. Finally,
in the Appendix, we compute the local densities of integral binary n-ic forms whose discriminants are
indivisible by 𝑝2 (resp., whose associated rings are maximal at p), thereby completing the proofs of
Theorems 1 and 2.

3. Invariant theory on spaces associated to binary n-ic forms

Fix a positive integer n and consider the space𝑉𝑛 = Sym𝑛 (2) of binary n-ic forms of degree n. The group
SL2 acts on𝑉𝑛 via linear change of variables: we have 𝛾 · 𝑓 (𝑥, 𝑦) := 𝑓 ((𝑥, 𝑦) ·𝛾) for 𝛾 ∈ SL2 and 𝑓 ∈ 𝑉𝑛.

Let 𝑊𝑛 = 2 ⊗ Sym2(𝑛) denote the space of pairs of 𝑛 × 𝑛 symmetric matrices (𝐴, 𝐵). The group
SL2 × SL𝑛 acts on (𝐴, 𝐵) via

(𝛾2, 𝛾𝑛) · (𝐴, 𝐵) = (𝛾𝑛𝐴𝛾𝑡𝑛, 𝛾𝑛𝐵𝛾𝑡𝑛) · 𝛾𝑡2.

There is a natural map𝑊𝑛 → 𝑉𝑛 given by

(𝐴, 𝐵) ↦→ 𝑓𝐴,𝐵 := (−1)𝑛(𝑛−1)/2 det(𝐴𝑥 − 𝐵𝑦), (1)

sending an element of 𝑊𝑛 to its invariant binary n-ic form. The ring of SL𝑛 (C)-invariant polynomials
on𝑊𝑛 (C) is freely generated by the coefficients of the invariant binary n-ic form.

3.1. Arithmetic invariant theory for the representation 2 ⊗ Sym2(𝒏) of SL𝒏

First, let 𝑛 = 2𝑔 + 1 be an odd integer with 𝑔 ≥ 1. We recall some of the arithmetic invariant theory of
the representation𝑊 := 𝑊𝑛 of SL𝑛 and its map (1) to 𝑉 := 𝑉𝑛; see [7] for more details.

Let k be a field of characteristic not 2. For a binary n-ic form 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + · · · + 𝑎𝑛𝑦𝑛 ∈ 𝑉 (𝑘)

with Δ ( 𝑓 ) ≠ 0 and 𝑎0 ≠ 0, let 𝐶 𝑓 denote the smooth hyperelliptic curve 𝑧2 = 𝑓 (𝑥, 𝑦)𝑦 of genus g
viewed as a curve in the weighted projective space P(1, 1, 𝑔 + 1). Let 𝐽 𝑓 denote the Jacobian of 𝐶 𝑓 .
Then the stabilizer of an element (𝐴, 𝐵) ∈ 𝑊 (𝑘) with invariant binary form 𝑓 (𝑥, 𝑦) is isomorphic to
𝐽 𝑓 [2] (𝑘). The set of SL𝑛 (𝑘)-orbits on 𝑊 (𝑘) with invariant binary form 𝑓 (𝑥, 𝑦) maps injectively into
𝐻1 (𝑘, 𝐽 𝑓 [2]). An element (𝐴, 𝐵) (or an SL𝑛 (𝑘)-orbit) is distinguished if Δ (𝐴, 𝐵) ≠ 0 and there exists
a g-dimensional subspace defined over k that is isotropic with respect to both A and B. If (𝐴, 𝐵) is
distinguished, then its SL𝑛 (𝑘)-orbit corresponds to the identity element of 𝐻1 (𝑘, 𝐽 𝑓 [2]), and the set of
these g-dimensional subspaces is in bijection with 𝐽 𝑓 [2] (𝑘).

Let 𝑊0 ⊂ 𝑊 be the subspace of pairs of matrices whose top left 𝑔 × 𝑔 blocks are zero. Then
elements (𝐴, 𝐵) in 𝑊0 (𝑘) with nonzero discriminant are all distinguished since the g-dimensional
subspace 𝑌𝑔 spanned by the first g basis vectors is isotropic with respect to both A and B. Moreover,
every distinguished element of 𝑊 (𝑘) is SL𝑛 (𝑘)-equivalent to some element in 𝑊0 (𝑘) since SL𝑛 (𝑘)
acts transitively on the set of g-dimensional subspaces of P𝑛−1 (𝑘). Let 𝐺0 be the maximal parabolic
subgroup of SL𝑛 consisting of elements 𝛾 that preserve 𝑌𝑔. Elements of𝑊0 have block matrix form

(𝐴, 𝐵) =
(( 0 𝐴top

(𝐴top)𝑡 𝐴1

)
,
( 0 𝐵top

(𝐵top)𝑡 𝐵1

))
, (2)
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where 𝐴top, 𝐵top are 𝑔×(𝑔+1) matrices and 𝐴1, 𝐵1 are (𝑔+1)× (𝑔+1)-symmetric matrices. Meanwhile,
elements of 𝐺0 have the block matrix form

𝛾 =
( 𝛾1 0
𝑛 𝛾2

)
∈
( GL𝑔 0
𝑀(𝑔+1)×𝑔 GL𝑔+1

)
. (3)

An element 𝛾 ∈ 𝐺0 acts on the top right 𝑔 × (𝑔 + 1) block of elements of𝑊0 by

𝛾(𝐴top, 𝐵top) = (𝛾1𝐴
top𝛾𝑡2, 𝛾1𝐵

top𝛾𝑡2),

where we use the superscript ‘top’ to denote the top right 𝑔 × (𝑔 + 1) block of an 𝑛 × 𝑛 symmetric
matrix. The action of 𝐺0 on 𝑊0 restricts to an action on the space 𝑈𝑔 := 2 ⊗ 𝑔 ⊗ (𝑔 + 1) of pairs of
𝑔 × (𝑔 + 1)-matrices, Moreover, the unipotent radical 𝑀(𝑔+1)×𝑔 of 𝐺0 acts trivially on𝑈𝑔. We study the
invariant theory for this action more closely in the next subsection.

We will also need some results in the case when 𝑛 = 2𝑔 + 2 is even in Section 6 (specifically in
the proof of Lemma 6.7). Let 𝑓 (𝑥, 𝑦) = 𝑎0𝑥

𝑛 + · · · + 𝑎𝑛𝑦𝑛 ∈ 𝑉 (𝑘) with Δ ( 𝑓 ) ≠ 0 and 𝑎0 ≠ 0. Let
𝐿 = 𝑘 [𝑥]/( 𝑓 (𝑥, 1)). Let 𝑉 𝑓 (𝑘) denote the set of (𝐴, 𝐵) ∈ 𝑊𝑛 (𝑘) with 𝑓𝐴,𝐵 = 𝑓 (𝑥, 𝑦). Then 𝑉 𝑓 (𝑘)
is nonempty if and only if 𝑓0 ∈ 𝑘×2𝑁𝐿/𝑘 (𝐿×) (see also [8, Theorem 7]). Note in particular that if
𝑓 (𝑥, 𝑦) ∈ 𝑉 (R) is negative definite, so that 𝐿 = R[𝑥]/( 𝑓 (𝑥))  C𝑛/2 and 𝑎0 < 0, then 𝑉 𝑓 (R) is empty.
However, if k is a finite field of characteristic not 2, then 𝑉 𝑓 (𝑘) is always nonempty and the number of
SL𝑛 (𝑘)-orbits equals the number of even degree factorizations of 𝑓 (𝑥, 𝑦) over k.

3.2. The representation 2 ⊗ 𝒈 ⊗ (𝒈 + 1) of SL2 × SL𝒈 × SL𝒈+1 and the Q-invariant

In this section, we collect some algebraic facts about the representation 𝑈𝑔;= 2 ⊗ 𝑔 ⊗ (𝑔 + 1) of the
group 𝐻𝑔 := SL2 × SL𝑔 × SL𝑔+1. We start with the following proposition.

Proposition 3.1. The representation 𝑈𝑔 of G𝑚 × 𝐻𝑔 is prehomogeneous (i.e., the action of G𝑚 × 𝐻𝑔

on 𝑈𝑔 has a single Zariski open orbit). Furthermore, the stabilizer in 𝐻𝑔 (C) of an element in the open
orbit of𝑈𝑔 (C) is isomorphic to SL2 (C).

Proof. We prove this by induction on g. The assertion is clear for 𝑔 = 1, where the representation is that
of G𝑚 × SL2 × SL2 on 2 × 2 matrices; the single relative invariant in this case is the determinant, and
the open orbit consists of nonsingular matrices. For higher g, we note that𝑈𝑔 is a castling transform of
𝑈𝑔−1 in the sense of Sato and Kimura [30, §2, Definition 10] (with 𝐺 = G𝑚 × SL2 × SL𝑔, 𝑚 = 2𝑔 and
𝑛 = 𝑔−1). As a result, the orbits ofG𝑚×SL2 ×SL𝑔 ×SL𝑔−1 on 2⊗ 𝑔 ⊗ (𝑔−1) are in natural one-to-one
correspondence with the orbits ofG𝑚×SL2×SL𝑔×SL𝑔+1 on 2⊗𝑔⊗ (2𝑔− (𝑔−1)) = 2⊗𝑔⊗ (𝑔+1), and
under this correspondence, the open orbit in𝑈𝑔−1 maps to an open orbit in𝑈𝑔 (cf. [30, §2, Proposition 9]).
Thus, all the representations𝑈𝑔 for the action of G𝑚 × 𝐻𝑔 are prehomogeneous.

Note that castling transforms preserve stabilizers over C. Since the generic stabilizer for the action
of 𝐻1(C) on 𝑈1 (C) is clearly isomorphic to SL2 (C), it follows that this remains the generic stabilizer
for the action of 𝐻𝑔 (C) on𝑈𝑔 (C) for all 𝑔 ≥ 1. �

Since castling transforms also preserve polynomial invariants and their irreducibility [30, Proposition
18], it follows that the ring of polynomial invariants for this action of 𝐻𝑔 on 𝑈𝑔 is generated by an
irreducible polynomial. We now give an explicit description of this invariant.

Write an element in𝑈𝑔 = 2×𝑔×(𝑔+1) as a pair (𝐴top, 𝐵top) of 𝑔×(𝑔+1) matrices. For 1 ≤ 𝑖 ≤ 𝑔+1,
let 𝐴𝑖 and 𝐵𝑖 denote the 𝑔 × 𝑔-matrices obtained from 𝐴top and 𝐵top, respectively, by deleting the ith
column. Define the binary g-ic form 𝑓𝑖 (𝑥, 𝑦) to be (−1)𝑖+1 det(𝐴𝑖𝑥−𝐵𝑖𝑦). Consider the (𝑔+1) × (𝑔+1)
matrix C whose (𝑖, 𝑗)-entry is the jth-coefficient of 𝑓𝑖 (𝑥, 𝑦). Taking the determinant of C yields a
polynomial 𝑄 = 𝑄(𝐴top, 𝐵top) in the coordinates of 𝑈𝑔. The polynomial Q is the hyperdeterminant of
the 2×𝑔× (𝑔 +1) matrix (𝐴top, 𝐵top) (cf. [18, Chapter 14, Theorem 3.18] with 𝑚 = 𝑔, 𝑛 = 𝑔 +1, 𝑝 = 2).
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As a consequence, it is irreducible and invariant under the action of 𝐻𝑔 on 𝑈𝑔 and thus generates the
ring of polynomials for the action of 𝐻𝑔 on𝑈𝑔.

Let 𝑛 = 2𝑔 + 1 again be an odd integer. We return to the representation𝑊0 of 𝐺0. Given an element
(𝐴, 𝐵) ∈ 𝑊0, recall that we obtain an element (𝐴top, 𝐵top) ∈ 𝑈𝑔 by taking the top right 𝑔 × (𝑔 + 1)
blocks of A and B. We define the Q-invariant of (𝐴, 𝐵) ∈ 𝑊0 as the Q-invariant of (𝐴top, 𝐵top):

𝑄(𝐴, 𝐵) := 𝑄(𝐴top, 𝐵top). (4)

Then the Q-invariant is a relative invariant for 𝐺0. More precisely, for any 𝛾 ∈ 𝐺0 in the block matrix
form (3), we have

𝑄(𝛾 · (𝐴, 𝐵)) = det(𝛾1)𝑔+1 det(𝛾2)𝑔𝑄(𝐴, 𝐵) = det(𝛾1)𝑄(𝐴, 𝐵), (5)

since det(𝛾1) det(𝛾2) = 1. If 𝛾 ∈ 𝐺0(Z), then we have det(𝛾1) = det(𝛾2) = ±1. Hence, the absolute
value |𝑄 | of Q is an invariant for the action of 𝐺0 (Z) on𝑊0 (Z).

3.3. Divisibility properties of 𝚫 when restricted to 𝑾0

Let 𝑛 = 2𝑔 + 1 be an odd integer. Write the coordinates on 𝑊0 as 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 with 𝑖, 𝑗 in the appropriate
ranges. Let R denote the ring of regular functions of𝑊0 over Z (i.e., 𝑅 = Z[𝑊0] = Z[𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 ]). Consider
the discriminant polynomial Δ ∈ 𝑅 given by Δ (𝐴, 𝐵) := Δ ( 𝑓𝐴,𝐵). In this section, we prove that 𝑄2 | Δ
as polynomials in R, along with another useful divisibility result.

Let Z be the closed subvariety of𝑊0 consisting of elements (𝐴, 𝐵) with Δ (𝐴, 𝐵) = 0, and let 𝑌 ⊂ 𝑍
denote the closed subvariety of 𝑊0 consisting of elements (𝐴, 𝐵) such that 𝑓𝐴,𝐵 is either divisible by
the cube of a binary form with degree ≥ 1 or the square of a binary form with degree ≥ 2. Both of these
varieties Y and Z are defined over Z and are clearly SL2 × 𝐺0-invariant.

Our first result states that the variety in𝑊0 cut out by 𝑄 = 0 does not lie in Y.
Proposition 3.2. Let (𝐴, 𝐵) = ((𝑎𝑖 𝑗 )𝑖 𝑗 , (𝑏𝑖 𝑗 )𝑖 𝑗 ) ∈ 𝑊0(𝑅) be the generic element. Then

(𝐴, 𝐵) mod 𝑄 ∉ 𝑌 (𝑅/(𝑄)).

Proof. Fix an odd prime p. Let 𝑓 (𝑥, 𝑦) be an element of 𝑉 (Z), such that the reduction of 𝑓 (𝑥, 𝑦)
modulo p factors as 𝑥2ℎ(𝑥, 𝑦), where h is irreducible. In particular, 𝑓 (𝑥, 𝑦) mod p is not divisible by
either the cube of a binary form with degree ≥ 1, or the square of a binary form with degree ≥ 2. Let
(𝐴 𝑓 , 𝐵 𝑓 ) ∈ 𝑊0 (Z) be an element with invariant binary n-ic form equal to f and 𝑄(𝐴 𝑓 , 𝐵 𝑓 ) = 𝑝. Such
an element (𝐴 𝑓 , 𝐵 𝑓 ) is constructed in the next subsection (see (9) with 𝑚 = 𝑝).

Let 𝜋 : 𝑅 → Z denote the specialization map assigning integer values to 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 such that

𝜋(𝐴, 𝐵) = (𝐴 𝑓 , 𝐵 𝑓 ).

Then 𝜋(𝑄) = 𝑝 and so 𝜋 induces a map 𝑅/(𝑄) → F𝑝 . Since (𝐴 𝑓 , 𝐵 𝑓 ) mod 𝑝 ∉ 𝑌 (F𝑝), we see that
(𝐴, 𝐵) mod 𝑄 ∉ 𝑌 (𝑅/(𝑄)). �

The next lemma, which follows from a direct computation, gives the Q-invariant for elements in𝑊0
having a specific form.
Lemma 3.3. Let k be a field and let (𝐴, 𝐵) ∈ 𝑊0 (𝑘) be an element such that the top right 𝑔 × (𝑔 + 1)
blocks of (𝐴, 𝐵) are of the following form:

(𝐴top, 𝐵top) =

	





�
	





�

0 0 · · · 0 0 𝑎1
0 𝑎2 ∗
0 𝑎3 ∗ ∗
...

...
...

...
0 𝑎𝑔 · · · ∗ ∗ ∗

��
,

	





�

0 · · · 0 0 𝑏1 0
𝑏2 0 0

𝑏3 0 0
...

...
...

𝑏𝑔 0 0

��
��
. (6)
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Then

𝑄(𝐴, 𝐵) = ±𝑎𝑔1𝑎
𝑔−1
2 · · · 𝑎𝑔𝑏1𝑏

2
2 · · · 𝑏

𝑔
𝑔 .

Next, we have the following proposition that gives a normal form for elements (𝐴, 𝐵) ∉ 𝑌 whose
Q-invariant is 0.

Proposition 3.4. Let k be a field. Let (𝐴, 𝐵) be an element of𝑊0(𝑘)\𝑌 (𝑘) such that 𝑄(𝐴, 𝐵) = 0. Then
(𝐴, 𝐵) is SL2(𝑘) ×𝐺0(𝑘)-equivalent to an element of the form (𝐴′, 𝐵′) where the top right 𝑔 × (𝑔 + 1)
blocks of 𝐴′ and 𝐵′ are given by

(𝐴′top, 𝐵′top) =

	





�
	





�

0 0 · · · 0 0 𝑎1
0 𝑎2 ∗
0 𝑎3 ∗ ∗
...

...
...

...
0 𝑎𝑔 · · · ∗ ∗ ∗

��
,

	





�

0 · · · 0 0 0 0
𝑏2 0 0

𝑏3 0 0
...

...
...

𝑏𝑔 0 0

��
��
, (7)

where 𝑎1, . . . , 𝑎𝑔, 𝑏2, . . . , 𝑏𝑔 ∈ 𝑘×. In the displayed matrices above, any empty entry is 0.

Proof. The action of𝐺0(𝑘) allows us to perform simultaneous row operations and simultaneous column
operations on (𝐴top, 𝐵top). As a first step, we perform column operations to ensure that the rightmost
column of 𝐵top is 0. Next, recall that the Q-invariant of (𝐴, 𝐵) is the determinant of the (𝑔 + 1) × (𝑔 + 1)
matrix C, whose rows come from the coefficients of the 𝑔 × 𝑔 minors of 𝐴top𝑥 − 𝐵top𝑦. It follows that
row operations on (𝐴top, 𝐵top) leave C unchanged, while adding 𝛼 times the i-th columns of 𝐴top, 𝐵top

to the j-th column has the effect of adding 𝛼 times the j-th row of C to the i-th row of C and leaving
the rest unchanged. Since det(𝐶) = 𝑄(𝐴top, 𝐵top) = 0, it follows that by adding multiples of the last
columns of 𝐴top, 𝐵top to the other columns, we may assume that the last row of C is 0. Denoting the
𝑔 × 𝑔 matrices obtained by removing the last columns of 𝐴top and 𝐵top by M and N, respectively, we
have det(𝑀𝑥 − 𝑁𝑦) = 0.

We next claim that by performing simultaneous row and column operations on (𝑀, 𝑁), we may bring
M and N in the form of the first g columns of 𝐴′ top and 𝐵′ top, respectively, for (𝐴′ top, 𝐵′ top) as given
in (7) with 𝑏𝑖 ≠ 0 for all 2 ≤ 𝑖 ≤ 𝑔. Since det(𝑀) = 0, after appropriate column operations, we may
assume that the first column of M is 0. Now the first column of N cannot be identically 0 for otherwise,
the invariant binary form of (𝐴, 𝐵) has a factor of the form ℎ(𝑥, 𝑦)2 with deg ℎ = 𝑔, contradicting
(𝐴, 𝐵) ∉ 𝑌 (𝑘). By applying row operations, we may ensure that the bottom left entry of N is 𝑏𝑔 ≠ 0
and the rest of the first column of N is 0. We then use this nonzero cofficient 𝑏𝑔 to clear out the rest of
the bottom row of N (without changing M).

Let 𝑀1 and 𝑁1 denote the top right (𝑔 − 1) × (𝑔 − 1) block of M and N. Then det(𝑀𝑥 − 𝑁𝑦) =
(−1)𝑔𝑏𝑔𝑦 det(𝑀1𝑥 − 𝑁1𝑦). Hence, det(𝑀1𝑥 − 𝑁1𝑦) = 0 and the first column of 𝑀1 can be made 0. As
in the previous case, all the coefficients of the first column of 𝑁1 can be made 0 except for the bottom
left entry, which is 𝑏𝑔−1 ≠ 0. We then clear out the bottom row of 𝑁1 as before. Proceeding in this way,
we transform the first 𝑔 − 1 columns of M and N to be in the required form. Since the 𝑏𝑖’s are nonzero
for 2 ≤ 𝑖 ≤ 𝑔, and since det(𝑀𝑥 − 𝑁𝑦) = 0, it follows that the top right coefficients of M and N are 0,
completing the proof of the claim.

Note that this transformation of M and N did not change the last column of 𝐵top, which remains 0.
Thus, to complete the proof of Proposition 3.4, it remains to show that 𝑎𝑖 ≠ 0 for 1 ≤ 𝑖 ≤ 𝑔. Since the
first row and column of 𝐵′ are 0, we see that 𝑥2𝑎2

1 | 𝑓𝐴′,𝐵′ . Hence, 𝑎1 ≠ 0. Suppose for contradiction that
𝑖 = 2, . . . , 𝑔 is the smallest index such that 𝑎𝑖 = 0. Then we may clear out the i-th row of 𝐴′ using the
second up to the (𝑖 − 1)-th rows of 𝐴′. That is, (𝐴′, 𝐵′) is SL𝑛 (𝑘)-equivalent to some (𝐴′′, 𝐵′′) where
the only nonzero entries in the i-th row and the i-th column of 𝐴′′ appear in the last entry. This allows
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us to factor out an extra factor of 𝑦2 in det(𝐴′′𝑥 − 𝐵′′𝑦) = ± 𝑓𝐴,𝐵, contradicting the assumption that
(𝐴, 𝐵) ∉ 𝑌 (𝑘) since we already had 𝑥2 | 𝑓𝐴,𝐵. �

We are now ready to prove that 𝑄2 | Δ:

Theorem 3.5. We have 𝑄2 | Δ in Z[𝑊0].

Proof. Let (𝐴, 𝐵) ∈ 𝑊0 (𝑅) be the generic element. We begin by proving that (𝐴, 𝐵) ∈ 𝑍 (𝑅/(𝑄)), or
equivalently that 𝑄 | Δ in R. Let ( �̄�, �̄�) ∈ 𝑊0 (𝑅/(𝑄)) denote the reduction of (𝐴, 𝐵) mod Q, and let F
denote the field of fractions of 𝑅/(𝑄). By Proposition 3.2, we know ( �̄�, �̄�) ∉ 𝑌 (𝐹). Since𝑄( �̄�, �̄�) = 0,
by Proposition 3.4, there exists 𝛾 ∈ SL2(𝐹) ×𝐺0(𝐹) such that 𝛾( �̄�, �̄�) = (𝐴′, 𝐵′), where (𝐴′ top, 𝐵′ top)
is of the form (7). The invariant binary form of (𝐴′, 𝐵′) has a factor of 𝑥2, and so (𝐴′, 𝐵′) ∈ 𝑍 (𝐹).
Since Z is SL2 × 𝐺0-invariant, we see that ( �̄�, �̄�) ∈ 𝑍 (𝐹).

Since 𝑄 | Δ in R, there exists an element 𝛿 ∈ 𝑅 such that Δ = 𝑄𝛿. Let 𝑍1 denote the closed
subvariety of 𝑊0 cut out by 𝛿. It now suffices to prove that 𝑄 | 𝛿 or, equivalently, that the generic
element (𝐴, 𝐵) belongs to 𝑍1 (𝑅/𝑄). We claim that for any field k, and every element (𝐴, 𝐵) ∈ 𝑊0 (𝑘)
such that (𝐴top, 𝐵top) has the form (7), we have 𝛿(𝐴, 𝐵) = 0. Indeed, let (𝐴, 𝐵) be such an element. Let
(𝐴(𝜖 ) , 𝐵 (𝜖 ) ) ∈ 𝑊0(𝑘 [𝜖]) be such that 𝐴(𝜖 ) = 𝐴, the (1, 𝑛 − 1)-entry and the (𝑛 − 1, 1)-entry of 𝐵 (𝜖 )

equal 𝜖 , and the other coefficients of 𝐵 (𝜖 ) are the same as those of B. By Lemma 3.3, we have

𝑄(𝐴(𝜖 ) , 𝐵 (𝜖 ) ) = ±𝜖 𝑎𝑔1𝑎
𝑔−1
2 · · · 𝑎𝑔𝑏2

2 · · · 𝑏
𝑔
𝑔 .

Moreover, 𝜖2 divides the 𝑦𝑛-coefficient of 𝑓𝐴(𝜖 ) ,𝐵 (𝜖 ) and 𝜖 divides the 𝑥𝑦𝑛−1-coefficient of 𝑓𝐴(𝜖 ) ,𝐵 (𝜖 ) .
Hence, 𝜖2 | Δ (𝐴(𝜖 ) , 𝐵 (𝜖 ) ), which implies (since 𝜖2 � 𝑄(𝐴(𝜖 ) , 𝐵 (𝜖 ) )) that 𝜖 | 𝛿(𝐴(𝜖 ) , 𝐵 (𝜖 ) ). Since
(𝐴, 𝐵) is obtained from (𝐴(𝜖 ) , 𝐵 (𝜖 ) ) by setting 𝜖 = 0, we have 𝛿(𝐴, 𝐵) = 0. We have proven that the
generic element (𝐴, 𝐵) ∈ 𝑊0 (𝑅) belongs to 𝑍1 (𝑅/(𝑄)). Therefore, 𝑄 | 𝛿. �

We end this section with another divisibility result for Δ , which will be used in §6.

Proposition 3.6. We have det(𝐴top(𝐴top)𝑡 ) det(𝐵top(𝐵top)𝑡 ) | Δ as elements in Z[𝑊0].

Proof. It suffices to prove that det(𝐵top(𝐵top)𝑡 ) divides Δ in Z[𝑊0]. Suppose (𝐴, 𝐵) ∈ 𝑊0 (C)
with det(𝐵top(𝐵top)𝑡 ) = 0. Then 𝐵top does not have full rank. Hence, there exists some nonzero
𝑣 ∈ SpanC{𝑒1, . . . , 𝑒𝑔} such that 𝐵𝑣 = 0. However, any such v is isotropic with respect to A. As a result,
Δ (𝐴, 𝐵) = 0. Thus, by the Nullstellensatz, det(𝐵top(𝐵top)𝑡 ) | 𝑐Δ𝑑 in Z[𝑊0] for some nonzero integer c
and positive integer d.

Define 𝑃𝑔 ∈ Z[𝑀𝑔×(𝑔+1) ] by 𝑃𝑔 (𝑀) = det(𝑀𝑀 𝑡 ). For the purpose of proving Proposition 3.6,
it suffices to prove that 𝑃𝑔 is squarefree in Z[𝑀𝑔×(𝑔+1) ]. We proceed by induction on g. Denote the
(𝑖, 𝑗)-entry of any 𝑀 ∈ 𝑀𝑔×(𝑔+1) by 𝑢𝑖 𝑗 . When 𝑔 = 1, we have 𝑃1 = 𝑢2

11 + 𝑢
2
12, which is squarefree in

Z[𝑢11, 𝑢12]. For general 𝑔 ≥ 2, consider

𝑀 =

	



�
𝑢11 · · · 𝑢1 𝑔−1 𝑢1 𝑔 0
...

. . .
...

...
...

𝑢𝑔−1 1 · · · 𝑢𝑔−1 𝑔−1 𝑢𝑔−1 𝑔 0
0 · · · 0 𝛼 𝛽

��
.

Then

det(𝑀𝑀 𝑡 ) = 𝛽2𝑃𝑔−1 + 𝛼2𝐷2
𝑔−1,

where 𝐷𝑔−1 is the determinant of the top left (𝑔 − 1) × (𝑔 − 1) block of M. Any square factor of
det(𝑀𝑀 𝑡 ) must be a common square factor of 𝑃𝑔−1 and 𝐷2

𝑔−1, which can only be ±1 since 𝑃𝑔−1 is
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squarefree by induction. We have shown that 𝑃𝑔 is squarefree even after setting certain variables to 0.
Therefore, 𝑃𝑔 is squarefree in Z[𝑀𝑔×(𝑔+1) ]. �

3.4. Embedding W(2)
𝒎,𝒏 into 𝑾𝒏 (Z), for n odd

Let 𝑛 = 2𝑔+1 be an odd integer, and set𝑊 = 𝑊𝑛. For an odd squarefree integer𝑚 > 0, let W (2)
𝑚 = W (2)

𝑚,𝑛

denote the set of integer n-ic binary forms whose discriminants are weakly divisible by 𝑝2 for every
prime factor p of m. Fix an element 𝑓 (𝑥, 𝑦) ∈ W (2)

𝑚 . Then just as shown in [11, §3.2], there exists an
SL2 (Z)-change of variable such that 𝑓 ((𝑥, 𝑦)𝛾) has the form

𝑓 ((𝑥, 𝑦)𝛾) = 𝑚2𝑏0𝑥
𝑛 + 𝑚𝑏1𝑥

𝑛−1𝑦 + · · · + 𝑏𝑛𝑦𝑛 (8)

for some integers 𝑏0, . . . , 𝑏𝑛 and where m and 𝑏0 are coprime.
Consider the following pair of matrices:

𝐴 =

	










�

1

. .
.

𝑚
𝑐0

𝑚 𝑐2

. .
. . . .

1 𝑐𝑛−1

��
, 𝐵 =

	











�

1 0

. .
.
. .
.

1 𝑟
1 𝑐1

. .
.
𝑟 𝑐3

1 . .
. . . .

0 𝑐𝑛

��
. (9)

Here, the dots on the antidiagonal of A are all 1 and the dots on the antidiagonal of B are all 0. We claim
that 𝑐𝑖 , 𝑟 can be chosen to be integers so that (−1)𝑔 det(𝑥𝐴 − 𝑦𝐵) = 𝑓 ((𝑥, 𝑦)𝛾). It is clear that 𝑐0 = 𝑏0
and 2𝑚𝑟𝑐0 +𝑚2𝑐1 = −𝑚𝑏1. Choose 𝑟 ∈ Z such that 𝑚 | 2𝑟𝑐0 + 𝑏1; this then determines 𝑐1. It is then not
hard to check that the coefficient of 𝑥𝑛−𝑖𝑦𝑖 in (−1)𝑔 det(𝑥𝐴−𝑦𝐵) is of the form (−1)𝑖𝑐𝑖+𝐿(𝑐0, . . . , 𝑐𝑖−1)
where L is a linear form with coefficients in Z[𝑟]. The existence of integers 𝑐2, . . . , 𝑐𝑛 now follows by
induction.

Set 𝜎𝑚( 𝑓 ) = 𝜎𝑚,𝑛 ( 𝑓 ) to be the element (𝐴 𝑓 , 𝐵 𝑓 ) such that(
𝐴 𝑓

−𝐵 𝑓

)
= 𝛾−1

(
𝐴
−𝐵

)
.

Then 𝑓𝜎𝑚 ( 𝑓 ) = 𝑓 . Next, we note that (𝐴, 𝐵), and thus, (𝐴 𝑓 , 𝐵 𝑓 ) are in 𝑊0 (Z), and from Lemma 3.3,
we obtain that |𝑄 | (𝐴, 𝐵) = 𝑚. Since Q is SL2-invariant, we conclude that

|𝑄 | (𝜎𝑚 ( 𝑓 )) = 𝑚.

We have proven the following theorem.

Theorem 3.7. Let 𝑚 > 0 be a squarefree integer. There exists a map 𝜎𝑚 : W (2)
𝑚 → 𝑊0 (Z) such that

𝑓𝜎𝑚 ( 𝑓 ) = 𝑓 , |𝑄 | (𝜎𝑚 ( 𝑓 )) = 𝑚

for every 𝑓 ∈ W (2)
𝑚 .

We will later use the image of 𝜎1 as a fundamental set for the action of SL𝑛 (R) on the set of
distinguished elements of 𝑊 (R). We now extend the function |𝑄 | to the set of distinguished elements
of 𝑊 (Z) having irreducible invariant binary form. Suppose that (𝐴, 𝐵) is a distinguished element of
𝑊 (Z). Then there is a g-dimensional subspace X isotropic with respect to A and B. Let Λ = 𝑋 ∩ Z𝑛 be
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the primitive lattice in X. There exists an element 𝛾 in SL𝑛 (Z), unique up to left multiplication by an
element in 𝐺0 (Z), such that Λ = 𝛾𝑡 · SpanZ{𝑒1, . . . , 𝑒𝑔}, where 𝑒1, . . . , 𝑒𝑛 is the standard basis of Z𝑛.
Then 𝛾 · (𝐴, 𝐵) ∈ 𝑊0 (Z), and we can thus define the |𝑄 |-invariant on the triple (𝐴, 𝐵,Λ) by

|𝑄 | (𝐴, 𝐵,Λ) := |𝑄 | (𝛾 · (𝐴, 𝐵)).

That is, we complete an integral basis of Λ to an integral basis of Z𝑛 with respect to which the pair
(𝐴′, 𝐵′) of Gram matrices for the quadratic forms defined by A and B lies inside𝑊0 (Z), and we define
|𝑄 | (𝐴, 𝐵,Λ) to be |𝑄 | (𝐴′, 𝐵′).

We end with the following result that will be crucial in Section 4.

Proposition 3.8. Let 𝑛 = 2𝑔 + 1 be an odd integer with 𝑛 ≥ 3. Let m be an odd positive squarefree
integer. Let 𝑓 (𝑥, 𝑦) ∈ W (2)

𝑚 be an irreducible integral binary n-ic form. Let (𝐴, 𝐵) be any element in
SL𝑛 (Z) · 𝜎𝑚( 𝑓 ). Then there is a unique primitive g-dimensional lattice Λ that is isotropic with respect
to both A and B. Moreover, |𝑄 | (𝐴, 𝐵) := |𝑄 | (𝐴, 𝐵,Λ) = 𝑚. In particular, if 𝑓 (𝑥, 𝑦) ∈ W (2)

𝑚 ∩ W (2)
𝑚′

is irreducible where m and 𝑚′ are distinct odd positive squarefree integers, then 𝜎𝑚( 𝑓 (𝑥, 𝑦)) and
𝜎𝑚′ ( 𝑓 (𝑥, 𝑦)) are not SL𝑛 (Z)-equivalent.

Proof. Let 𝐶 𝑓 denote the smooth hyperelliptic curve 𝑧2 = 𝑓 (𝑥, 𝑦)𝑦 of genus g viewed as a curve in
the weighted projective space P(1, 1, 𝑔 + 1), and let 𝐽 𝑓 denote its Jacobian. Since (𝐴, 𝐵) is SL𝑛 (Z)-
equivalent to 𝜎𝑚( 𝑓 ), it follows that (𝐴, 𝐵) is distinguished. Thus, the set of common isotropic g-
dimensional subspaces of A and B over Q is in bijection with 𝐽 𝑓 [2] (Q). Since f is irreducible, we have
𝐽 𝑓 [2] (Q) = 1. Therefore, there is a unique primitive g-dimensional lattice Λ which is isotropic with
respect to both A and B.

Let 𝛾 ∈ SL𝑛 (Z) be an element such that 𝛾(𝐴, 𝐵) = 𝜎𝑚( 𝑓 ) =: (𝐴 𝑓 , 𝐵 𝑓 ) ∈ 𝑊0 (Z). Since we know
that SpanZ{𝑒1, . . . , 𝑒𝑔} is a primitive g-dimensional lattice isotropic with respect to 𝐴 𝑓 and 𝐵 𝑓 , we
see that 𝛾𝑡 · SpanZ{𝑒1, . . . , 𝑒𝑔} is a primitive g-dimensional lattice isotropic with respect to A and
B. By uniqueness, it follows that Λ = 𝛾𝑡 · SpanZ{𝑒1, . . . , 𝑒𝑔}, and so by definition, |𝑄 | (𝐴, 𝐵,Λ) =
|𝑄 | (𝜎𝑚 ( 𝑓 )) = 𝑚, where the final equality is Theorem 3.7. �

3.5. Embedding W(2) , gen
𝒎,𝒏 into 𝑾𝒏+1(Z), for n even

Suppose now that 𝑛 = 2𝑔 + 2 is even with 𝑔 ≥ 1. For an odd squarefree integer 𝑚 > 0, let W (2)
𝑚,𝑛 denote

the set of integer binary forms having discriminant weakly divisible by 𝑝2 for every prime factor p
of m. Let W (2) , gen

𝑚,𝑛 ⊂ W (2)
𝑚,𝑛 consist of those 𝑓 (𝑥, 𝑦) with 𝑓 (0, 1) coprime to m. Since Δ (𝑥 𝑓 (𝑥, 𝑦)) =

Δ ( 𝑓 (𝑥, 𝑦)) 𝑓 (0, 1)2, we see that if 𝑓 (𝑥, 𝑦) ∈ W (2) , gen
𝑚,𝑛 , then 𝑥 𝑓 (𝑥, 𝑦) ∈ W (2)

𝑚,𝑛+1. We define 𝜎𝑚,𝑛 :
W (2) , gen

𝑚,𝑛 → 𝑊𝑛+1 (Z) via 𝜎𝑚,𝑛 ( 𝑓 ) = 𝜎𝑚,𝑛+1 (𝑥 𝑓 ). For the rest of this subsection, we drop subscripts
and denote 𝜎𝑚,𝑛 by 𝜎𝑚, W (2) , gen

𝑚,𝑛 by W (2) gen
𝑚 , and𝑊𝑛+1 by W.

We now define the finer q-invariant. Let 𝑓 ∈ W (2) , gen
𝑚 and suppose (𝐴, 𝐵) = 𝜎𝑚( 𝑓 ). Then B

is singular since 𝑥 𝑓 (𝑥, 𝑦) has vanishing 𝑦𝑛-term. Moreover, since Δ (𝑥 𝑓 ) ≠ 0, the kernel of B has
dimension exactly 1 and is not isotropic with respect to A (see Lemma 6.4). Fix an integral domain D.
Let 𝑊1 (𝐷) be the subset of 𝑊 (𝐷) consisting of pairs (𝐴, 𝐵) of symmetric (𝑛 + 1) × (𝑛 + 1) matrices
satisfying the following conditions:

(a) The top left (𝑔 + 1) × (𝑔 + 1) block of A is 0.
(b) The top left (𝑔 + 2) × (𝑔 + 2) block of B is 0 (implying that B is singular).
(c) The kernel of B has dimension exactly 1 (over the fraction field of D) and is not isotropic with

respect to A.

Take any (𝐴, 𝐵) ∈ 𝑊1(𝐷). Conditions (a) and (c) imply that the first 𝑔 + 1 columns of B are linearly
independent over the fraction field of D. Let 𝐵′ denote the top right (𝑔 + 1) × (𝑔 + 1) block of B. Since B
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is symmetric, we see that 𝐵′ is nonsingular. It is now easy to see from the definition of the Q-invariant
that as polynomials in the coordinates of𝑊1(𝐷), we have

det(𝐵′) | 𝑄(𝐴top, 𝐵top).

We define the quotient to be the q-invariant of (𝐴, 𝐵):

𝑞(𝐴, 𝐵) := 𝑄(𝐴top, 𝐵top)/det(𝐵′). (10)

Let 𝐺1 (𝐷) denote the subgroup of SL𝑛+1 (𝐷) preserving𝑊1 (𝐷). Then elements of 𝐺1(𝐷) have the
following block matrix form:

𝛾 =
	
�
𝛾1 0 0
𝑛1 𝛾2 0
𝑛2 𝑛3 𝛾3

�� ∈ 	
�
GL𝑔+1
𝑀1×(𝑔+1) GL1

𝑀(𝑔+1)×(𝑔+1) 𝑀(𝑔+1)×1 GL𝑔+1

�� . (11)

It is easy to check that for any (𝐴, 𝐵) ∈ 𝑊1(𝐷),

𝑞(𝛾(𝐴, 𝐵)) = det(𝛾1) (det(𝛾1) det(𝛾3))−1𝑞(𝐴, 𝐵) = det(𝛾1)𝛾2 𝑞(𝐴, 𝐵). (12)

We now consider the situation over Z. Let (𝐴, 𝐵) ∈ 𝑊 (Z) be a distinguished element having nonzero
discriminant such that B is singular. Let X denote a common isotropic (𝑔 + 1)-dimiensional subspace
of A and B. We know that the kernel 〈𝑣〉 of B has trivial intersection with X. Denote the span of X
and v by 𝑋 ′, which is a (𝑔 + 2)-dimensional subspace containing X that is isotropic with respect to
B. Let Λ = 𝑋 ∩ Z𝑛+1 and Λ′ = 𝑋 ′ ∩ Z𝑛+1 be the primitive lattices in X and 𝑋 ′, respectively. There
exists an element 𝛾 in SL𝑛+1 (Z), unique up to left multiplication by an element in 𝐺1 (Z), such that
Λ = 𝛾𝑡 . SpanZ{𝑒1, . . . , 𝑒𝑔+1} and Λ′ = 𝛾𝑡 . SpanZ{𝑒1, . . . , 𝑒𝑔+2}. Then 𝛾(𝐴, 𝐵) ∈ 𝑊1 (Z), and we can
thus define the |𝑞 |-invariant for the quadruple (𝐴, 𝐵,Λ,Λ′) by

|𝑞 | (𝐴, 𝐵,Λ,Λ′) := |𝑞(𝛾(𝐴, 𝐵)) |.

In other words, we complete an integral basis {𝑣1, . . . , 𝑣𝑔+1} of Λ to an integral basis {𝑣1, . . . , 𝑣𝑛+1}
of Z𝑛+1 such that {𝑣1, . . . , 𝑣𝑔+2} forms an integral basis of Λ′. When expressed in this basis, the pair
(𝐴′, 𝐵′) of Gram matrices for the quadratic forms defined by A and B lies in 𝑊1 (Z) and we define
|𝑞 | (𝐴, 𝐵,Λ,Λ′) := |𝑞 | (𝐴′, 𝐵′).

Finally, we compute the |𝑄 |- and |𝑞 |-invariants of 𝜎𝑚( 𝑓 (𝑥, 𝑦)), where 𝑓 (𝑥, 𝑦) ∈ W (2) , gen
𝑚 is irre-

ducible.

Proposition 3.9. Let 𝑛 = 2𝑔 + 2 with 𝑔 ≥ 1. Let m be an odd positive squarefree integer. Let 𝑓 (𝑥, 𝑦) ∈
W (2) , gen

𝑚 be irreducible. Let (𝐴, 𝐵) be any element in SL𝑛+1(Z) · 𝜎𝑚( 𝑓 (𝑥, 𝑦)). Let Λ be a (𝑔 + 1)-
dimensional primitive lattice contained in a (𝑔 + 2)-dimensional primitive lattice Λ′ such that Λ is
isotropic with respect to A and Λ′ is isotropic with respect to B. Then |𝑄 | (𝐴, 𝐵,Λ) is either m or
| 𝑓 (0, 1) |𝑚, and |𝑞 | (𝐴, 𝐵) := |𝑞 | (𝐴, 𝐵,Λ,Λ′) = 𝑚, independent of (Λ,Λ′). In particular, if 𝑓 (𝑥, 𝑦) ∈
W (2) , gen

𝑚 ∩W (2) , gen
𝑚′ is irreducible where m and 𝑚′ are distinct odd positive squarefree integers, then

𝜎𝑚( 𝑓 (𝑥, 𝑦)) and 𝜎𝑚′ ( 𝑓 (𝑥, 𝑦)) are not SL𝑛+1(Z)-equivalent.

Proof. The size of 𝐽 𝑓 [2] (Q) is 2 since 𝑥 𝑓 (𝑥, 𝑦) has a unique even degree factor (namely, 𝑓 (𝑥, 𝑦))
over Q. Therefore, the pair (𝐴, 𝐵) has two (𝑔 + 1)-dimensional common isotropic subspaces 𝑋1 and 𝑋2
over Q. Let Λ1 and Λ2 denote the corresponding primitive lattices contained in 𝑋1 and 𝑋2. The unique
(𝑔 + 2)-dimensional subspace 𝑋 ′

1 (resp., 𝑋 ′
2) isotropic with respect to B and containing 𝑋1 (resp., 𝑋2) is

the span of 𝑋1 (resp., 𝑋2) with the kernel of B. Let Λ′
1 and Λ′

2 denote the primitive lattices contained in
𝑋 ′

1 and 𝑋 ′
2. We compute the |𝑄 |- and |𝑞 |-invariants associated to these lattices.
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We may assume that (𝐴, 𝐵) = 𝜎𝑚( 𝑓 ) since the action of SL𝑛+1(Z) does not change the |𝑄 |- or |𝑞 |
invariants. Since |𝑄 | is SL2-invariant, and |𝑞 | remains unchanged when we add a multiple of B to A, we
may also assume that

𝑥 𝑓 (𝑥, 𝑦) = 𝑚2𝑏0𝑥
𝑛+1 + 𝑚𝑏1𝑥

𝑛𝑦 + · · · + 𝑏𝑛𝑥𝑦𝑛

and so

𝐴 =

	










�

1

. .
.

𝑚
𝑐0

𝑚 𝑐2

. .
. . . .

1 𝑐𝑛

��
, 𝐵 =

	











�

1 0

. .
.
. .
.

1 𝑟
1 𝑐1

. .
.
𝑟 𝑐3

1 . .
. . . .

0 𝑐𝑛+1

��
.

Comparing the 𝑦𝑛+1- and the 𝑥𝑦𝑛-coefficients, we have 𝑐𝑛+1 = 0 and 𝑐𝑛 = 𝑏𝑛.
Let 〈 , 〉𝐴 and 〈 , 〉𝐵 denote the quadratic forms corresponding to A and B. Let 𝑒1, . . . , 𝑒𝑛+1 be the

standard basis on Z𝑛+1. Since 𝑐𝑛+1 = 0, the vector 𝑒𝑛+1 spans the kernel of B. We may take the subspace
spanned by 𝑒1, . . . , 𝑒𝑔+1 as 𝑋1. Then by construction, |𝑄 | (𝐴, 𝐵,Λ1) = 𝑚. When expressed in terms
of the ordered integral basis {𝑒1, . . . , 𝑒𝑔+1, 𝑒𝑛, 𝑒𝑔+2, . . . , 𝑒𝑛−1}, the top right (𝑔 + 1) × (𝑔 + 1) block
of B has 1’s on the antidiagonal and 0’s above the antidiagonal, and so has determinant ±1. Hence,
|𝑞 | (𝐴, 𝐵,Λ1,Λ′

1) = 𝑚.
The second common isotropic (𝑔+1)-dimensional subspace 𝑋2 is the reflection of 𝑋1 in the hyperplane

perpendicular to 𝑒𝑛+1 with respect to 〈 , 〉𝐴. That is,

𝑋2 = SpanQ
{
𝑒1 −

2〈𝑒1, 𝑒𝑛+1〉𝐴
〈𝑒𝑛+1, 𝑒𝑛+1〉𝐴

𝑒𝑛+1, . . . , 𝑒𝑔+1 −
2〈𝑒𝑔+1, 𝑒𝑛+1〉𝐴
〈𝑒𝑛+1, 𝑒𝑛+1〉𝐴

𝑒𝑛+1

}
= SpanQ

{
𝑒1 −

2
𝑏𝑛
𝑒𝑛+1, 𝑒2, 𝑒3, . . . , 𝑒𝑔+1

}
.

Suppose first that 𝑏𝑛 is odd. Then we have the following integral basis for Z𝑛+1:{
𝑏𝑛𝑒1 − 2𝑒𝑛+1, 𝑒2, 𝑒3, . . . , 𝑒𝑔+1,

𝑏𝑛 + 1
2

𝑒1 − 𝑒𝑛+1, 𝑒𝑔+2, . . . , 𝑒𝑛

}
.

In terms of this basis, the top right (𝑔 + 1) × (𝑔 + 2) blocks of A and B have the following form:

𝐴top =

	







�

−1 0 0 · · · · · · 0

0 0 0 . .
.

1
...
...
... . .

.
. .
. ...

...
... 0 1

...
0 0 𝑚 · · · · · · 0

��
, 𝐵top =

	






�

0 𝑏𝑛
0 1
... . .

.

... . .
.

0 1

��
. (13)

It is then easy to check that |𝑄 | (𝐴, 𝐵,Λ2) = |𝑏𝑛 |𝑚 and |𝑞 | (𝐴, 𝐵,Λ2,Λ′
2) = 𝑚.

When 𝑏𝑛 is even, we have the following integral basis:{ 𝑏𝑛
2
𝑒1 − 𝑒𝑛, 𝑒2, 𝑒3, . . . , 𝑒𝑔+1, (𝑏𝑛 + 1)𝑒1 − 2𝑒𝑛+1, 𝑒𝑔+2, . . . , 𝑒𝑛

}
.

In terms of this basis, the top right (𝑔 + 1) × (𝑔 + 2) blocks of A and B have the same form as in (13).
Hence, the |𝑄 |- and |𝑞 |-invariants are as stated in the proposition. �
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4. A uniformity estimate for odd degree polynomials

Throughout this section, we fix an odd integer 𝑛 = 2𝑔 + 1 with 𝑔 ≥ 1. Our goal is to prove Theorem
5(b) by obtaining a bound on the number of integral binary n-ic forms having bounded height and
discriminant weakly divisible by the square of a large squarefree integer.

Let 𝑚 > 0 be an odd squarefree integer. Recall that we defined a map 𝜎𝑚 : W (2)
𝑚 → 𝑊0 (Z) in

Theorem 3.7 with the following two properties: 𝑓𝜎𝑚 ( 𝑓 ) = 𝑓 for every 𝑓 ∈ W (2)
𝑚 , and |𝑄 | (𝜎𝑚 ( 𝑓 )) = 𝑚.

Moreover, in Proposition 3.8, we proved that when 𝑓 ∈ W (2)
𝑚 is irreducible, it is possible to naturally

extend the definition of the |𝑄 |-invariant to the set SL𝑛 (Z) · 𝜎𝑚( 𝑓 ).
Let 𝑊 (Z)dist denote the set of distinguished elements in 𝑊 (Z), and for any set 𝐿 ⊂ 𝑊 (Z), let 𝐿irr

denote the set of elements 𝑤 ∈ 𝐿 such that 𝑓𝑤 is irreducible. There is a natural extension of the |𝑄 |-
invariant to the set 𝑊 (Z)dist,irr. For a positive real number M and any set 𝑆 ⊂ 𝑊 (Z)dist,irr, let 𝑆 |𝑄 |>𝑀

denote the set of elements 𝑤 ∈ 𝑆 with |𝑄(𝑤) | > 𝑀 . By [22, Theorem 1], the number of reducible
elements 𝑓 ∈ 𝑉 (Z) with 𝐻 ( 𝑓 ) < 𝑋 is 𝑂 (𝑋𝑛). Hence, we have the bound

#
⋃

𝑚>𝑀
squarefree

{
𝑓 ∈ W (2)

𝑚 : 𝐻 ( 𝑓 ) < 𝑋
}
� #

(
SL𝑛 (Z)\

{
𝑤 ∈ 𝑊 (Z)dist,irr

|𝑄 |>𝑀
: 𝐻 (𝑤) < 𝑋}

)
+𝑂 (𝑋𝑛). (14)

In this section, we obtain an upper bound on the number of SL𝑛 (Z)-orbits on𝑊 (Z)dist,irr
|𝑄 |>𝑀

with height
bounded by X. First, in §4.1, we lay out the reduction theory necessary to express the number of such
orbits in terms of the counts of lattice points in certain bounded regions. Then in §4.2, we partition
these regions into three parts, the main body, the shallow cusp and the deep cusp. We prove the desired
estimate for each of these parts, thereby obtaining Theorem 5(b).

4.1. Reduction theory and averaging over fundamental domains

Recall that the Iwasawa decomposition of SL𝑛 (R) is given by SL𝑛 (R) = 𝑁𝑇𝐾, where N is the group of
unipotent lower triangular matrices in SL𝑛 (R), 𝐾 = SO(𝑛) is a maximal compact subgroup of SL𝑛 (R),
and T is the split torus of SL𝑛 (R) consisting of 𝑛×𝑛 diagonal matrices with positive diagonal entries and
determinant 1. We denote elements in T by 𝑠 = diag(𝑡−1

1 , 𝑡−1
2 , . . . , 𝑡−1

𝑛 ), where 𝑡𝑖 > 0 for 1 ≤ 1 ≤ 𝑛 and
𝑡1𝑡2 · · · 𝑡𝑛 = 1. It will be convenient to make the following change of variables. For 1 ≤ 𝑖 ≤ 𝑛 − 1, set 𝑠𝑖
to be

𝑠𝑖 = (𝑡𝑖/𝑡𝑖+1)1/𝑛, which implies 𝑡𝑖 =
𝑖−1∏
𝑘=1

𝑠−𝑘𝑘

𝑛−1∏
𝑘=𝑖

𝑠𝑛−𝑘𝑘

for 1 ≤ 𝑖 < 𝑛. The Haar measure of 𝐺 (R) in these coordinates is then given by

𝑑𝑔 = 𝑑𝑛𝛿(𝑠)𝑑×𝑠𝑑𝑘, where 𝛿(𝑠) =
∏

1≤𝑖< 𝑗≤𝑛

𝑡 𝑗

𝑡𝑖
=

𝑛−1∏
𝑘=1

𝑠−𝑛𝑘 (𝑛−𝑘)𝑘 ,

𝑑𝑛 and 𝑑𝑘 are Haar measures on N and K, respectively, and 𝑑×𝑠 =
∏𝑛−1

𝑖=1 𝑠
−1
𝑖 𝑑𝑠𝑖 .

We denote the coordinates on W by 𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. These coordinates are eigenvectors for
the action of T on the dual 𝑊∗ of W. Denote the T-weight of a coordinate 𝛼 on W, or more generally a
product 𝛼 of powers of such coordinates, by 𝑤(𝛼). Then 𝑤(𝑎𝑖 𝑗 ) = 𝑤(𝑏𝑖 𝑗 ) = 𝑡−1

𝑖 𝑡
−1
𝑗 . It will be useful in

what follows to compute the weight of the Q-invariant, which is a homogeneous polynomial of degree
𝑔(𝑔 + 1) in the coordinates of𝑊0. We view the torus T as sitting inside 𝐺0. Then by (5), we have

𝑤(𝑄) =
𝑔∏

𝑘=1
𝑡−1
𝑘 . (15)
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Let F be a fundamental set for the action of SL𝑛 (Z) on SL𝑛 (R) that is contained in a Siegel set (i.e.,
contained in 𝑁 ′𝑇 ′𝐾 , where 𝑁 ′ is a set consisting of elements in N whose coefficients are absolutely
bounded and 𝑇 ′ ⊂ 𝑇 consists of elements in 𝑠 ∈ 𝑇 with 𝑠𝑖 ≥ 𝑐 for some positive constant c). Let W (1)
denote the subset of real binary n-ic forms of height bounded by 1 and let 𝑅′ = 𝜎1(W (1)), where 𝜎1 is
as in §3.4. Set 𝑅 := R>0 · 𝑅′, and note that every distinguished element of𝑊 (R) is SL𝑛 (R)-equivalent
to some element in R.

Let 𝐻0 be a nonempty open bounded left K-invariant set in SL𝑛 (R). Denote the set 𝐻0 · 𝑅′ by B1.
Then B1 is an absolutely bounded set in𝑊 (R). Let L be any SL𝑛 (Z)-invariant subset of𝑊 (Z) consisting
of elements that are distinguished over R, and denote the set of elements in L with height less than X by
L𝑋 . Throughout this section, let 𝑌 = 𝑋1/𝑛. Then the averaging method as described in [10, §2.3] yields
the bound

#
(
SL𝑛 (Z)\L𝑋

)
�

∫
𝛾∈F

#
(
𝛾(𝑌B1) ∩ L

)
𝑑𝛾 �

∫
𝑠=(𝑠𝑖)𝑖
𝑠𝑖≥𝑐

#
(
𝑠(𝑌B) ∩ L

)
𝛿(𝑠)𝑑×𝑠 (16)

for some absolutely bounded open set B containing B1.
We denote the second integral on the right-hand side of (16) by I𝑋 (L), and break it up into an

integral over the main body, the shallow cusp and the deep cusp. We define the main body to be the
range of the integral where |𝑎11 | ≥ 1 for some element in 𝑠(𝑌B), and denote the main-body portion of
I𝑋 (L) by Imain

𝑋 (L). We define the shallow cusp to be the range of the integral where |𝑎11 | < 1 for all
elements in 𝑠(𝑌B) but |𝑎𝑖 𝑗 | ≥ 1 for some 𝑖, 𝑗 ≤ 𝑔, and denote the shallow-cusp portion of I𝑋 (L) by
Iscusp
𝑋 (L). We define the deep cusp to be the range of the integral where |𝑎𝑖 𝑗 | < 1 for all 𝑖, 𝑗 ≤ 𝑔 and all

elements in 𝑠(𝑌B), and denote the deep-cusp portion of I𝑋 (L) by Idcusp
𝑋 (L). Then

I𝑋 (L) = Imain
𝑋 (L) + Iscusp

𝑋 (L) + Idcusp
𝑋 (L). (17)

In the next subsection, we prove bounds for the main body, the shallow cusp and the deep cusp when
L = 𝑊 (Z)dist,irr

|𝑄 |>𝑀
.

We will need the following result of Davenport to estimate the number of lattice points in bounded
regions.

Proposition 4.1 [14]. Let R be a bounded, semi-algebraic multiset in R𝑛 having maximum multiplicity
m that is defined by at most k polynomial inequalities, each having degree at most ℓ. Let R′ denote the
image of R under any (upper or lower) triangular, unipotent transformation of R𝑛. Then the number of
lattice points (counted with multiplicity) contained in the region R′ is given by

Vol(R) +𝑂 (max{Vol(R), 1}),

where Vol(R) denotes the greatest d-dimensional volume of any projection of R onto a coordinate
subspace obtained by equating 𝑛 − 𝑑 coordinates to zero, as d ranges over all values in {1, . . . , 𝑛 − 1}.
The implied constant in the second summand depends only on n, m, k and ℓ.

4.2. The number of orbits of distinguished elements with large Q-invariant

In this subsection, we obtain the following upper bound on I𝑋 (𝑊 (Z)dist,irr
|𝑄 |>𝑀

), thus yielding the same
bound on the quantity #

(
SL𝑛 (Z)\{𝑤 ∈ 𝑊 (Z)dist,irr

|𝑄 |>𝑀
: 𝐻 (𝑤) < 𝑋}

)
by (16).

Theorem 4.2. We have I𝑋 (𝑊 (Z)dist,irr
|𝑄 |>𝑀

) �𝜖 𝑋
𝑛+1−1/(2𝑛)+𝜖 + 𝑋𝑛+1+𝜖 /𝑀.

Note that (14), (16), and Theorem 4.2 immediately imply Part (b) of Theorem 5.
We bound I𝑋 (𝑊 (Z)dist,irr

|𝑄 |>𝑀
) by obtaining bounds for the main body, the shallow cusp and the deep

cusp. We consider first the main body. In [20, Proposition 4.6], an upper bound of 𝑜(𝑋𝑛+1) is obtained
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on Imain
𝑋 (𝑊 (Z)dist). This is proved using the following two ingredients: estimates with a power saving

error tern on Imain
𝑋 (L) for lattices L ⊂ 𝑊 (Z), and a proof that the density of elements in𝑊 (F𝑝) that are

not F𝑝-distinguished is bounded below by some positive constant, independent of p. To obtain a power
saving bound on I𝑋 (𝑊 (Z)dist,irr

|𝑄 |>𝑀
), we use the large sieve.

Proposition 4.3. Let 𝑉 � A𝑁 be an affine space. For every prime p, let Ω𝑝 ⊂ 𝑉 (F𝑝) and let
𝜔(𝑝) = #Ω𝑝/#𝑉 (F𝑝). For a rectangular box B′ = [𝑀1, 𝑀1 + 𝑋1] × · · · × [𝑀𝑁 , 𝑀𝑁 + 𝑋𝑁 ] where
𝑀1, . . . , 𝑀𝑁 , 𝑋1, . . . , 𝑋𝑁 are real numbers with 𝑋1, . . . , 𝑋𝑛 positive. Let

𝑆(𝑉, {Ω𝑝},B′) = {𝑣 ∈ 𝑉 (Z) ∩ B′ : 𝑣 mod 𝑝 ∉ Ω𝑝 for all 𝑝}.

Then for any 𝐿 > 0,

|𝑆(𝑉, {Ω𝑝},B′) | ≤
𝑁∏
𝑖=1

(
√
𝑋𝑖 + 𝐿)2 ·

	


�
∑
𝑚<𝐿

𝑚 squarefree

∏
𝑝 |𝑚

𝜔(𝑝)
1 − 𝜔(𝑝)

��
−1

. (18)

In particular, if 𝜔(𝑝) � 1, that is, all 𝜔(𝑝) are bounded below by some positive constant for large
enough p, then

|𝑆(𝑉, {Ω𝑝},B′) | �𝑛,𝜖
𝑋1 · · · 𝑋𝑁

min{𝑋1, . . . , 𝑋𝑁 }1/2−𝜖
.

Proof. The bound (18) follows from [19, Theorem 1] and [23, Proposition 2.4]. For the second statement,
we have 𝜔(𝑝)/(1 − 𝜔(𝑝)) � 1, and so∑

𝑚<𝐿
𝑚 squarefree

∏
𝑝 |𝑚

𝜔(𝑝)
1 − 𝜔(𝑝) �

∑
𝑝<𝐿

𝑝 prime

1 �𝜖 𝐿
1−𝜖 .

We are then done by taking 𝐿 = min{𝑋1, . . . , 𝑋𝑁 }1/2. �

In the situation when, for each prime p, a positive density subset of the lattice is being excluded by
the sieve, the large sieve yields a better upper bound than the Selberg sieve. See, for example, [35],
which gives a power-saving error term of 𝑂 𝜖 (𝑋399/400+𝜖 ) on the count of quintic fields. Applying the
large sieve above instead of the Selberg sieve, and following the argument of [35], would yield the better
error term of 𝑂 𝜖 (𝑋159/160+𝜖 ).

We now apply the large sieve, as stated in Proposition 4.3, to bound the number of distinguished
elements in the main ball:

Proposition 4.4. We have Imain
𝑋 (𝑊 (Z)dist) �𝜖 𝑋

𝑛+1−1/(2𝑛)+𝜖 .

Proof. We apply Proposition 4.3 with Ω𝑝 being the set of non-distinguished elements of 𝑤(F𝑝) and the
rectangular box being 𝑠(𝑌B). The shortest side has length 𝑌𝑤(𝑎11). Note that

𝑤(𝑎11)−1/2𝛿(𝑠) =
𝑛−1∏
𝑘=1

𝑠𝑛−𝑘𝑘

𝑛−1∏
𝑘=1

𝑠−𝑛𝑘 (𝑛−𝑘)𝑘 =
𝑛−1∏
𝑘=1

𝑠 (1−𝑛𝑘) (𝑛−𝑘)𝑘 � 1.

Hence, we have

Imain
𝑋 (𝑊 (Z)dist) �𝜖 𝑌

𝑛(𝑛+1)−1/2+𝜖
∫

𝑠∈𝑇 ′
𝑌𝑤 (𝑎11)�1

𝑤(𝑎11)−1/2𝛿(𝑠)𝑑×𝑠 � 𝑌𝑛(𝑛+1)−1/2+𝜖 .

We are now done as 𝑌 = 𝑋1/𝑛. �
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Next, a bound on the shallow cusp follows directly from the proof of [20, Proposition 4.3]:

Proposition 4.5. We have Iscusp
𝑋 (𝑊 (Z)) � 𝑋𝑛+1−1/𝑛.

In [20, Proposition 4.3], the shallow and deep cusps were treated simultaneously, but the points in the
deep cusp were ruled out since only nondistinguished elements were counted there. Hence, the proof of
[20, Proposition 4.3] yields the claimed bound in Proposition 4.5.

Finally, to treat the deep cusp, let𝑈 = {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛} denote the set of coordinates on W,
and let𝑈0 = {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 | 𝑖 ≤ 𝑗 , 𝑗 ≥ 𝑔 + 1} denote the set of coordinates on𝑊0. We define a partial order
� on U by setting 𝛼 � 𝛽 if all the powers of 𝑠𝑖 in 𝑤(𝛼)−1𝑤(𝛽) are nonnegative. Explicitly, 𝑎𝑖 𝑗 ≤ 𝑎𝑖′ 𝑗′ if
and only if 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′ (and similarly for 𝑏𝑖 𝑗 , as 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 have the same weight). A subset Z of
𝑈0 is saturated if for any 𝛽 ∈ Z and any 𝛼 ∈ 𝑈0 with 𝛼 � 𝛽, the coordinate 𝛼 also lies in Z . We pick
positive constants 𝑐𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 such that

(a) If |𝑌𝑤(𝑎𝑖 𝑗 ) | < 𝑐𝑖 𝑗 , then |𝑎𝑖 𝑗 | < 1 and |𝑏𝑖 𝑗 | < 1 for every (𝐴, 𝐵) ∈ 𝑠(𝑌B).
(b) For all 𝑠 ∈ 𝑇 ′ and 𝑎𝑖 𝑗 � 𝑎𝑖′ 𝑗′ , we have 𝑤(𝑎𝑖 𝑗 )/𝑐𝑖 𝑗 ≤ 𝑤(𝑎𝑖′ 𝑗′ )/𝑐𝑖′ 𝑗′ .

More explicitly, we may choose 𝑐𝑛𝑛 to be sufficiently small and take

𝑐𝑖 𝑗 =
(

sup
𝑠∈𝑇 ′

𝑤(𝑎𝑖 𝑗 )
𝑤(𝑎𝑛𝑛)

)
𝑐𝑛𝑛, for 𝑖 ≤ 𝑗 ≤ 𝑛.

The significance of these constants 𝑐𝑖 𝑗 is the following: for every 𝑌 > 1, first, if 𝑌𝑤(𝑎𝑖 𝑗 ) < 𝑐𝑖 𝑗 , then
every integral element in 𝑠(𝑌B) has 𝑎𝑖 𝑗 - and 𝑏𝑖 𝑗 -coordinates equal to 0; and second, if 𝑎𝑖 𝑗 � 𝑎𝑖′ 𝑗′ , then
𝑌𝑤(𝑎𝑖′ 𝑗′ ) < 𝑐𝑖′ 𝑗′ implies 𝑌𝑤(𝑎𝑖 𝑗 ) < 𝑐𝑖 𝑗 .

The following lemma gives conditions that ensure an element in𝑊 (R) has discriminant 0.

Lemma 4.6. Suppose that (𝐴, 𝐵) ∈ 𝑊 (R) satisfies 𝑎𝑖 𝑗 = 𝑏𝑖 𝑗 = 0 for all 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑛 − 𝑘 for some
𝑘 ∈ {1, . . . , 𝑔}. Then the discriminant of (𝐴, 𝐵) is 0.

Proof. One checks that 𝑓𝐴,𝐵 has a square factor of degree k and so has discriminant 0. �

The next lemma states that when L ⊂ 𝑊 (Z) consists of elements with nonzero discriminant, the
integral defining I𝑋 (L) can be cut off by conditions of the form 𝑠𝑖 � 𝑋Θ for some absolute constant Θ
depending only on n.

Lemma 4.7. There exists an absolute constant Θ depending only on n such that if 𝑠 ∈ 𝑇 ′ with 𝑠𝑖 � 𝑋Θ

for some i, then 𝑠(𝑌B) ∩𝑊 (Z) contains only points with discriminant 0.

Proof. Let 𝑠 = diag(𝑡−1
1 , · · · , 𝑡−1

𝑛 ) ∈ 𝑇 ′; then 𝑡1 � 𝑡2 � · · · � 𝑡𝑛 and 𝑡1𝑡2 · · · 𝑡𝑛 = 1. Because of the
relation between the 𝑡 𝑗 ’s and the 𝑠𝑖’s, it suffices to prove that if 𝑠(𝑌B) contains an integral element with
nonzero discriminant, then 𝑡1 is bounded from above by some power of X or, equivalently, 𝑡𝑛 is bounded
from below by some power of X. By Lemma 4.6, for 𝑠(𝑌B) to contain an integral element with nonzero
discriminant, we must have 𝑌𝑤(𝑎𝑘,𝑛−𝑘 ) � 1 for every 𝑘 ∈ {1, . . . , 𝑔}. That is, 𝑡𝑘 𝑡𝑛−𝑘 � 𝑌 for every
𝑘 ∈ {1, . . . , 𝑔}. Multiplying these conditions together, we obtain 𝑡𝑛 � 𝑌−𝑔. The lemma follows. �

We now estimate the contribution to I𝑋 (𝑊 (Z)dist,irr
|𝑄 |>𝑀

) coming from the deep cusp.

Proposition 4.8. We have Idcusp
𝑋 (𝑊 (Z)irr

|𝑄 |>𝑀
) �𝜖 𝑋

𝑛+1+𝜖 /𝑀.

Proof. For a subset Z of 𝑈0, let 𝑇 ′
Z denote the subset of 𝑠 ∈ 𝑇 ′ with 𝑌𝑔 (𝑔+1)𝑤(𝑄) � 𝑀 , and

|𝑌𝑤(𝑎𝑖 𝑗 ) | < 𝑐𝑖 𝑗 precisely for those (𝑖, 𝑗) where 𝑎𝑖 𝑗 ∈ Z or 𝑏𝑖 𝑗 ∈ Z . Note that 𝑇 ′
Z is empty if Z is not

saturated. Define

https://doi.org/10.1017/fmp.2025.9 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2025.9


20 M. Bhargava, A. Shankar and X. Wang

𝑁 (Z , 𝑋) :=
∫
𝑠∈𝑇 ′

Z

#
(
𝑠(𝑌B) ∩𝑊0 (Z)

)
𝛿(𝑠)𝑑×𝑠

�
∫
𝑠∈𝑇 ′

Z

( ∏
𝛼∈𝑈0\Z

𝑌𝑤(𝛼)
)
𝛿(𝑠)𝑑×𝑠

=
∫
𝑠∈𝑇 ′

Z

( ∏
𝛼∈𝑈0

𝑌𝑤(𝛼)
) ( ∏

𝛼∈Z
𝑌−1𝑤(𝛼)−1

)
𝛿(𝑠)𝑑×𝑠,

where the bound on the second line follows from Proposition 4.1. Let 𝑈 ′ := {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 | 𝑖 + 𝑗 < 𝑛}. If
Z is saturated and not contained in 𝑈 ′, then Z contains 𝑎𝑘,𝑛−𝑘 for some 𝑘 = 1, . . . , 𝑔. Hence, for any
𝑠 ∈ 𝑇 ′

Z , every integral element in 𝑠(𝑌B) ∩𝑊0(Z) satisfies 𝑎𝑖 𝑗 = 𝑏𝑖 𝑗 = 0, for 𝑖 ≤ 𝑘 and 𝑗 ≤ 𝑛 − 𝑘 , and
so has zero discriminant by Lemma 4.6. Therefore,

Idcusp
𝑋 (𝑊 (Z)irr

|𝑄 |>𝑀 ) �
∑
Z
𝑁 (Z , 𝑋),

where the sum is over saturated subsets Z of𝑈0 contained in𝑈 ′.
Now ∏

𝛼∈𝑈0

𝑌𝑤(𝛼) = 𝑌𝑛(𝑛+1)−𝑔 (𝑔+1) (𝑡1 · · · 𝑡𝑔)2𝑔+2

=
𝑌𝑛(𝑛+1)

𝑌𝑔 (𝑔+1)𝑤(𝑄)
(𝑡1 · · · 𝑡𝑔)𝑔+1(𝑡𝑔+1 · · · 𝑡𝑛)−𝑔

=
𝑌𝑛(𝑛+1)

𝑌𝑔 (𝑔+1)𝑤(𝑄)

𝑔∏
𝑖=1

𝑛∏
𝑗=𝑔+1

𝑡𝑖
𝑡 𝑗
. (19)

Fix a saturated subset Z of𝑈0 contained in𝑈 ′. We define a map 𝜋 : Z → 𝑈0\𝑈 ′ by

𝜋(𝑎𝑖 𝑗 ) = 𝑎𝑖,𝑛−𝑖 , 𝜋(𝑏𝑖 𝑗 ) = 𝑏𝑛− 𝑗 , 𝑗 .

Note that for any 𝛼 ∈ Z , we have 𝜋(𝛼) ∉ 𝑈 ′ and so 𝑌𝑤(𝜋(𝛼)) � 1. Furthermore, for every 𝛼 ∈ 𝑈 ′, we
have 𝛼 � 𝜋(𝛼) and so 𝑤(𝜋(𝛼))/𝑤(𝛼) � 1. Hence, for any 𝑠 ∈ 𝑇 ′

Z ,∏
𝛼∈Z

(𝑌𝑤(𝛼))−1 �
∏
𝛼∈Z

𝑌𝑤(𝜋(𝛼))
𝑌𝑤(𝛼) �

∏
𝛼∈𝑈 ′

𝑌𝑤(𝜋(𝛼))
𝑌𝑤(𝛼) =

( ∏
𝑔+1≤𝑖< 𝑗≤𝑛−1

𝑡𝑖
𝑡 𝑗

) ( ∏
1≤𝑖< 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗

)
. (20)

Here, the first product on the right-hand side is the contribution from all 𝑎𝑖 𝑗 ∈ 𝑈 ′, and the second
product is the contribution from all 𝑏𝑖 𝑗 ∈ 𝑈 ′. Note that when multiplying the right-hand sides of (19)
and (20), we get all of the 𝑡𝑖/𝑡 𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 except for the ones with 𝑖 ≥ 𝑔 + 1 and 𝑗 = 𝑛. For any
𝑠 ∈ 𝑇 ′

Z , we have 𝑡𝑖/𝑡 𝑗 � 1 for any 𝑖 < 𝑗 , and so∏
𝛼∈𝑈0\Z

𝑌𝑤(𝛼) � 𝑌𝑛(𝑛+1)

𝑌𝑔 (𝑔+1)𝑤(𝑄)

∏
1≤𝑖< 𝑗≤𝑛

𝑡𝑖
𝑡 𝑗

=
𝑌𝑛(𝑛+1)

𝑌𝑔 (𝑔+1)𝑤(𝑄)
𝛿(𝑠)−1 � 𝑌𝑛(𝑛+1)

𝑀
𝛿(𝑠)−1.

Since each 𝑠𝑖 is bounded below by an absolute constant and bounded above by a power of X by Lemma
4.7, we obtain

𝑁 (Z , 𝑋) = 𝑂 𝜖

( 𝑋𝑛+1+𝜖

𝑀

)
.

The proof is completed by summing over all saturated subsets Z contained in𝑈1. �

Theorem 4.2 now follows from Propositions 4.4, 4.5 and 4.8.
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5. A bound on the number of singular symmetric matrices in skewed boxes

Let 𝑛 ≥ 2 be a positive integer and let 𝑆 = Sym2(𝑛) denote the space of symmetric 𝑛 × 𝑛 matrices.
Let | · | denote Euclidean length on 𝑆(R) obtained by identifying 𝑆(R) with Rdim 𝑆 = R𝑛(𝑛+1)/2. Let
D ⊂ 𝑆(R) be a bounded open set. For an integer r with 1 ≤ 𝑟 < 𝑛, let 𝑆(Z)(𝑟 ) denote the set of elements
in 𝑆(Z) having rank r. In [17], Eskin and Katznelson obtained asymptotics for the number of elements
in 𝑌D ∩ 𝑆(Z)(𝑟 ) for 𝑟 ∈ {1, . . . , 𝑛 − 1}.

In this paper, we will not need exact asymptotics; upper bounds will suffice. In this section, our goal
is to obtain upper bounds on the number of elements of 𝑆(Z)(𝑟 ) in skew balls.

The group SL𝑛 acts on S via 𝛾(𝐴) = 𝛾𝐴𝛾𝑡 for 𝛾 ∈ SL𝑛 and 𝐴 ∈ 𝑆. Let 𝑇 ⊂ SL𝑛 (R) denote the sub-
group of diagonal matrices with positive coefficients. We denote elements in T by 𝑠 = diag(𝑡−1

1 , . . . , 𝑡−1
𝑛 ).

We are interested in studying the skew ball 𝑠(𝑌D). By symmetry, we may assume that 𝑠 ∈ 𝑇 ′ (i.e.,
we have 𝑡1 � 𝑡2 � . . . � 𝑡𝑛). Moreover, in light of Lemma 4.7, we will assume that 𝑡1 � 𝑌Θ and
𝑡𝑛 � 𝑌−Θ for some absolute constant Θ depending only on n.

For 𝑠 ∈ 𝑇 and 𝑟 ∈ {1, . . . , 𝑛 − 1}, we define the constants 𝐶 (𝑟, 𝑠) by

𝐶 (𝑟, 𝑠) =
𝑟∏

𝑖=1

𝑛−𝑖∏
𝑗=1

𝑡 𝑗

𝑡𝑛−𝑖+1
=

∏
1≤𝑖< 𝑗≤𝑛
𝑗>𝑛−𝑟

𝑡𝑖
𝑡 𝑗
. (21)

When 𝑠 ∈ 𝑇 ′, these constants satisfy

𝐶 (𝑟, 𝑠) � 𝐶 (𝑛 − 1, 𝑠) =
∏

1≤𝑖< 𝑗≤𝑛

𝑡𝑖
𝑡 𝑗

= 𝛿(𝑠)−1,

where as before, 𝛿(𝑠) is the character of the torus appearing in the Haar measure of SL𝑛 (R).
Finally, for 1 ≤ 𝑟 < 𝑛, a positive real number Y, and 𝑠 ∈ 𝑇 , let 𝑁𝑟 (𝑌, 𝑠) denote the number of

elements in 𝑠(𝑌D) ∩ 𝑆(Z)(𝑟 ) . We prove the following result.

Theorem 5.1. Let 𝑛 ≥ 2 and 1 ≤ 𝑟 < 𝑛 be positive integers. Let Θ > 0 be a real number. Let 𝑌 > 1 be
a real number, and let 𝑠 ∈ 𝑇 ′ with 𝑡1 � 𝑌Θ and 𝑡𝑛 � 𝑌−Θ. Then

𝑁𝑟 (𝑌, 𝑠) = 𝑂
(
𝐶 (𝑟, 𝑠)𝑌𝑛𝑟/2 log𝑟 𝑌

)
,

where the implied constants are independent of s and depend only on n, D, Θ and the implied constants
in the assumed bounds on 𝑡1 and 𝑡𝑛.

The case 𝑠 = 1 of Theorem 5.1 follows from the work of Eskin-Katznelson [17]. Their strategy
is to express the set of singular symmetric matrices of rank r as a union of lattices, each of which
consists of elements having a fixed row span. They count the number of elements in each such lattice
having bounded norm, and then sum over all possible row spans. We follow this strategy, explaining the
modifications necessary to bound integer points in skew balls.

Fix positive integers k and m with 𝑘 ≤ 𝑚, and a lattice Λ in R𝑛 of rank r. A basis {ℓ1, . . . , ℓ𝑘 } of Λ is
reduced if the product |ℓ1 | |ℓ2 | · · · |ℓ𝑘 | is minimal among all integral bases of Λ. It is almost reduced if

|ℓ1 | |ℓ2 | · · · |ℓ𝑘 | � 𝑑 (Λ),

where 𝑑 (Λ) denotes the covolume of Λ in Λ ⊗ R, and the implied constant in the inequality depends
only on n. If we order an almost reduced basis {ℓ1, . . . , ℓ𝑘 } by length, then the i-th successive minimum
of Λ is within a constant multiple (depending only on n) of |ℓ𝑖 | for every 𝑖 = 1, . . . , 𝑘 . To bound the
number elements of Λ in a ball, we use the following result of Schmidt [31].
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Proposition 5.2. Let Λ be a rank k lattice in R𝑚 and D a bounded open domain in R𝑚. Let 𝜇1, . . . , 𝜇𝑘

be the successive minima of Λ. Then for 𝑌 > 0, we have

#(𝑌D ∩ Λ) = 𝑂
(

max
1≤ 𝑗≤𝑘

𝑌 𝑗

𝜇1 · · · 𝜇 𝑗

)
. (22)

We use the notation of Theorem 5.1. Given a lattice Λ ⊂ Z𝑛 of rank r, let 𝑆(Λ) denote the set of
symmetric matrices 𝐵 ∈ 𝑆(Z) such that the row space (equivalently, the column space) of B is a full rank
lattice of Λ ⊗ R. Note that 𝑆(Λ) will not be a lattice (for example, it does not contain 0 unless 𝑟 = 0);
we denote the lattice spanned by 𝑆(Λ) in 𝑆(Z) by 𝑆′(Λ). For two vectors 𝑣1 and 𝑣2 in R𝑛, we define

𝑣1 ∗ 𝑣2 :=
{
𝑣1 · 𝑣𝑡2 + 𝑣2 · 𝑣𝑡1 if 𝑣1 and 𝑣2 are linearly independent;
𝑣1 · 𝑣𝑡2 otherwise. (23)

Then 𝑣1 ∗ 𝑣2 = 𝑣2 ∗ 𝑣1 ∈ 𝑆(Span{𝑣1, 𝑣2}), and

|𝑣 | |𝑤 | ≤ |𝑣 ∗ 𝑤 | ≤ 2|𝑣 | |𝑤 |. (24)

Fix 𝛾 ∈ SL𝑛 (R). (For our applications, we will take 𝛾 ∈ 𝑇 .) Let Λ ⊆ Z𝑛 be a primitive lattice of
rank r. We bound the number of elements in 𝛾−1 (𝑌D) ∩ 𝑆(Λ) using the bijection

𝛾−1 (𝑌D) ∩ 𝑆(Λ) → 𝑌D ∩ 𝛾(𝑆(Λ))
𝐴 ↦→ 𝛾 · 𝐴,

where 𝛾·𝐴 = 𝛾𝐴𝛾𝑡 is the action of 𝛾 on A, and instead bounding the number of elements in𝑌D∩𝛾(𝑆(Λ)).
We thus study the set 𝛾(𝑆(Λ)) ⊂ 𝑆(R). The next result, which gives an almost reduced basis for
𝛾(𝑆′(Λ)) in terms of an almost reduced basis of 𝛾Λ, follows from the proofs of [17, Proposition 3.3]
and [17, Lemma 3.5].

Theorem 5.3. Fix 𝛾 ∈ SL𝑛 (R). Let Λ ⊂ Z𝑛 be a primitive lattice of rank r, and let {ℓ1, . . . , ℓ𝑟 } be a
basis for 𝛾Λ. Then {ℓ𝑖 ∗ ℓ 𝑗 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟} is a basis for 𝛾(𝑆′(Λ)). Furthermore,

𝑑 (𝛾(𝑆′(Λ))) = 2𝑟 (𝑟−1)/4𝑑 (𝛾Λ)𝑟+1.

In particular, if {ℓ1, . . . , ℓ𝑟 } is almost reduced, then so is {ℓ𝑖 ∗ ℓ 𝑗 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟}.

Next, by the proof of [17, Lemma 4.1], we have the following result giving a necessary condition for
the set 𝑌D ∩ 𝛾(𝑆(Λ)) to be nonempty.

Proposition 5.4. Let 𝛾 ∈ SL𝑛 (R) and let Λ ⊂ Z𝑛 be a primitive lattice of rank r such that the successive
minima of 𝛾Λ are 𝜇1 ≤ . . . ≤ 𝜇𝑟 . If #(𝑌D ∩ 𝛾(𝑆(Λ)) > 0, then 𝜇𝑖𝜇 𝑗 ≤ 𝑐1𝑌 for every pair (𝑖, 𝑗) with
𝑖 + 𝑗 ≤ 𝑟 + 1, for some constant 𝑐1 depending only on n.

We now prove an upper bound on #(𝑌D ∩ 𝛾(𝑆(Λ)).

Proposition 5.5. Let 𝛾 ∈ SL𝑛 (R) and let Λ ⊂ Z𝑛 be a primitive lattice of rank r such that the successive
minima of 𝛾Λ are 𝜇1 ≤ . . . ≤ 𝜇𝑟 . Then

#(𝑌D ∩ 𝛾(𝑆(Λ)) = 𝑂
(𝑌 𝑟 (𝑟+1)/2

𝑑 (Λ)𝑟+1

∏
1≤𝑖< 𝑗≤𝑟
𝑖+ 𝑗≤𝑟+1

𝜇 𝑗

𝜇𝑖

)
. (25)

Proof. Let 𝑈 (𝑟) denote the set of pairs (𝑖, 𝑗) of positive integers such that 𝑖 ≤ 𝑗 ≤ 𝑟 and 𝑖 + 𝑗 > 𝑟 + 1.
In other words, elements in 𝑈 (𝑟) correspond to the successive minima of the lattice 𝛾(𝑆′(Λ)) that are
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� 𝑌 . By Proposition 5.2, Theorem 5.3 and (24), we have

#(𝑌D ∩ 𝛾(𝑆(Λ)) � 𝑌 𝑟 (𝑟+1)/2

𝑑 (Λ)𝑟+1

∏
(𝑖, 𝑗) ∈𝑈 (𝑟 )

( 𝑌

𝜇𝑖𝜇 𝑗

)−1
.

Assume that #(𝑌D ∩ 𝛾(𝑆(Λ)) > 0. Then 𝜇𝑟+1− 𝑗𝜇 𝑗 � 𝑌 for all 1 ≤ 𝑗 ≤ 𝑟 by Proposition 5.4. Thus,

#(𝑌D ∩ 𝛾(𝑆(Λ)) � 𝑌 𝑟 (𝑟+1)/2

𝑑 (Λ)𝑟+1

∏
(𝑖, 𝑗) ∈𝑈 (𝑟 )

( 𝑌

𝜇𝑖𝜇 𝑗

)−1 𝑌

𝜇𝑟+1− 𝑗𝜇 𝑗

� 𝑌 𝑟 (𝑟+1)/2

𝑑 (Λ)𝑟+1

∏
(𝑖, 𝑗) ∈𝑈 (𝑟 )

𝜇𝑖
𝜇𝑟+1− 𝑗

. (26)

Since 𝑖 ≤ 𝑗 and 𝑖 + 𝑗 > 𝑟 + 1 for (𝑖, 𝑗) ∈ 𝑈 (𝑟), we have the following injection:

𝑈 (𝑟) → {(𝑘, ℓ) : 1 ≤ 𝑘 < ℓ ≤ 𝑟 : 𝑘 + ℓ ≤ 𝑟 + 1}
(𝑖, 𝑗) ↦→ (𝑟 + 1 − 𝑗 , 𝑖).

(27)

Since 𝜇 𝑗

𝜇𝑖
≥ 1 for 𝑗 > 𝑖, the injection (27) implies that the product of the ratios 𝜇 𝑗/𝜇𝑖 in (25) is at least

as large as the product of the ratios 𝜇𝑖/𝜇𝑟+1− 𝑗 in (26). The result follows. �

We now sum over the appropriate lattices Λ ⊂ Z𝑛 having rank r. To this end, we fix an element
𝑠 = diag(𝑡−1

1 , 𝑡−1
2 , . . . , 𝑡−1

𝑛 ) ∈ 𝑇 ′. We will apply the previous results with 𝛾 = 𝑠−1. Set 𝐿 = (𝐿1, . . . , 𝐿𝑟 )
with 0 < 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑟 . Let Σ(𝐿, 𝑠) denote the set of primitive lattices Λ ⊂ Z𝑛 of rank r whose
successive minima 𝜇1, . . . , 𝜇𝑟 of 𝑠−1Λ satisfy 𝐿𝑖 ≤ 𝜇𝑖 < 2𝐿𝑖 for each i.

Lemma 5.6. Let 𝐿 = (𝐿1, . . . , 𝐿𝑟 ) and 𝑠 = diag(𝑡−1
1 , . . . , 𝑡−1

𝑛 ) ∈ 𝑇 ′. Then there is a constant 𝑐′ > 0
depending only on n such that if #Σ(𝐿, 𝑠) > 0, then 𝐿𝑖𝑡

−1
𝑗 > 𝑐′ for all (𝑖, 𝑗) with 𝑖 + 𝑗 ≥ 𝑛 + 1.

Proof. Since #Σ(𝐿, 𝑠) > 0, there exists an integral lattice Λ ⊂ Z𝑛 of rank r with basis {ℓ1, . . . , ℓ𝑟 }
such that |𝑠−1ℓ𝑖 | < 2𝐿𝑖 for 𝑖 ∈ {1, . . . , 𝑟}. For 1 ≤ 𝑗 ≤ 𝑛, let 𝑢𝑖 𝑗 denote the (integral) j-th entry of
ℓ𝑖 . Then |𝑢𝑖 𝑗 | ≤ 2𝐿𝑖𝑡

−1
𝑗 for every 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑗 ≤ 𝑛. The assumption that 𝑠 ∈ 𝑇 ′ implies that

𝐿𝑖𝑡
−1
𝑗 � 𝐿𝑖′𝑡

−1
𝑗′ whenever 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′.

Suppose that there is an integer k with 1 ≤ 𝑘 ≤ 𝑟 such that 𝐿𝑘 𝑡
−1
𝑛+1−𝑘 < 𝑐

′′ for some sufficiently small
constant 𝑐′′ > 0. Then |𝑢𝑖 𝑗 | < 1, and thus, 𝑢𝑖 𝑗 = 0 for all (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 𝑛 + 1 − 𝑘 .
However, this implies that the vectors ℓ1, . . . , ℓ𝑘 are not linearly independent, a contradiction. Hence,
such a k does not exist and 𝐿𝑘 𝑡

−1
𝑛+1−𝑘 � 1 for all k, implying the result. �

We now determine an upper bound for #Σ(𝐿, 𝑠).

Proposition 5.7. Let 𝐿 = (𝐿1, . . . , 𝐿𝑟 ) and 𝑠 = diag(𝑡−1
1 , . . . , 𝑡−1

𝑛 ) ∈ 𝑇 ′. Then

#Σ(𝐿, 𝑠) = 𝑂
(
(𝐿1 · · · 𝐿𝑟 )𝑛

( ∏
1≤𝑖< 𝑗≤𝑟

𝐿𝑖

𝐿 𝑗

)
𝐶 (𝑟, 𝑠)

)
, (28)

where 𝐶 (𝑟, 𝑠) is defined as in (21).

Proof. We count lattices Λ by counting r-tuples of vectors (ℓ1, . . . , ℓ𝑟 ) such that each ℓ𝑖 ∈ 𝑠−1Z𝑛

satisfies 𝐿𝑖 ≤ |ℓ𝑖 | < 2𝐿𝑖 and such that {ℓ1, . . . , ℓ𝑟 } is a reduced basis of the lattice it generates. For each
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𝑖 = 1, . . . , 𝑟 , let 𝛼(𝑖) be the largest integer such that 𝐿𝑖𝑡
−1
𝛼(𝑖) ≤ 𝑐′, where 𝑐′ is as in Lemma 5.6, or let

𝛼(𝑖) = 0 if no such integer exists. By Proposition 5.2, the number of possibilities for ℓ𝑖 is

�
𝑛∏
𝑗=1

max
(
𝐿𝑖𝑡

−1
𝑗 , 1

)
� 𝐿𝑛

𝑖

𝛼(𝑖)∏
𝑗=1

(
𝐿−1
𝑖 𝑡 𝑗

)
.

However, once ℓ1 is fixed, and given a vector ℓ2, at most two of ℓ2 − 𝑘ℓ1 can be part of a reduced
basis for 𝑘 ∈ Z. Since � 𝐿2/𝐿1 vectors ℓ2 − 𝑘ℓ1 satisfy the same size bound as ℓ2 (namely, those with
𝑘 � 𝐿2/𝐿1), the number of choices for the pair (ℓ1, ℓ2) that are part of a reduced basis is

𝐿1
𝐿2
𝐿𝑛

1 𝐿
𝑛
2

𝛼(1)∏
𝑗=1

(
𝐿−1

1 𝑡 𝑗
) 𝛼(2)∏

𝑗=1

(
𝐿−1

2 𝑡 𝑗
)
.

Continuing in this way, we obtain the bound

#Σ(𝐿, 𝑠) � (𝐿1𝐿2 · · · 𝐿𝑟 )𝑛
( ∏

1≤𝑖< 𝑗≤𝑟

𝐿𝑖

𝐿 𝑗

) ( 𝑟∏
𝑖=1

𝛼(𝑖)∏
𝑗=1

𝐿−1
𝑖 𝑡 𝑗

)
. (29)

By Lemma 5.6, we have 𝛼(𝑖) ≤ 𝑛 − 𝑖 for 𝑖 ∈ {1, . . . , 𝑟}. Therefore,

𝑟∏
𝑖=1

𝛼(𝑖)∏
𝑗=1

𝐿−1
𝑖 𝑡 𝑗 �

𝑟∏
𝑖=1

𝛼(𝑖)∏
𝑗=1

𝐿−1
𝑖 𝑡 𝑗𝐿𝑖𝑡

−1
𝛼(𝑖)+1 �

𝑟∏
𝑖=1

𝛼(𝑖)∏
𝑗=1

𝑡 𝑗

𝑡𝑛−𝑖+1
�

𝑟∏
𝑖=1

𝑛−𝑖∏
𝑗=1

𝑡 𝑗

𝑡𝑛−𝑖+1
= 𝐶 (𝑟, 𝑠). (30)

Equations (29) and (30) yield the desired result. �

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. Let 𝐿 = (𝐿1, . . . , 𝐿𝑟 ) be a tuple such that 0 < 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑟 . Then, by
Lemma 5.6, Proposition 5.4 and the definition of 𝑇 ′, we see that for there to exist a lattice Λ ∈ Σ(𝐿, 𝑠)
such that #(𝑌D ∩ 𝑠−1(𝑆(Λ)) > 0, we must have

𝑌−Θ1 � 𝐿1 ≤ · · · ≤ 𝐿𝑟 � 𝑌Θ2 and 𝐿1 · · · 𝐿𝑟 � 𝑌 𝑟/2

for some absolute constants Θ1,Θ2 > 0. For any such Λ, Proposition 5.5 states that

#(𝑌D ∩ 𝑠−1𝑆(Λ)) � 𝑌 𝑟 (𝑟+1)/2

(𝐿1 . . . 𝐿𝑟 )𝑟+1

∏
1≤𝑖< 𝑗≤𝑟
𝑖+ 𝑗≤𝑟+1

𝐿 𝑗

𝐿𝑖
.

Thus,

𝑁𝑟 (𝑌, 𝑠) �
∑
𝐿

#Σ(𝐿, 𝑠) 𝑌 𝑟 (𝑟+1)/2

(𝐿1 . . . 𝐿𝑟 )𝑟+1

∏
1≤𝑖< 𝑗≤𝑟
𝑖+ 𝑗≤𝑟+1

𝐿 𝑗

𝐿𝑖
,

where the sum is over r-tuples 𝐿 = (𝐿1, . . . , 𝐿𝑟 ) with 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑛 that partition the region
{(𝜇1, . . . , 𝜇𝑟 ) ∈ [𝑌−Θ, 𝑌Θ′ ]𝑟 : 𝜇1 ≤ . . . ≤ 𝜇𝑟 } into dyadic ranges. The sum over L has length𝑂 (log𝑟 𝑌 ).
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Using the upper bound on #Σ(𝐿, 𝑠) in Proposition 5.7, we obtain

𝑁𝑟 (𝑌, 𝑠) �
∑
𝐿

𝐶 (𝑟, 𝑠) (𝐿1 . . . 𝐿𝑟 )𝑛
𝑌 𝑟 (𝑟+1)/2

(𝐿1 . . . 𝐿𝑟 )𝑟+1

( ∏
1≤𝑖< 𝑗≤𝑟
𝑖+ 𝑗≤𝑟+1

𝐿 𝑗

𝐿𝑖

) ( ∏
1≤𝑖< 𝑗≤𝑟

𝐿𝑖

𝐿 𝑗

)
�

∑
𝐿

𝐶 (𝑟, 𝑠)𝑌 (𝑛−𝑟−1)𝑟/2𝑌 𝑟 (𝑟+1)/2

� 𝐶 (𝑟, 𝑠)𝑌𝑛𝑟/2 log𝑟 𝑌 .

This concludes the proof of Theorem 5.1. �

6. A uniformity estimate for even degree polynomials

We fix an even integer 𝑛 = 2𝑔+2 with 𝑔 ≥ 1. Our goal is to prove Theorem 5(c) by obtaining a bound on
the number of integral binary n-ic forms having bounded height having discriminant weakly divisible
by the square of a large squarefree integer.

Throughout this section, we write 𝑉 := 𝑉𝑛 and 𝑊 := 𝑊𝑛+1. Let 𝑚 > 0 be an odd squarefree integer,
and let W (2)

𝑚 := W (2)
𝑚,𝑛. We also define the following auxiliary sets:

𝑉 (Z)red := { 𝑓 ∈ 𝑉 (Z) : Gal( 𝑓 (𝑥, 1)) ≠ 𝑆𝑛}, (31)
𝑉 (Z)Δ small := { 𝑓 ∈ 𝑉 (Z) : Δ ( 𝑓 ) ≤ 𝐻 ( 𝑓 )2𝑛−2−𝜅 }, (32)

W (1#)
𝑚 := { 𝑓 ∈ W (2)

𝑚 : 𝑚 | 𝑓 (0, 1)}, (33)

Wgen
𝑚 := { 𝑓 ∈ W (2)

𝑚 : gcd(𝑚, 𝑓 (0, 1)) = 1 and 𝑓 ∉ 𝑉 (Z)red ∪𝑉 (Z)Δ small}, (34)

where 𝜅 > 0 is a small constant (whose exact value will be optimized later) and Gal denotes the Galois
group. Then, for any 𝑀 > 0, we have the following containment:⋃

𝑚>𝑀
squarefree

W (2)
𝑚 ⊂ 𝑉 (Z)red ∪𝑉 (Z)Δ small ∪

⋃
𝑚>

√
𝑀

squarefree

W (1#)
𝑚 ∪

⋃
𝑚>

√
𝑀

squarefree

Wgen
𝑚 . (35)

The number of elements in𝑉 (Z)red having height less than X was bounded by𝑂 (𝑋𝑛) in [22, Theorem 1].
We next prove a bound on the number of elements in 𝑉 (Z)Δ small of bounded height.

Lemma 6.1. The number of integral binary n-ic forms with height less than X and absolute discriminant
less than 𝑋2𝑛−2−𝜅 is 𝑂 (𝑋𝑛+1− 𝜅

2𝑛−2 ).

Proof. Set 𝜂 := 𝜅/(2𝑛 − 2). The number of integral binary n-ic forms 𝑎0𝑥
𝑛 + · · · + 𝑎𝑛𝑦𝑛 with height

less than X such that |𝑎0 | ≤ 𝑋1−𝜂 is 𝑂 (𝑋𝑛+1−𝜂). Hence, we assume |𝑎0 | > 𝑋1−𝜂 .
Now fix integers 𝑎0, . . . , 𝑎𝑛−1 with |𝑎𝑖 | ≤ 𝑋 and |𝑎0 | > 𝑋1−𝜂 . The discriminant of 𝑎0𝑥

𝑛 + · · · + 𝑎𝑛𝑦𝑛
is a polynomial 𝐹 (𝑎𝑛) in 𝑎𝑛 of degree 𝑛 − 1 with leading coefficient 𝐶𝑛𝑎

𝑛−1
0 for some nonzero constant

𝐶𝑛. Let 𝑟1, . . . , 𝑟𝑛−1 ∈ C be the 𝑛 − 1 roots of 𝐹 (𝑥). Then

𝐹 (𝑎𝑛) = 𝐶𝑛𝑎
𝑛−1
0 (𝑎𝑛 − 𝑟1) · · · (𝑎𝑛 − 𝑟𝑛−1).

Since |𝐹 (𝑎𝑛) | < 𝑋2𝑛−2−𝜅 , we have (𝑎𝑛 − 𝑟1) · · · (𝑎𝑛 − 𝑟𝑛−1) � 𝑋𝑛−1−(𝑛−1)𝜂 . Hence, |𝑎𝑛 − 𝑟𝑖 | � 𝑋1−𝜂

for some 𝑖 = 1, . . . , 𝑛 − 1. The number of such integers 𝑎𝑛 is 𝑂 (𝑋1−𝜂). Since there are 𝑂 (𝑋𝑛) choices
for 𝑎0, . . . , 𝑎𝑛−1, we obtain the desired bound. �

A direct application of a quantitative version of the Ekedahl sieve as in [4, Theorem 3.3] implies the
following bound on the number of elements of bounded height belonging to W (1#)

𝑚 for large m.
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Lemma 6.2. We have #
⋃

𝑚>
√
𝑀

𝑚 squarefree
{ 𝑓 ∈ W (1#)

𝑚 : 𝐻 ( 𝑓 ) < 𝑋} = 𝑂
(
𝑋𝑛+1
√
𝑀

+ 𝑋𝑛
)
.

To prove Theorem 5(c), it thus remains to obtain an upper bound for

#
⋃

𝑚>
√
𝑀

𝑚 squarefree

{ 𝑓 ∈ Wgen
𝑚 : 𝐻 ( 𝑓 ) < 𝑋}. (36)

In §3.5, we defined a map 𝜎𝑚 from the set of elements 𝑓 ∈ W (2)
𝑚 with gcd(𝑚, 𝑓 (0, 1)) = 1 to 𝑊 (Z)

such that 𝑓𝜎𝑚 ( 𝑓 ) = 𝑥 𝑓 and |𝑞 | (𝜎𝑚 ( 𝑓 )) = 𝑚. For any 𝑀 > 0, define the set L(𝑀) by

L(𝑀) :=
⋃

𝑚>𝑀
𝑚 squarefree

SL𝑛+1 (Z) · 𝜎𝑚(Wgen
𝑚 ).

Then (36) is �

#
(
SL𝑛+1(Z)\{ 𝑓 ∈ L(𝑀) : 𝐻 ( 𝑓 ) < 𝑋}

)
� I𝑋 (L(𝑀)), (37)

where

I𝑋 (L(𝑀)) =
∫
𝑠∈𝑇 ′

#
(
𝑠(𝑌B) ∩ L(𝑀)

)
𝛿(𝑠) 𝑑×𝑠

is as defined immediately after (16), where Y is now taken to be 𝑋1/(𝑛+1) throughout this section.
Moreover, exactly as in the paragraph leading up to (17), we break up I𝑋 (L(𝑀)) into three parts –
corresponding to the main body, the shallow cusp and the deep cusp – and again write

I𝑋 (L(𝑀)) = Imain
𝑋 (L(𝑀)) + Iscusp

𝑋 (L(𝑀)) + Idcusp
𝑋 (L(𝑀)).

The rest of this section is dedicated to obtaining an upper bound on I𝑋 (L(𝑀)). Every element
(𝐴, 𝐵) ∈ L(𝑀) satisfies det(𝐵) = 0 since 𝑓𝐴,𝐵 is divisible by x. In §4, we used vanishing conditions on
the coefficients {𝑎𝑖 𝑗 , 𝑏𝑖 𝑗 } of W to estimate the number of integral pairs (𝐴, 𝐵) in skewed domains of
𝑊 (R). Now, since we also need to impose the condition that B has determinant 0, we use the setup of
§5 to count the number of such B’s in skewed bounded domains by fibering over the row space of B.

In §6.1, we thus further break up the three parts of I𝑋 (L(𝑀)) into sums over row spaces of the
singular matrix B. We also obtain some preliminary bounds on I𝑋 (L(𝑀)) and give some conditions
that ensure that a pair (𝐴, 𝐵) has discriminant 0. In §6.2, §6.3 and §6.4, we then prove the desired upper
bounds on Imain

𝑋 (L(𝑀)), Iscusp
𝑋 (L(𝑀)), and Idcusp

𝑋 (L(𝑀)), respectively. In conjunction with (35), (37)
and Lemmas 6.1–6.2, this will yield Theorem 5(c).

6.1. Setup and preliminary bounds

Coordinate systems, weight functions and summing over row spaces
Let 𝑆(Z) denote the set of (𝑛 + 1) × (𝑛 + 1) integral symmetric matrices. For any primitive lattice Λ of
Z𝑛+1, let 𝑆(Λ) denote the sublattice of 𝑆(Z) consisting of elements 𝐵 ∈ 𝑆(Z) with row space contained
in Λ. For 𝐿 = (𝐿1, . . . , 𝐿𝑛) with 𝐿𝑖 ∈ R and 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑛 and 𝑠 ∈ 𝑇 ′, let Σ(𝐿, 𝑠) denote the
set of primitive lattices Λ ⊂ Z𝑛+1 of rank n such that the successive minima 𝜇1, . . . , 𝜇𝑛 of 𝑠−1Λ satisfy
𝐿1 ≤ 𝜇𝑖 ≤ 2𝐿𝑖 for each i. We define S (𝐿, 𝑠) ⊂ 𝑆(Z) by

S (𝐿, 𝑠) :=
⋃

Λ∈Σ (𝐿,𝑠)
𝑆(Λ).
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We next introduce coordinate systems and weight functions. Let

M := {ℓ𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛 + 1}

denote the set of coordinates of n-tuples of vectors in R𝑛+1. We define

𝑤𝐿 (ℓ𝑖 𝑗 ) := 𝐿𝑖𝑡
−1
𝑗 .

The significance of 𝑤𝐿 is the following. Let Λ ∈ Σ(𝐿, 𝑠) be a lattice with an integral basis {ℓ1, . . . , ℓ𝑛}
such that {𝑠−1ℓ1, . . . , 𝑠

−1ℓ𝑛} is a Minkowski-reduced basis for 𝑠−1Λ. Then the jth coefficient of ℓ𝑖 is
� 𝐿𝑖𝑡

−1
𝑗 = 𝑤𝐿 (ℓ𝑖 𝑗 ). In particular, for the absolute value of the jth coefficient of ℓ𝑖 to be nonzero, we

must have 𝑤𝐿 (ℓ𝑖 𝑗 ) � 1. When L is implicit, we will write w in place of 𝑤𝐿 .
Let K denote the set of coefficients {𝑎𝑖 𝑗 : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 + 1}, and recall the weight function

𝑤(𝑎𝑖 𝑗 ) = 𝑡−1
𝑖 𝑡

−1
𝑗 .

Define a partial order on K by setting 𝑎𝑖 𝑗 � 𝑎𝑖′ 𝑗′ if 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′, and on M by setting ℓ𝑖 𝑗 � ℓ𝑖′ 𝑗′ if
𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′. The significance of this partial order is that if 𝛼, 𝛽 ∈ K with 𝛼 � 𝛽 and 𝑠 ∈ 𝑇 ′, then
𝑤(𝛼) � 𝑤(𝛽) and similarly, 𝑤𝐿 (𝛼) � 𝑤𝐿 (𝛽) if 𝛼, 𝛽 ∈ M.

We say that a subset Z of K ∪M is saturated if for any 𝛼 ∈ Z , all the 𝛼′ ∈ K ∪M with 𝛼′ � 𝛼 are
also contained in Z .

Let D ⊂ 𝑆(R) be a bounded domain such that B ⊂ D × D. We pick positive constants 𝑐𝑖 𝑗 for
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 + 1 and 𝑐′𝑖 for 1 ≤ 𝑖 ≤ 𝑛 such that

(a) if |𝑌𝑤(𝑎𝑖 𝑗 ) | < 𝑐𝑖 𝑗 , then the 𝑎𝑖 𝑗–coordinate of any integral element in 𝑠(𝑌D) is 0;
(b) if |𝑤𝐿 (ℓ𝑖 𝑗 ) | < 𝑐′𝑗 , then the jth coefficient of ℓ𝑖 for any lattice Λ ∈ Σ(𝐿, 𝑠) is 0;
(c) 𝑐′𝑖 < 𝑐

′ for all 𝑖 = 1, . . . , 𝑛, where 𝑐′ is the constant in Lemma 5.6;
(d) 𝑐1𝑐𝑔+1,𝑔+1 ≤ 𝑐′2

𝑔+1, where 𝑐1 is the constant in Proposition 5.4;
(e) for any 𝑖 ≤ 𝑖′ and 𝑗 ≤ 𝑗 ′, we have 𝑤(𝑎𝑖 𝑗 )/𝑐𝑖 𝑗 ≤ 𝑤(𝑎𝑖′ 𝑗′ )/𝑐𝑖′ 𝑗′ and 𝑤(ℓ𝑖 𝑗 )/𝑐′𝑗 ≤ 𝑤(ℓ𝑖′ 𝑗′ )/𝑐′𝑗′ .

More explicitly, we choose 𝑐𝑛+1,𝑛+1 and 𝑐′𝑛 to be sufficiently small and take

𝑐𝑖 𝑗 =
(

sup
𝑠∈𝑇 ′

𝑤(𝑎𝑖 𝑗 )
𝑤(𝑎𝑛+1,𝑛+1)

)
𝑐𝑛+1,𝑛+1 for 𝑖 ≤ 𝑗 ≤ 𝑛 + 1;

𝑐′𝑖 =
(

sup
𝑠∈𝑇 ′

𝑡−1
𝑖

𝑡−1
𝑛

)
𝑐′𝑛 for 𝑖 ≤ 𝑛.

For any nondecreasing n-tuple L of positive real numbers, and a saturated subset Z of K ∪M, we
define the following subset 𝑇Z (𝐿,𝑌 ) of 𝑇 ′:

𝑇Z (𝐿,𝑌 ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩𝑠 ∈ 𝑇
′

��������
𝑠𝑖 � 𝑋Θ ∀𝑖 ∈ {1, . . . , 𝑛}

for 𝑎𝑖 𝑗 ∈ K, |𝑌𝑤(𝑎𝑖 𝑗 ) | < 𝑐𝑖 𝑗 iff 𝑎𝑖 𝑗 ∈ Z ∩K

for ℓ𝑖 𝑗 ∈ M, |𝑤𝐿 (ℓ𝑖 𝑗 ) | < 𝑐′𝑗 iff ℓ𝑖 𝑗 ∈ Z ∩M

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (38)

where Θ is the absolute constant from Lemma 4.7.
For X, Y, L, Z as above and any subset L of𝑊 (Z), we define the quantity

𝑁 (L, 𝐿,Z , 𝑋) :=
∫
𝑇Z (𝐿,𝑌 )

#{(𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L | 𝐵 ∈ S (𝐿, 𝑠)} 𝛿(𝑠) 𝑑×𝑠. (39)
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In the proof of Theorem 5.1, we showed that unless𝑌−Θ1 < 𝐿1 and𝑌Θ2 > 𝐿𝑛 for some absolute positive
constants Θ1 and Θ2, we have S (𝐿, 𝑠) = ∅, which implies that 𝑁 (L(𝑀), 𝐿,Z , 𝑋) = 0. Therefore,

I𝑋 (L(𝑀)) �
∑
𝐿

∑
Z
𝑁 (L(𝑀), 𝐿,Z , 𝑋),

where the inner sum is over saturated subsets Z of K ∪ M, and the outer sum is over n-tuples
𝐿 = (𝐿1, . . . , 𝐿𝑛) with 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑛 that partition the region {(𝜇1, . . . , 𝜇𝑛) ∈ [𝑌−Θ1 , 𝑌Θ2 ]𝑛 :
𝜇1 ≤ . . . ≤ 𝜇𝑛} into dyadic ranges.

We may therefore bound the main-body, the shallow-cusp and the deep-cusp parts of I𝑋 (L(𝑀)) in
terms of sums over 𝑁 (L(𝑀), 𝐿,Z , 𝑋). We have

Imain
𝑋 (L(𝑀)) �

∑
𝐿

∑
Z:𝑎11∉Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋),

Iscusp
𝑋 (L(𝑀)) �

∑
𝐿

∑
Z:𝑎11∈Z
𝑎𝑔+1,𝑔+1∉Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋), (40)

Idcusp
𝑋 (L(𝑀)) �

∑
𝐿

∑
Z:𝑎𝑔+1,𝑔+1∈Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋).

A preliminary upper bound
We now prove some preliminary results on 𝑁 (L(1), 𝐿,Z , 𝑋)). We start with an upper bound on
𝑁 (L(1), 𝐿,Z , 𝑋), which also bounds 𝑁 (L(𝑀), 𝐿,Z , 𝑋) by directly counting the number of possible
A’s and then using the results of §5 to count B’s. For a saturated subset Z of K ∪M, define

𝑤𝐿 (Z) :=
( ∏
𝛼∈Z∩K

𝑤(𝛼)
) ( ∏

𝛼∈Z∩M
𝑤𝐿 (𝛼)

)
.

In what follows, the n-tuple L will be clear from the context, and we simply write w in place of 𝑤𝐿 .
Proposition 6.3. Suppose that Z is a saturated subset of K ∪M. Then

𝑁 (L(1), 𝐿,Z , 𝑋) � 𝑋𝑛+1
∫
𝑇Z (𝐿,𝑌 )

𝑌−#(Z∩K)𝑤(Z)−1
( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠)𝑑×𝑠. (41)

Proof. By Proposition 4.1, the number of elements 𝐴 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) is

� 𝑌 (𝑛+1) (𝑛+2)/2
∏

𝑎𝑖 𝑗 ∈Z∩K
(𝑌𝑤(𝑎𝑖 𝑗 ))−1 � 𝑌 (𝑛+1) (𝑛+2)/2−#(Z∩K)𝑤(Z ∩K)−1. (42)

By the definition of 𝑇Z (𝐿,𝑌 ), it follows from (29) that for every 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), we have

#Σ(𝐿, 𝑠) � (𝐿1 · · · 𝐿𝑛)𝑛+1𝑤(Z ∩M)−1
∏

1≤𝑖< 𝑗≤𝑛

𝐿𝑖

𝐿 𝑗
. (43)

For eachΛ ∈ Σ(𝐿, 𝑠), Proposition 5.5 implies that the number of integral symmetric matrices 𝐵 ∈ 𝑠(𝑌D)
whose row space is contained in Λ is

� 𝑌𝑛(𝑛+1)/2

(𝐿1 · · · 𝐿𝑛)𝑛+1

∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗≤𝑛+1

𝐿 𝑗

𝐿𝑖
. (44)

Combining (42), (43) and (44), and recalling that 𝑋 = 𝑌𝑛+1, gives (41). �
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Conditions for vanishing discriminant
Next, we give some conditions on Z that ensure 𝑁 (L(1), 𝐿,Z , 𝑋) = 0. We start with the following
algebraic result that gives sufficient conditions on a pair (𝐴, 𝐵) ∈ 𝑊 (C) that ensure it has discriminant 0.

Lemma 6.4. Suppose that (𝐴, 𝐵) is an element of𝑊 (C) such that one of the following three conditions
are satisfied:

(a) The kernel of B has dimension at least 2.
(b) There is a nonzero vector 𝑣 ∈ C𝑛+1 that is in the kernel of B and isotropic with respect to A.
(c) There exists 𝑘 ∈ {1, . . . , 𝑔 + 1} such that 𝑎𝑖 𝑗 = 𝑏𝑖 𝑗 = 0 for all 1 ≤ 𝑖 ≤ 𝑘 and all 1 ≤ 𝑗 ≤ 𝑛 + 1 − 𝑘 .

Then Δ (𝐴, 𝐵) = 0.

Proof. This is a standard result in the algebraic geometric theory of pencils of quadrics. We give another
proof using the explicit formula for 𝑓 (𝑥, 𝑦) = 𝑓𝐴,𝐵 (𝑥, 𝑦). The claim regarding Condition (c) is Lemma
4.6. If the kernel of B has dimension at least 2, then the quadratic form defined by A restricted to the
kernel of B admits a nonzero isotropic vector inC𝑛+1. Thus Condition (a) implies Condition (b). Suppose
now that Condition (b) is satisfied. Then the 𝑦𝑛+1-coefficient of 𝑓 (𝑥, 𝑦) is 0 since B is singular. The 𝑥𝑦𝑛-
coefficient of 𝑓 (𝑥, 𝑦) equals, up to sign, the alternating sum of the determinants of the matrices obtained
by replacing the i-th column of B by the i-th column of A. By translating the vector v to (1, 0, 0, . . . , 0)
using an element of SL𝑛+1 (C), we may assume that the first column (and row) of B is 0 and the (1, 1)-
entry of A is 0. It is then easy to see that the determinant of the matrix obtained by replacing the i-th
column of B by the i-th column of A is 0 for any i. Hence, Δ (𝐴, 𝐵) = Δ ( 𝑓 ) = 0. �

We now translate these conditions into the vanishing of 𝑁 (L(1), 𝐿,Z , 𝑋) for certain sets Z . To this
end, define the set Z1 ⊂ K ∪M by

Z1 := {𝑎𝑖 𝑗 | 𝑖 ≤ 𝑗 , 𝑖 + 𝑗 ≤ 𝑛} ∪ {ℓ𝑖 𝑗 | 𝑖 + 𝑗 ≤ 𝑛 + 1}.

Lemma 6.5. Let Z be a saturated subset of K ∪M satisfying one of the following two conditions:

(a) The set Z is not contained in Z1.
(b) There exists 𝑘 ∈ {1, . . . , 𝑔 + 1} such that 𝑎𝑘𝑘 ∈ Z and ℓ𝑛+1−𝑘,𝑘 ∈ Z .

Then 𝑁 (L(1), 𝐿,Z , 𝑋) = 0.

Proof. If Z contains some ℓ𝑖 𝑗 ∉ Z1, then for every 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), the set Σ(𝐿, 𝑠) (and hence S (𝐿, 𝑠)) is
empty by Lemma 5.6. This implies that 𝑁 (L(1), 𝐿,Z , 𝑋) = 0. If Z contains some 𝑎𝑖 𝑗 ∉ Z1, then every
integral (𝐴, 𝐵) ∈ 𝑠(𝑌D × 𝑠(𝑌D) has discriminant 0 by Condition (c) of Lemma 6.4. Once again, this
implies that 𝑁 (L(1), 𝐿,Z , 𝑋) = 0.

Let k be an integer satisfying Condition (b) of the lemma, and let 𝑠 ∈ 𝑇Z (𝐿,𝑌 ). Let (𝐴, 𝐵) be such
that 𝐴 ∈ 𝑠(𝑌D) and 𝐵 ∈ S (𝐿, 𝑠). Since ℓ𝑛+1−𝑘,𝑘 ∈ Z , it follows that there exists a nonzero vector
𝑣 ∈ C𝑛+1 of the form (𝑣1, . . . , 𝑣𝑘 , 0, . . . , 0) that is in the kernel of B. Since 𝑎𝑘𝑘 ∈ Z , it follows that v is
isotropic with respect to A. By Condition (b) of Lemma 6.4, it follows that Δ (𝐴, 𝐵) = 0, implying that
𝑁 (L(1), 𝐿,Z , 𝑋) = 0, as desired. �

6.2. Bounding the number of distinguished elements in the main body

In this subsection, we bound the number of distinguished elements in the main body:

Theorem 6.6. We have Imain
𝑋 (L(1)) = 𝑂

(
𝑋𝑛+1−1/(4𝑛)+𝜖 ) .

As L(𝑀) ⊂ L(1) for 𝑀 ≥ 1, it follows that Imain
𝑋 (L(𝑀)) satisfies the same bound.

We will use the Selberg sieve to show that distinsuished elements are negligible in number in the
main body. However, applying the Selberg sieve requires asymptotics along with a power saving error
term. Our methods in §5 do not yield such results.
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Hence, we will instead fiber over 𝐵 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) having determinant 0, apply the Selberg sieve
to prove that there are negligibly many 𝐴 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) such that (𝐴, 𝐵) is distinguished, and then
bound the number of possible B’s using the results of Section 5. To carry out the middle step, we
require the following lower bound on the number of nondistinguished elements modulo primes p that is
independent of p and B.

Lemma 6.7. Let 𝐵0 be an element in 𝑆(F𝑝) with F𝑝-rank n. Let 𝑆ndist
𝐵0

(F𝑝) denote the set of elements
𝐴 ∈ 𝑆(F𝑝) such that (𝐴, 𝐵0) has nonzero discriminant and A and 𝐵0 do not have a common isotropic
(𝑔 + 1)-dimensional subspace. Then

#𝑆ndist
𝐵0

(F𝑝)
#𝑆(F𝑝)

�𝑛 1.

Proof. For an element 𝐵 ∈ 𝑆(F𝑝) with F𝑝-rank n and kernel spanned by v, let 𝑑 (𝐵) denote the
discriminant of the corresponding quadratic form on F𝑛+1

𝑝 /(F𝑝𝑣). If 𝐵1, 𝐵2 ∈ 𝑆(F𝑝) have F𝑝-rank
n and 𝑑 (𝐵1)/𝑑 (𝐵2) ∈ F×2

𝑝 , then 𝐵1 and 𝐵2 are SL𝑛+1 (F𝑝)-equivalent. Indeed, by using SL𝑛+1 (F𝑝)
transformations, we may assume the last row and columns of 𝐵1 and 𝐵2 are all 0. The nondegenerate
forms defined by the top left 𝑛×𝑛 blocks of 𝐵1 and 𝐵2 have discriminants 𝑑 (𝐵1) and 𝑑 (𝐵2), which are in
the same quadratic residue class. Hence, they are equivalent via an element 𝛾 ∈ GL𝑛 (F𝑝). Expanding 𝛾
to an element in SL𝑛+1 (F𝑝) by appending an additional row and column whose entries are all 0, except
for the (𝑛 + 1, 𝑛 + 1)-entry which is det 𝛾−1, gives an element in SL𝑛+1 (F𝑝) that takes 𝐵1 to 𝐵2.

Let 𝐵0 ∈ 𝑆(F𝑝) have F𝑝-rank n. For each binary n-ic form 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + · · · + 𝑎𝑛𝑦𝑛 over F𝑝

that splits completely over F𝑝 such that Δ (𝑥 𝑓 (𝑥, 𝑦)) ≠ 0 and 𝑎0 ≠ 0, we construct a nondistinguished
element (𝐴0, 𝐵0) with 𝑓𝐴0 ,𝐵0 = 𝑥 𝑓 (𝑥, 𝑦). Let f be such a form. Then 𝑎𝑛 ≠ 0. Let 𝛼 = 𝑑 (𝐵0)/𝑎𝑛.
As noted in §3.1, there exist at least two (in fact 2𝑛−1) SL𝑛 (F𝑝)-orbits of (𝐴, 𝐵) ∈ 𝑊𝑛 (F𝑝) such that
𝑓𝐴,𝐵 = 𝛼 𝑓 (𝑥, 𝑦). Pick two inequivalent representatives (𝐴1, 𝐵1) and (𝐴2, 𝐵2). Let 𝐴′

1 and 𝐴′
2 be the

(𝑛 + 1)-ary quadratic forms obtained from 𝐴1 and 𝐴2, respectively, by appending an additional row
and column whose entries are all 0 except for the (𝑛 + 1, 𝑛 + 1)-entry which is 𝛼−1. Let 𝐵′

1 and 𝐵′
2 be

the (𝑛 + 1)-ary quadratic forms obtained from 𝐵1 and 𝐵2, respectively, by appending an additional row
and column whose entries are all 0. Then 𝑓𝐴′

1 ,𝐵
′
1
= 𝑓𝐴′

2 ,𝐵
′
2
= 𝑥 𝑓 (𝑥, 𝑦). Since (𝐴1, 𝐵1) and (𝐴2, 𝐵2) are

SL𝑛 (F𝑝)-inequivalent, it follows that (𝐴′
1, 𝐵

′
1) and (𝐴′

2, 𝐵
′
2) are SL𝑛+1 (F𝑝)-inequivalent. Hence, without

loss of generality, we may assume that (𝐴′
1, 𝐵

′
1) is nondistinguished. Now 𝑑 (𝐵′

1) = 𝛼𝑎𝑛 = 𝑑 (𝐵0), and
so there exists 𝛾 ∈ SL𝑛+1 (F𝑝) such that 𝛾𝐵′

1𝛾
𝑡 = 𝐵0. Then 𝐴0 = 𝛾𝐴′

1𝛾
𝑡 does the job.

We complete the proof of the lemma via the orbit-stabilizer theorem. By the above construction,
there are �𝑛 𝑝𝑛+1 binary (𝑛 + 1)-ic forms 𝑥 𝑓 (𝑥, 𝑦), with Δ (𝑥 𝑓 (𝑥, 𝑦)) ≠ 0 and 𝑎0 ≠ 0, such that
there exists an element 𝐴 ∈ 𝑆(F𝑝) with 𝑓𝐴,𝐵0 = 𝑥 𝑓 (𝑥, 𝑦) and (𝐴, 𝐵0) nondistinguished. The group
𝐺𝐵0 (F𝑝) = {𝛾 ∈ SL𝑛+1 (F𝑝) : 𝛾𝐵0𝛾

𝑡 = 𝐵0} acts on the set of such A with stabilizer of size #𝐽𝑥 𝑓 [2] (F𝑝),
where 𝐽𝑥 𝑓 is the Jacobian of the hyperelliptic curve defined by 𝑧2 = 𝑥 𝑓 (𝑥, 𝑦)𝑦. Any element of
𝛾 ∈ 𝐺𝐵0 (F𝑝) preserves the kernel F𝑝𝑣 of 𝐵0 and stabilizes the nondegenerate form 𝑏0 on F𝑛+1

𝑝 /(F𝑝𝑣)
induced by 𝐵0. The determinant 1 condition then gives

#𝐺𝐵0 (F𝑝) = #O(𝑏0) (F𝑝) = 2𝑝
𝑛2+𝑛

2

(
1 − 𝑂 (1)

𝑝2

)
.

Finally, since #𝐽𝑥 𝑓 [2] (F𝑝) �𝑛 1, we have

#𝑆ndist
𝐵0

(F𝑝) �𝑛 𝑝
𝑛+1𝑝𝑛(𝑛+1)/2 = 𝑝 (𝑛+1) (𝑛+2)/2 = #𝑆(F𝑝),

as desired. �
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Corollary 6.8. Fix 𝑎 ∈ F×𝑝 and 𝐵0 ∈ 𝑆(F𝑝) with rank n. Let 𝑆ndist
𝐵0

(F𝑝)𝑎11=𝑎 denote the set of all elements
𝐴 ∈ 𝑆ndist

𝐵0
(F𝑝) with 𝑎11 = 𝑎. Then

#𝑆ndist
𝐵0

(F𝑝)𝑎11=𝑎

#𝑆(F𝑝)/𝑝
�𝑛 1.

Proof. Since the property of (𝐴, 𝐵0) being nondistinguished is preserved when A is multiplied by an
element of F×𝑝 , the claim follows immediately from Lemma 6.7. �

We now bound the number of pairs (𝐴, 𝐵) in the main body where the first row and column of B are
zero.
Proposition 6.9. We have∫

𝑠∈𝑇 ′
𝑌𝑤 (𝑎11)�1

#
{
(𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1) : 𝑏1𝑖 = 0∀𝑖} 𝛿(𝑠)𝑑×𝑠 � 𝑋𝑛+1−1/(4𝑛)+𝜖 . (45)

Proof. Let 𝑠 ∈ 𝑇 ′ be an element with 𝑌𝑤(𝑎11) � 1. Then

#
{
𝐴 ∈ 𝑠(𝑌D) ∩ 𝑆(Z)

}
� 𝑌 (𝑛+1) (𝑛+2)/2;

#
{
𝐵 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) : 𝑏1𝑖 = 0∀𝑖

}
� 𝑌𝑛(𝑛+1)/2

𝑛+1∏
𝑖=1

𝑤(𝑏1𝑖)−1.

For each 𝐵 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) having rank n, we bound the number of 𝐴 ∈ 𝑠(𝑌D) ∩ 𝑆(Z) such that (𝐴, 𝐵)
is distinguished. Indeed, after additionally fibering over the coefficient 𝑎11, Corollary 6.8 in conjunction
with an application of the large sieve in Proposition 4.3, we obtain a saving of (𝑌𝑤(𝑎12))−1/2+𝜖 .

Therefore, the left-hand side of (45) is

� 𝑌 (𝑛+1)2−1/2+𝜖
∫

𝑠∈𝑇 ′
𝑌𝑤 (𝑎11)�1

𝑤(𝑎12)−1/2𝑠𝑛(𝑛+1)
1 𝑠 (𝑛−1) (𝑛+1)

2 · · · 𝑠𝑛+1
𝑛 𝛿(𝑠)𝑑×𝑠

� 𝑌 (𝑛+1)2−1/2+𝜖
∫

𝑠∈𝑇 ′
𝑌𝑤 (𝑎11)�1

𝑠 (𝑛−1)/2
1

𝑛∏
𝑗=2
𝑠
(2𝑛+2−2 𝑗)/2−(𝑛+1) (𝑛+1− 𝑗) ( 𝑗−1)
𝑗 𝑑×𝑠.

(46)

In particular, the power of 𝑠𝑖 above is negative for all 𝑗 ∈ {2, . . . , 𝑛}, and hence, the integral over
𝑠2, . . . , 𝑠𝑛 is absolutely bounded. The condition that 𝑌𝑤(𝑎11) � 1 on the integrand implies that we
have 𝑠1 � 𝑌1/(2𝑛) . Therefore, the terms in (46) are

� 𝑌 (𝑛+1)2−1/2+𝜖
∫

1�𝑠1�𝑌 1/(2𝑛)
𝑠 (𝑛−1)/2

1 𝑑×𝑠1 � 𝑌 (𝑛+1)2−1/2+(𝑛−1)/(4𝑛)+𝜖 = 𝑌 (𝑛+1)2−(𝑛+1)/(4𝑛)+𝜖 .

Since 𝑌 = 𝑋1/(𝑛+1) , we obtain the result. �

Remark 6.10. Our use of the large sieve saves a power of the smallest range of any coordinate. In the
above proof, we fiber over 𝑎11 because in the region of the main body close to the cusp, just before we
enter the shallow cusp, the range of 𝑎11 has size � 1. In this case, the large sieve gives no saving at all.
Once we fiber over 𝑎11, the next smallest range is that of 𝑎12. Implicit in our proof is an argument that
either the range of 𝑎12 is large, in which case the large sieve gives the desired saving, or the number of
pairs (𝐴, 𝐵) is automatically small.
Proof of Theorem 6.6. Recall from (40) that we have

Imain
𝑋 (L(1)) �

∑
𝐿

∑
Z:𝑎11∉Z

𝑁 (L(1), 𝐿,Z , 𝑋),
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where the second sum is over all saturated Z . Since Z is saturated and 𝑎11 ∉ Z , we have Z ⊂ M. If
ℓ𝑘,1 = 0 for every 𝑘 = 1, . . . , 𝑛, then (1, 0, . . . , 0) is in the kernel of B implying that the top row of B is
zero. The number of such pairs (𝐴, 𝐵) has already been bounded in Proposition 6.9, and hence, we may
assume that ℓ𝑛,1 ∉ Z . Fix a nondecreasing n-tuple L of positive real numbers, and a saturated Z ⊂ M
with ℓ𝑛,1 ∉ Z such that 𝑁 (L(1), 𝐿,Z , 𝑋) ≠ 0. We partition the integrand 𝑇Z (𝐿,𝑌 ) into two parts: let
𝑇1 denote the subset of 𝑇Z (𝐿,𝑌 ) consisting of elements s for 𝑠 = (𝑠𝑖)𝑖 with 𝑠𝑛 ≥ 𝑌 𝛿 , and let 𝑇2 denote
the subset of elements s with 1 � 𝑠𝑛 < 𝑌

𝛿 , where 𝛿 is a positive constant to be optimized later.
We first bound the contribution to 𝑁 (L(1), 𝐿,Z , 𝑋) from 𝑇1. Since 𝑌𝑤(𝑎11) � 1, we have

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1)

)
≤ #

(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊𝑛+1(Z)

)
� 𝑌 (𝑛+1) (𝑛+2)

for 𝑠 ∈ 𝑇1. Integrating over 𝑇1 gives the bound∫
𝑠∈𝑇1

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1)

)
𝛿(𝑠)𝑑×𝑠 � 𝑌 (𝑛+1) (𝑛+2)

∫
𝑠1 ,...,𝑠𝑛−1�1

∫
𝑠𝑛≥𝑌 𝛿

𝛿(𝑠)𝑑×𝑠

� 𝑌 (𝑛+1) (𝑛+2)
∫
𝑠𝑛≥𝑌 𝛿

𝑠−𝑛(𝑛+1)
𝑛 𝑑×𝑠𝑛

� 𝑌𝑛+1−𝑛(𝑛+1) 𝛿𝑋𝑛+1.

(47)

Next, we consider the contribution from 𝑇2. Define the map 𝜋 : Z1 ∩M → M by

𝜋(ℓ𝑖 𝑗 ) =
{

ℓ𝑛1 if 𝑗 = 1 and 𝑖 ≥ 2,
ℓ𝑖,𝑛+2−𝑖 otherwise.

Since we have assumed that 𝑁 (L(1), 𝐿,Z , 𝑋) ≠ 0, Lemma 6.5 implies that Z ⊂ Z1, and so the image
of 𝜋 lies in M\Z . Then for any 𝛼 ∈ Z1 ∩ M and any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), we have 𝑤𝐿 (𝜋(𝛼)) � 𝑤𝐿 (𝛼)
and 𝑤𝐿 (𝜋(𝛼)) � 1. These inequalities along with (43) and (44) imply that for any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), the
number #(𝑠(𝑌D) ∩ S (𝐿, 𝑠)) of possible B’s is

� 𝑌𝑛(𝑛+1)/2𝑤(Z ∩M)−1
( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
� 𝑌𝑛(𝑛+1)/2

( ∏
ℓ∈Z1∩M

ℓ≠ℓ𝑛1

𝑤(𝜋(ℓ))
𝑤(ℓ)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
.

For each possible B, applying the large sieve (Proposition 4.3) using Lemma 6.7 gives us a bound of

� 𝑌 (𝑛+1) (𝑛+2)/2𝑌−1/2+𝜖𝑤(𝑎11)−1/2

for the number of possible choices for A. Therefore,

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1)

)
� 𝑌−1/2+𝜖 𝑋𝑛+1𝑤(𝑎11)−1/2

( ∏
ℓ∈Z1∩M

ℓ≠ℓ𝑛1

𝑤(𝜋(ℓ))
𝑤(ℓ)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
,

for 𝑠 ∈ 𝑇2. We compute the ratio of these weights: For any 𝑖 ≥ 2 and 𝑗 = 1, we have

𝑤(𝜋(ℓ𝑖1))
𝑤(ℓ𝑖1)

=
𝑤(ℓ𝑛1)
𝑤(ℓ𝑖1)

=
𝐿𝑛

𝐿𝑖
.
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For any other 𝑖, 𝑗 , we have

𝑤(𝜋(ℓ𝑖 𝑗 ))
𝑤(ℓ𝑖 𝑗 )

=
𝑤(ℓ𝑖,𝑛+2−𝑖)
𝑤(ℓ𝑖 𝑗 )

=
𝑡 𝑗

𝑡𝑛+2−𝑖
.

As the 𝐿𝑖 are nondecreasing and positive, we multiply by the Haar measure character 𝛿(𝑠) to obtain

𝑤(𝑎11)−1/2
( ∏
ℓ∈Z1∩M

ℓ≠ℓ𝑛1

𝑤(𝜋(ℓ))
𝑤(ℓ)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠)

≤ 𝑤(𝑎11)−1/2
( ∏

𝑖, 𝑗≥1
𝑖+ 𝑗≤𝑛+1

𝑡 𝑗

𝑡𝑛+2−𝑖

) ( 𝑛∏
𝑖=2

𝑡𝑛+2−𝑖
𝑡1

) ( ∏
1≤ 𝑗<𝑖≤𝑛+1

𝑡𝑖
𝑡 𝑗

)
= 𝑤(𝑎11)−1/2

𝑛∏
𝑖=2

𝑡𝑛+2−𝑖
𝑡1

= 𝑤(𝑎11)−1/2𝑠−(𝑛+1) (𝑛−1)
1 𝑠−(𝑛+1) (𝑛−2)

2 · · · 𝑠−(𝑛+1)
𝑛−1 .

The powers of 𝑠𝑖 in the above expression are negative for 1 ≤ 𝑖 ≤ 𝑛 − 1, while the power of 𝑠𝑛 is 1.
Integrating over 𝑇2 now gives the bound∫

𝑠∈𝑇1

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1)

)
𝛿(𝑠)𝑑×𝑠 � 𝑌−1/2+𝜖 𝑋𝑛+1

∫
1�𝑠𝑛�𝑌 𝛿

𝑠𝑛𝑑
×𝑠𝑛

� 𝑌−1/2+𝛿+𝜖 𝑋𝑛+1.

(48)

Combining (47) and (48) and choosing 𝛿 = 𝑛+3/2
𝑛2+𝑛+1 yields

𝑁 (L(1), 𝐿,Z , 𝑋) �𝜖 𝑋
𝑛+1− 𝑛−2

2𝑛2+2𝑛+2
+𝜖
.

The summation of this bound over the𝑂 (1) different possible Z’s and the𝑂 (𝑌 𝜖 ) different possible L’s,
in conjunction with the bound in Proposition 6.9, implies Theorem 6.6. �

6.3. Bounding the number of distinguished elements in the shallow cusp

In this subsection, we bound the number of distinguished elements having large q-invariant that lie in
the shallow cusp of the fundamental domain.

Theorem 6.11. Let 𝜂 > 0 be any real number. Assume that 𝑀 > 𝑋 𝜂 . Then

Iscusp
𝑋 (L(𝑀)) = 𝑂

(
𝑋𝑛+1−min(𝜂,1)/(22𝑛6) ) .

We will take 𝜂 = 1/4 when we prove Theorem 5 in §6.5.

6.3.1. A preliminary bound of 𝑶𝝐 (𝑿𝒏+1+𝝐 )
We again use (40) to write

Iscusp
𝑋 (L(𝑀)) �

∑
𝐿,Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋),

where the sum is over nondecreasing n-tuples 𝐿 = (𝐿1, . . . , 𝐿𝑛) of positive real numbers that partition
the region {(𝜇1, . . . , 𝜇𝑛) ∈ [𝑌−Θ1 , 𝑌Θ2 ]𝑛 : 𝜇1 ≤ 𝜇2 ≤ . . . ≤ 𝜇𝑛} into dyadic ranges, and over saturated
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Z ⊂ K∪M such that 𝑎11 ∈ Z and 𝑎𝑔+1,𝑔+1 ∉ Z . By Lemma 6.5, we have 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0 only
when Z ⊂ Z1, which we henceforth assume.

For 𝑘 ∈ {0, . . . , 𝑔}, define the map 𝜋𝑘 : Z1 → K ∪M by

𝜋𝑘 (𝑎𝑖 𝑗 ) = 𝑎𝑛+1− 𝑗 , 𝑗 , 𝜋𝑘 (ℓ𝑖 𝑗 ) =
{
ℓ𝑛+1− 𝑗 , 𝑗 if 𝑖 > 𝑗 and 𝑗 ≤ 𝑘,
ℓ𝑖,𝑛+2−𝑖 otherwise.

We define the auxiliary set Z∗ by

Z∗ = {𝑎𝑖 𝑗 | 𝑖 ≤ 𝑗 , 𝑖 + 𝑗 ≤ 𝑛} ∪ {ℓ𝑖 𝑗 | 𝑖 ≤ 𝑗 , 𝑖 + 𝑗 ≤ 𝑛 + 1} = Z1\{ℓ𝑖 𝑗 | 𝑖 > 𝑗 , 𝑖 + 𝑗 ≤ 𝑛 + 1}.

Then, when restricted to Z∗ ⊂ Z1, the functions 𝜋𝑘 are equal for every k.

Lemma 6.12. For any 𝑘 ∈ {0, . . . , 𝑔}, we have( ∏
𝛼∈Z∗

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

)
𝛿(𝑠) = 1. (49)

Proof. We directly compute∏
𝛼∈Z∗

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼) =

( ∏
𝑖≤ 𝑗

𝑖+ 𝑗<𝑛+1

𝑤(𝑎𝑛+1− 𝑗 , 𝑗 )
𝑤(𝑎𝑖 𝑗 )

) ( ∏
𝑖≤ 𝑗

𝑖+ 𝑗<𝑛+2

𝑤(ℓ𝑖,𝑛+2−𝑖)
𝑤(ℓ𝑖 𝑗 )

)
=
( ∏

𝑖≤ 𝑗
𝑖+ 𝑗<𝑛+1

𝑡𝑖
𝑡𝑛+1− 𝑗

) ( ∏
𝑖≤ 𝑗

𝑖+ 𝑗<𝑛+2

𝑡 𝑗

𝑡𝑛+2−𝑖

)
=
( ∏

𝑖<𝑟
𝑖+𝑟 ≤𝑛+1

𝑡𝑖
𝑡𝑟

) ( ∏
𝑗<𝑟

𝑗+𝑟 ≥𝑛+2

𝑡 𝑗

𝑡𝑟

)
,

which is 𝛿(𝑠)−1. �

Fix a saturated set Z ⊂ Z1 such that 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0. Let
𝑘 ∈ {1, . . . , 𝑔} be the largest integer such that 𝑎𝑘𝑘 ∈ Z . Then we have the following results.

Lemma 6.13. Let Z and k be as above. Then for every 𝛼 ∈ Z , we have 𝜋𝑘 (𝛼) ∉ Z . In particular, for
any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), we have 𝑌𝑤(𝜋𝑘 (𝛼)) � 1.

Proof. Since 𝑎𝑛+1− 𝑗 , 𝑗 ∉ Z1 for any j and Z ⊂ Z1, we have 𝜋𝑘 (𝑎𝑖 𝑗 ) ∉ Z for any 𝑎𝑖 𝑗 ∈ Z . Moreover,
since 𝑎 𝑗 𝑗 ∈ Z for every 𝑗 ≤ 𝑘 , it follows from Lemma 6.5 that ℓ𝑛+1− 𝑗 , 𝑗 ∉ Z . Furthermore, ℓ𝑖,𝑛+2−𝑖 ∉ Z1.
Hence, 𝜋𝑘 (ℓ𝑖 𝑗 ) ∉ Z for any ℓ𝑖 𝑗 ∈ Z . �

Lemma 6.14. Let Z and k be as above. Then, uniformly for 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), we have( ∏
𝛼∈Z

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) � 1. (50)

Proof. Since we have

𝑤(𝑎𝑛+1− 𝑗 , 𝑗 )
𝑤(𝑎𝑖 𝑗 )

=
𝑡𝑖

𝑡𝑛+1− 𝑗
,

𝑤(ℓ𝑖,𝑛+2−𝑖)
𝑤(ℓ𝑖 𝑗 )

=
𝑡 𝑗

𝑡𝑛+2−𝑖
,

𝑤(ℓ𝑛+1− 𝑗 , 𝑗 )
𝑤(ℓ𝑖 𝑗 )

=
𝐿𝑛+1− 𝑗

𝐿𝑖
,
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it follows that 𝑤(𝜋𝑘 (𝛼))/𝑤(𝛼) � 1 for every k, 𝛼 ∈ Z1, and 𝑠 ∈ 𝑇Z (𝐿,𝑌 ). Thus, by adding elements
in Z1 to Z , if necessary, we can assume that Z is equal to

Z0 =
{
𝑎𝑖 𝑗 : 𝑖 ≤ 𝑗 , 𝑖 ≤ 𝑘, 𝑖 + 𝑗 ≤ 𝑛

}
∪
{
ℓ𝑖 𝑗 : 𝑖 > 𝑗 > 𝑘, 𝑖 + 𝑗 ≤ 𝑛 + 1

}
∪
{
ℓ𝑖 𝑗 : 𝑖 > 𝑗 , 𝑗 ≤ 𝑘, 𝑖 + 𝑗 ≤ 𝑛 + 1

}
∪
{
ℓ𝑖 𝑗 : 𝑖 ≤ 𝑗 , 𝑖 + 𝑗 ≤ 𝑛 + 1

}
.

Denote the four sets on the right-hand side of the above equation as 𝑆1, 𝑆2, 𝑆3 and 𝑆4, respectively. For
an element ℓ𝑖 𝑗 ∈ 𝑆2, we have

𝑤(𝜋𝑘 (ℓ𝑖 𝑗 ))
𝑤(ℓ𝑖 𝑗 )

=
𝑤(ℓ𝑖,𝑛+2−𝑖)
𝑤(ℓ𝑖 𝑗 )

=
𝑡 𝑗

𝑡𝑛+2−𝑖
=
𝑤(𝜋𝑘 (𝑎 𝑗 ,𝑖−1))
𝑤(𝑎 𝑗 ,𝑖−1)

.

Therefore,( ∏
𝛼∈Z0

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) =

( ∏
𝛼∈Z∗

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
𝛼∈𝑆3

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠)

=
( ∏
𝑖> 𝑗, 𝑗≤𝑘
𝑖+ 𝑗≤𝑛+1

𝐿𝑛+1− 𝑗

𝐿𝑖

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
=

∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1
𝑗<𝑛+1−𝑘

𝐿𝑖

𝐿 𝑗

≤ 1,

where the second equality follows from Lemma 6.12, and the last inequality follows because the 𝐿𝑖’s
are nondecreasing. �

Proposition 6.3 and Lemmas 6.13 and 6.14 thus yield the bound

𝑁 (L(𝑀), 𝐿,Z , 𝑋) � 𝑋𝑛+1
∫

1�𝑠1 ,...,𝑠𝑛�𝑋Θ
𝑑×𝑠 �𝜖 𝑋

𝑛+1+𝜖 .

We now work towards obtaining a power saving.

6.3.2. Strategy towards a power saving
In light of Proposition 6.3, it is enough to have a bound of the form

𝑌−#Z𝑤(Z)−1
( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) � 𝑋−𝛿 (51)

for some 𝛿 > 0, for all 𝑠 ∈ 𝑇Z (𝐿,𝑌 ). By modifying 𝜋𝑘 on a certain subset of Z , we are able to obtain
(51) except for some 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) satisfying some special conditions. We then consider the contribution
from these special s using a different count for #

(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀)

)
.

More precisely, let K1 := {𝑎1 𝑗 : 1 ≤ 𝑗 ≤ 𝑔 + 2}. Then K1 consists exactly of those 𝛼 ∈ K such that
the exponent of every 𝑠𝑖 is negative in 𝑤(𝛼). As such, one expects that the hardest case is when Z = K1.
We show first in Lemma 6.15 how to reduce to considering only Z ∩K1.
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Lemma 6.15. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0. For
any Z ′ ⊂ K1 and any 𝑠 ∈ 𝑇 ′, we write

𝐼 (Z ′, 𝑠) = 𝑌−#Z′
𝑤(Z ′)−1

𝑔∏
𝑖=1

𝑠
−(𝑛+1) (𝑔+2)
𝑖

𝑛−1∏
𝑖=𝑔+1

𝑠−(𝑛+1) (𝑛−𝑖)
𝑖 .

Then for any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), we have

𝑌−#Z𝑤(Z)−1
( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) � 𝐼 (Z ∩K1, 𝑠).

We then prove in Lemma 6.16 the following bound for 𝐼 (Z ∩ K1) when Z ∩ K1 is a proper subset
of K1, which gives a bound of the form (51) when 𝑠𝑛 � 𝑌1/2−𝛿 .

Lemma 6.16. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.
Suppose Z ∩K1 ≠ K1. For any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), if 𝐼 (Z ∩K1, 𝑠) � 𝑌−2𝛿 , then 𝑠𝑛 � 𝑌1/2−𝛿 .

In the case where 𝑠𝑛 � 𝑌1/2−𝛿 , the Haar measure turns out to be very small, so we may simply
ignore the singularity condition of B and prove the following bound.

Lemma 6.17. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.
Suppose Z ∩K1 ≠ K1. Then for any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) with 𝑠𝑛 � 𝑌1/2−𝛿 ,

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z)

)
𝛿(𝑠) � 𝑌 ( 𝑛2 +2) (𝑛+1)+𝑛(2𝑛2+9𝑛+9) 𝛿 .

Therefore, by taking 𝛿 = (𝑛−2)/(4𝑛2 +14𝑛+4), we obtain the following result from Proposition 6.3
and Lemmas 6.15, 6.16 and 6.17:

Proposition 6.18. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.
Suppose Z ∩K1 ≠ K1. Then

𝑁 (L(𝑀), 𝐿,Z , 𝑋) � 𝑋
𝑛+1− 𝑛−2

2(𝑛+1) (𝑛2+7𝑛+7) .

We next handle the case K1 ⊂ Z . We give necessary conditions in Lemma 6.19 on s so that a bound
of the form (51) does not hold.

Lemma 6.19. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.
Suppose K1 ⊂ Z . For any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), if 𝐼 (K1, 𝑠) � 𝑋−𝛿 , then

𝑌−𝛿 � 𝑠𝑖
𝑠𝑛−𝑖

� 𝑌 𝛿 , for 𝑖 = 1, . . . , 𝑔 − 1
𝑌1/2−(𝑔/2) 𝛿R−1 � 𝑠𝑔 � 𝑌1/2+3𝑔𝛿R−1

1 � 𝑠𝑔+1 � 𝑌 𝛿

𝑌1/2−𝛿R−1 � 𝑠𝑔+2 � 𝑌1/2+𝑔𝛿R−1,

(52)

where

R =
𝑛∏

𝑖=𝑔+3
𝑠𝑖 � 𝑌1/2+3𝑔𝛿 .

Note that the coefficients of 𝛿 in the exponents in the above bounds are not optimal and are simply
chosen to make the formula look nice. The optimal coefficients can be obtained from the proof.
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When s satisfies (52), we give further conditions in Lemma 6.20 on s so that simply using the Haar
measure and ignoring the singularity condition by counting all symmetric matrices is not enough for a
power saving.

Lemma 6.20. Let Z ⊂ Z1 be saturated with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.
Suppose K1 ⊂ Z . For any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ), if

𝐼 (K1, 𝑠) � 𝑋−𝛿 , and #
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z)

)
𝛿(𝑠) � 𝑋𝑛+1−𝛿 ,

then

𝑠𝑖 � 𝑌258𝑔3 𝛿 for 𝑖 = 𝑔 + 3, . . . , 𝑛. (53)

To obtain a further saving, we need to use the |𝑞 |-invariant!

Lemma 6.21. Suppose 𝑀 > 𝑋 𝜂 where 𝜂 > 0 is some fixed constant. Let Z ⊂ Z1 be saturated with
𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0. Suppose K1 ⊂ Z . Then for 𝛿 < min(𝜂, 1)/(1355𝑔6)
and any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) such that (52) and (53) hold, we have

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀)

)
𝛿(𝑠) � 𝑋𝑛+1+514𝑔3 𝛿−1/2.

Therefore, by taking 𝛿 = 64 min(𝜂, 1)/(1355𝑛6), we obtain the following result from Proposition 6.3
and Lemmas 6.15, 6.19, 6.20 and 6.21.

Proposition 6.22. Suppose 𝑀 > 𝑋 𝜂 where 𝜂 > 0 is some fixed constant. Let Z ⊂ Z1 be saturated with
𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0. Suppose K1 ⊂ Z . Then

𝑁 (L(𝑀), 𝐿,Z , 𝑋) � 𝑋𝑛+1−64 min(𝜂,1)/(1355𝑛6) .

Theorem 6.11 then follows immediately from (40), Proposition 6.18, Proposition 6.22 and summing
over the 𝑂 (1) different possible Z’s and the 𝑂 (𝑌 𝜖 ) different possible L’s.

6.3.3. Proofs of Lemmas 6.15, 6.16, 6.17, 6.19, 6.20 and 6.21.
We fix a saturated Z ⊂ Z1 with 𝑎11 ∈ Z , 𝑎𝑔+1,𝑔+1 ∉ Z and 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0.

Proof of Lemma 6.15. Recall that K1 := {𝑎1 𝑗 : 1 ≤ 𝑗 ≤ 𝑔+2}. Let 𝑘 ∈ {1, . . . , 𝑔} be the largest integer
such that 𝑎𝑘𝑘 ∉ Z . Then, applying Lemma 6.14 to the saturated set Z ∪K1, we have

( ∏
𝛼∈Z\K1

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) �

∏
𝛼∈K1

𝑤(𝛼)
𝑤(𝜋𝑘 (𝛼))

=
𝑔∏
𝑖=1

𝑠
−(𝑛+1) (𝑔+2)
𝑖

𝑛−1∏
𝑖=𝑔+1

𝑠−(𝑛+1) (𝑛−𝑖)
𝑖 .

Hence, by Lemma 6.13, we obtain for any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ),

𝑌−#Z𝑤(Z)−1
( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠) � 𝑌−#Z𝑤(Z)−1

( ∏
𝛼∈Z\K1

𝑌𝑤(𝜋𝑘 (𝛼))
) ( ∏

1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠)

� 𝑌−#(Z∩K1)𝑤(Z ∩K1)−1
( ∏
𝛼∈Z\K1

𝑤(𝜋𝑘 (𝛼))
𝑤(𝛼)

) ( ∏
1≤𝑖< 𝑗≤𝑛
𝑖+ 𝑗>𝑛+1

𝐿𝑖

𝐿 𝑗

)
𝛿(𝑠)
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= 𝑌−#(Z∩K1)𝑤(Z ∩K1)−1
𝑔∏
𝑖=1

𝑠
−(𝑛+1) (𝑔+2)
𝑖

𝑛−1∏
𝑖=𝑔+1

𝑠−(𝑛+1) (𝑛−𝑖)
𝑖

= 𝐼 (Z ∩K1, 𝑠),

as desired. �

Note that a direct computation yields

𝐼 (K1, 𝑠) = 𝑌−(𝑔+2)
𝑔+2∏
𝑗=1
𝑡𝑛+1− 𝑗 𝑡 𝑗 = 𝑌

−(𝑔+2) 𝑡𝑔+1𝑡𝑔+2

𝑡𝑛+1
. (54)

Proof of Lemma 6.16. Since Z is saturated and Z ∩ K1 ≠ K1, we have Z ∩ K1 = {𝑎11, . . . , 𝑎1 𝑗 } for
some 𝑗 = 1, . . . , 𝑔 + 1. Since 𝑎𝑔+1,𝑔+1 and 𝑎1,𝑔+2 do not belong to Z , we have for 𝑠 ∈ 𝑇Z (𝐿,𝑌 ),

𝐼 ({𝑎11, . . . , 𝑎1,𝑔+1}, 𝑠) = 𝑌 𝐼 (K1, 𝑠)𝑤(𝑎1,𝑔+2)
� 𝑌𝑔+1𝐼 (K1, 𝑠)𝑤(𝑎𝑔+1,𝑔+1)𝑤(𝑎1,𝑔+2)𝑔

� 𝑌−1 1
𝑡
𝑔
1 𝑡𝑔+1𝑡

𝑔−1
𝑔+2 𝑡𝑛+1

� 𝑌−1𝑠2
𝑛,

since the powers of the 𝑠𝑖’s in the third line are negative for 𝑖 < 𝑛.
Similarly, for any 𝑗 = 1, . . . , 𝑔, we compute

𝐼 ({𝑎11, . . . , 𝑎1 𝑗 }, 𝑠) (𝑌𝑤(𝑎1, 𝑗+1)) 𝑗−1 � 𝑌−1𝑠2
𝑛,

as desired. �

Proof of Lemma 6.17. Suppose now 𝑠𝑛 � 𝑌1/2−𝛿 . First note, that the inequality

1 � 𝑌𝑔+1𝑤(𝑎1,𝑛)𝑤(𝑎2,𝑛−1) · · ·𝑤(𝑎𝑔+1,𝑔+2) = 𝑌𝑔+1
𝑛∏

𝑖=1
𝑠−𝑖𝑖 (55)

implies that we have
𝑛−1∏
𝑗=1
𝑠
𝑗
𝑗 � 𝑌𝑔+1𝑠−𝑛𝑛 � 𝑌𝑛𝛿 . (56)

Since each 𝑠𝑖 � 1, we also have 𝑠𝑛 � 𝑌1/2 by (56). Hence,

𝑡−1
1 � 𝑡−1

2 � . . . � 𝑡−1
𝑛 = 𝑠−1

𝑛

𝑛−1∏
𝑗=1
𝑠
𝑗
𝑗 � 𝑌−1/2+(𝑛+1) 𝛿 ; 𝑡−1

𝑛+1 = 𝑠𝑛𝑛

𝑛−1∏
𝑗=1
𝑠
𝑗
𝑗 � 𝑌𝑛/2+𝑛𝛿 .

Thus,

𝑌𝑤(𝑎𝑖 𝑗 ) = 𝑌𝑤(𝑏𝑖 𝑗 ) =
𝑌

𝑡𝑖𝑡 𝑗
�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑌 (2𝑛+2) 𝛿 if 𝑖 ≤ 𝑗 ≤ 𝑛,
𝑌 (𝑛+1)/2+(2𝑛+1) 𝛿 if 𝑖 ≤ 𝑛, 𝑗 = 𝑛 + 1,
𝑌𝑛+1+2𝑛𝛿 if 𝑖 = 𝑗 = 𝑛 + 1.

Multiplying these weights together and applying Proposition 4.1 gives the estimate

#
(
𝑠(𝑌D) × 𝑠(𝑌D) ∩𝑊𝑛+1 (Z)

)
� 𝑌 (𝑛+2) (𝑛+1)+2𝑛(𝑛+2)2 𝛿 . (57)
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Meanwhile, in this region where 𝑠𝑛 ≥ 𝑋1/2−𝛿 , the quantity 𝛿(𝑠) satisfies

𝛿(𝑠) =
𝑛∏

𝑘=1
𝑠−(𝑛+1)𝑘 (𝑛+1−𝑘)
𝑘 � 𝑠−𝑛(𝑛+1)

𝑛 � 𝑌−𝑛(𝑛+1)/2+𝑛(𝑛+1) 𝛿 . (58)

Multiplying the bounds in (57) and (58) together yields

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊𝑛+1 (Z)

)
𝛿(𝑠) � 𝑌 ( 𝑛2 +2) (𝑛+1)+𝑛(2𝑛2+9𝑛+9) 𝛿 ,

as desired. �

Proof of Lemma 6.19. Suppose now K1 ⊂ Z ⊂ Z1 and 𝐼 (K1, 𝑠) � 𝑋−𝛿 for some 𝑠 ∈ 𝑇Z (𝐿,𝑌 ). We
prove first that for any 𝑖 = 1, . . . , 𝑔 − 1, we have

𝑌−𝛿 � 𝑠𝑖
𝑠𝑛−𝑖

� 𝑌 𝛿 . (59)

Indeed, since 𝑎 𝑗 ,𝑛+1− 𝑗 ∉ Z for all j, we have from (54) that, for any 𝑘 = 1, . . . , 𝑔,

𝐼 (K1, 𝑠) � 𝐼 (K1, 𝑠)𝑌𝑔+2𝑤(𝑎𝑘,𝑛+1−𝑘 )𝑔𝑤(𝑎𝑔+1,𝑔+2)2

�
𝑡𝑔+1𝑡𝑔+2

𝑡𝑛+1

1
𝑡
𝑔
𝑗 𝑡

2
𝑔+1𝑡

2
𝑔+2𝑡

𝑔
𝑛−𝑘+1

=
𝑡1 · · · 𝑡𝑔
𝑡
𝑔
𝑘

𝑡𝑛 · · · 𝑡𝑔+3

𝑡
𝑔
𝑛−𝑘+1

=
𝑡1
𝑡𝑔

· · ·
𝑡𝑔−1

𝑡𝑔

(
𝑡𝑔

𝑡𝑘

)𝑔 𝑡𝑔+4

𝑡𝑔+3
· · · 𝑡𝑛

𝑡𝑔+3

(
𝑡𝑔+3

𝑡𝑛−𝑘+1

)𝑔
.

Hence,

𝐼 (K1, 𝑠) �
(
𝑠1𝑠

2
2 · · · 𝑠

𝑔−1
𝑔−1 (𝑠𝑘 𝑠𝑘+1 · · · 𝑠𝑔−1)−𝑔𝑠−1

𝑛−1𝑠
−2
𝑛−2 · · · 𝑠

−(𝑔−1)
𝑔+3 (𝑠𝑔+3𝑠𝑔+4 · · · 𝑠𝑛−𝑘 )𝑔)

)𝑛+1

=

(
𝑔−1∏
𝑖=1

(
𝑠𝑖
𝑠𝑛−𝑖

) 𝑖 (𝑛+1)
) (

𝑔−1∏
𝑖=𝑘

(
𝑠𝑖
𝑠𝑛−𝑖

)−𝑔 (𝑛+1)
)
.

Denote the product of the two factors in the final line by 𝐽𝑘 . Then

𝑔∏
𝑘=1

𝐽𝑘 = 1 and
𝐽𝑖+1
𝐽𝑖

=

(
𝑠𝑖
𝑠𝑛−𝑖

)𝑔 (𝑛+1)
for 𝑖 = 1, . . . , 𝑔 − 1.

Since, by assumption, 𝐼 (K1, 𝑠) � 𝑋−𝛿 , we have 𝐽𝑘 � 𝑌−(𝑛+1) 𝛿 for every 𝑘 = 1, . . . , 𝑔. Therefore, for
every 𝑖 = 1, . . . , 𝑔 − 1, we have

𝑠𝑖
𝑠𝑛−𝑖

=

(
𝐽𝑖+1
𝐽𝑖

) 1
𝑔 (𝑛+1)

=
(
𝐽1 · · · 𝐽𝑖−1 · 𝐽2

𝑖+1 · 𝐽𝑖+2 · · · 𝐽𝑔
) 1

𝑔 (𝑛+1) � 𝑌−𝛿 ;

𝑠𝑖
𝑠𝑛−𝑖

=

(
𝐽𝑖
𝐽𝑖+1

)− 1
𝑔 (𝑛+1)

=
(
𝐽1 · · · 𝐽𝑖−1 · 𝐽2

𝑖 · 𝐽𝑖+2 · · · 𝐽𝑔
)− 1

𝑔 (𝑛+1) � 𝑌 𝛿 .

The claimed bound (59) follows.
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By (55) and (59), we have

𝑠
𝑔
𝑔𝑠

𝑔+1
𝑔+1𝑠

𝑔+2
𝑔+2 � 𝑌𝑔+1

𝑔−1∏
𝑖=1

(
𝑠𝑖
𝑠𝑛−𝑖

)−𝑖 𝑛∏
𝑖=𝑔+3

𝑠−𝑛𝑖 � 𝑌𝑔+1+ 𝑔 (𝑔−1)
2 𝛿 ·R−𝑛, (60)

where

R =
𝑛∏

𝑖=𝑔+3
𝑠𝑖 .

We next prove the desired lower bounds:

𝑠𝑔 � 𝑌1/2−(𝑔/2) 𝛿R−1; 𝑠𝑔+1 � 1; 𝑠𝑔+2 � 𝑌1/2−𝛿R−1. (61)

The bound 𝑠𝑔+1 � 1 follows from the definition of 𝑇 ′. For the bounds on 𝑠𝑔 and 𝑠𝑔+2, we use the
assumption that 𝑎𝑔+1,𝑔+1 ∉ Z and the computation of 𝐼 (K1, 𝑠) in (54) to obtain

𝐼 (K1, 𝑠) � 𝐼 (K1, 𝑠)𝑌1/2𝑤(𝑎𝑔+1,𝑔+1)1/2

= 𝑌−(𝑛+1)/2 𝑡𝑔+2

𝑡𝑛+1

= 𝑌−(𝑛+1)/2𝑠𝑛+1
𝑔+2 R𝑛+1,

which along with 𝐼 (K1, 𝑠) � 𝑌−(𝑛+1) 𝛿 implies the desired lower bounds on 𝑠𝑔+2; and

𝐼 (K1, 𝑠) � 𝐼 (K1, 𝑠)𝑌2𝑤(𝑎𝑔+1,𝑔+1)2

= 𝑌−𝑔 𝑡𝑔+2

𝑡3𝑔+1𝑡𝑛+1

= 𝑌−𝑔
( 𝑔∏

𝑖=1
𝑠3𝑖
𝑖

)
𝑠
−3(𝑔+2)
𝑔+1

( 𝑛∏
𝑖=𝑔+2

𝑠−2𝑛−2+3𝑖
𝑖

)
� 𝑌−𝑔+ 3𝑔 (𝑔−1)

2 𝛿
( 𝑔−1∏

𝑖=1
𝑠3𝑖
𝑛−𝑖

)
𝑠

3𝑔
𝑔 𝑠

−3(𝑔+2)
𝑔+1 𝑠

−𝑔
𝑔+2

( 𝑛−1∏
𝑖=𝑔+3

𝑠−2𝑛−2+3𝑖
𝑖

)
𝑠

2𝑔
𝑛

� 𝑌−𝑔+ 3𝑔 (𝑔−1)
2 𝛿𝑠

3𝑔
𝑔 𝑠

−3(𝑔+2)
𝑔+1 𝑠

−𝑔
𝑔+2 R

2𝑔

� 𝑌− 3𝑔
2 + 𝑔 (3𝑔−1)

2 𝛿𝑠
3𝑔
𝑔 R3𝑔,

implying the desired lower bound on 𝑠𝑔, where in the last inequality we used the already-established
lower bounds on 𝑠𝑔+1 and 𝑠𝑔+2.

The desired lower bounds for 𝑠𝑔, 𝑠𝑔+1, 𝑠𝑔+2 then follow by combining the upper bound on 𝑠𝑔𝑔𝑠
𝑔+1
𝑔+1𝑠

𝑔+2
𝑔+2

in (60) and the individual lower bounds on 𝑠𝑔, 𝑠𝑔+1, 𝑠𝑔+2 in (61). The desired upper bound on R follows
by comparing the upper bound on 𝑠𝑔 and the trivial lower bound 𝑠𝑔 � 1. �

Proof of Lemma 6.20. Suppose K1 ⊂ Z and 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) satisfies (52). Then

𝑡−1
𝑗 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑌−(𝑔+2)+5𝑔2 𝛿
𝑛∏

𝑖=𝑛− 𝑗+1
𝑠𝑛+1
𝑖 for 𝑗 = 1, . . . , 𝑔,

𝑌−1/2+20𝑔2 𝛿 for 𝑗 = 𝑔 + 1, 𝑔 + 2,

𝑌𝑔+1+23𝑔2 𝛿
𝑛∏

𝑖= 𝑗

𝑠−(𝑛+1)
𝑖 for 𝑗 = 𝑔 + 3, . . . , 𝑛 + 1,

(62)
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where the upper bound on R also gives 𝑡−1
𝑗 � 𝑌−1/2+20𝑔2 𝛿 for 𝑗 = 1, . . . , 𝑔. For 𝑖, 𝑗 ≤ 𝑔 + 2, we have

𝑌𝑡−1
𝑖 𝑡

−1
𝑗 � 𝑌40𝑔2 𝛿 . For 𝑗 ≥ 𝑔 + 3 and 𝑖 ≤ 𝑛 − 𝑗 + 1, we have 𝑌𝑡−1

𝑖 𝑡
−1
𝑗 � 𝑌28𝑔2 𝛿 . Using (62) for the rest

of the coordinates gives

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z)

)
� 𝑌 (𝑛+1) (𝑔+1) (𝑔+4)+972𝑔4 𝛿

(
𝑔∏
𝑖=1

𝑠−2𝑖 (𝑖+3) (𝑛+1)
𝑔+2+𝑖

)
.

The Haar measure satisfies the following bound:

𝛿(𝑠) =
𝑛∏

𝑘=1
𝑠−(𝑛+1)𝑘 (𝑛+1−𝑘)
𝑘 � 𝑌−(𝑔2+3𝑔+1) (𝑛+1)+55𝑔4 𝛿

(
𝑔∏
𝑖=1

𝑠2𝑖 (𝑖+2) (𝑛+1)
𝑔+2+𝑖

)
.

Hence,

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z)

)
𝛿(𝑠) � 𝑌 (𝑛+1)2+1027𝑔4 𝛿

(
𝑔∏
𝑖=1

𝑠−2𝑖 (𝑛+1)
𝑔+2+𝑖

)
. (63)

Suppose now #
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z)

)
𝛿(𝑠) � 𝑋𝑛+1−𝛿 . Then, for any 𝑖 = 𝑔 + 3, . . . , 𝑛,

𝑠𝑖 � 𝑌 (1027𝑔4+2𝑔+3) 𝛿/(2(𝑖−𝑔−2) (2𝑔+3)) � 𝑌 (1032𝑔4/(4𝑔)) 𝛿 = 𝑌258𝑔3 𝛿 ,

as desired. �

Proof of Lemma 6.21. Suppose 𝑀 > 𝑋 𝜂 where 𝜂 > 0 is some fixed constant. Suppose 𝛿 <
max(𝜂, 1)/1355𝑔6. Suppose K1 ⊂ Z and 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) satisfies (52) and (53). We now impose the
conditions det(𝐵) = 0 and |𝑞 | (𝐴, 𝐵) > 𝑀 for any (𝐴, 𝐵) ∈ L(𝑀) to obtain a further saving for
#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀)

)
𝛿(𝑠).

The bound (53) on 𝑠𝑔+3, . . . , 𝑠𝑛 gives R � 𝑌258𝑔4 𝛿 . Hence,

𝑡−1
𝑗 �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑌−(𝑔+2)+1295𝑔5 𝛿 , for 𝑗 = 1, . . . , 𝑔,
𝑌−1/2+20𝑔2 𝛿 , for 𝑗 = 𝑔 + 1, 𝑔 + 2,
𝑌𝑔+1+23𝑔2 𝛿 , for 𝑗 = 𝑔 + 3, . . . , 𝑛 + 1,

(64)

thus improving (62). In this case,

𝑌𝑡−1
𝑔 𝑡

−1
𝑔+2 � 𝑌−(𝑛+1)/2+1315𝑔5 𝛿 , 𝑌 𝑡−1

𝑔 𝑡
−1
𝑛+1 � 𝑌1318𝑔5 𝛿 ,

𝑌 𝑡−1
𝑔+2𝑡

−1
𝑛+1 � 𝑌 (𝑛+1)/2+43𝑔2 𝛿 , 𝑌 𝑡−2

𝑛+1 � 𝑌𝑛+1+46𝑔2 𝛿 .

Since 𝛿 < 1/(1315𝑔4), we may assume that every (𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩𝑊 (Z) satisfies the
following:

(a) The top left 𝑔 × (𝑔 + 2)-blocks of A and B are 0.
(b) The entries of the top right 𝑔 × (𝑔 + 1) blocks of A and B are 𝑂 (𝑌1315𝑔5 𝛿).
(c) The entries 𝑎𝑔+1,𝑔+1, 𝑎𝑔+1,𝑔+2, 𝑎𝑔+2,𝑔+2, 𝑏𝑔+1,𝑔+1, 𝑏𝑔+1,𝑔+2, and 𝑏𝑔+2,𝑔+2 are 𝑂 (𝑌40𝑔2 𝛿).
(d) The entries 𝑎𝑔+1, 𝑗 , 𝑎𝑔+2, 𝑗 , 𝑏𝑔+1, 𝑗 and 𝑏𝑔+2, 𝑗 are 𝑂 (𝑌 (𝑛+1)/2+43𝑔2 𝛿) for 𝑔 + 3 ≤ 𝑗 ≤ 𝑛 + 1.
(e) The entries 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are 𝑂 (𝑌𝑛+1+46𝑔2 𝛿) for 𝑔 + 3 ≤ 𝑖, 𝑗 ≤ 𝑛 + 1.

Suppose now that (𝐴, 𝐵) is an element of (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀). Then 𝑓𝐴,𝐵 = 𝑥𝑔(𝑥, 𝑦), where
𝑔(𝑥, 1) is a degree n polynomial with Galois group 𝑆𝑛.
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Lemma 6.23. Let (𝐴, 𝐵) be as above. If 𝑏𝑔+1,𝑔+1 = 𝑏𝑔+1,𝑔+2 = 𝑏𝑔+2,𝑔+2 = 0, then

|𝑞 | (𝐴, 𝐵) � 𝑋1355𝑔6 𝛿 .

Proof. Since (𝐴, 𝐵) is distinguished overQ, the set of (𝑔+1)-dimensional common isotropic subspaces
defined over any number field L is in bijection with 𝐽 [2] (𝐿), where J is the Jacobian of the hyperelliptic
curve 𝑦2 = 𝑥𝑔(𝑥, 1) (which has a rational Weierstrass point at infinity), and 𝐽 [2] (𝐿) is in bijection
with the factorizations of 𝑥𝑔(𝑥, 1) over L. Since 𝑔(𝑥, 1) has Galois group 𝑆𝑛, it does not admit any
factorization over any quadratic extension of Q. Therefore, for any quadratic extension K of Q, we have
𝐽 [2] (𝐾) = 𝐽 [2] (Q), and so any (𝑔 + 1)-dimension K-subspace isotropic with respect to A and B admits
a Q-basis.

Suppose 𝑥0, 𝑦0 ∈ 𝐾 for some quadratic extension K of Q such that (𝑥0, 𝑦0) is a solution to

𝑎𝑔+1,𝑔+1𝑥
2 + 𝑎𝑔+1,𝑔+2𝑥𝑦 + 𝑎𝑔+2,𝑔+2𝑦

2 = 0. (65)

By the assumption 𝑏𝑔+1,𝑔+1 = 𝑏𝑔+1,𝑔+2 = 𝑏𝑔+2,𝑔+2 = 0, we see that

Span𝐾 {𝑒1, . . . , 𝑒𝑔, 𝑥0𝑒𝑔+1 + 𝑦0𝑒𝑔+2}

is a (𝑔+1)-dimension K-subspace isotropic with respect to A and B. Let 𝑣1, . . . , 𝑣𝑔+1 ∈ Q𝑛+1 be such that

Span𝐾 {𝑒1, . . . , 𝑒𝑔, 𝑥0𝑒𝑔+1 + 𝑦0𝑒𝑔+2} = Span𝐾 {𝑣1, . . . , 𝑣𝑔+1}.

We now complete {𝑒1, . . . , 𝑒𝑔} into a Q-basis {𝑒1, . . . , 𝑒𝑔, 𝑣0} for SpanQ{𝑣1, . . . , 𝑣𝑔+1}. We may use
𝑒1, . . . , 𝑒𝑔 to clear out the first g coordinates of 𝑣0 and take 𝑣0 to be of the form 𝑥 ′0𝑒𝑔+1 + 𝑦′0𝑒𝑔+2 with
𝑥 ′0, 𝑦

′
0 ∈ Q, which implies that (𝑥 ′0, 𝑦

′
0) is a nonzero rational solution (65). In particular, the discriminant

𝑎2
𝑔+1,𝑔+2 − 4𝑎𝑔+1,𝑔+1𝑎𝑔+2,𝑔+2 ∈ Z is a square.

If 𝑎𝑔+1,𝑔+1 ≠ 0, let

𝑥1 = −𝑎𝑔+1,𝑔+2 +
√
𝑎2
𝑔+1,𝑔+2 − 4𝑎𝑔+1,𝑔+1𝑎𝑔+2,𝑔+2, 𝑦1 = 2𝑎𝑔+1,𝑔+1.

If 𝑎𝑔+1,𝑔+1 = 0, let 𝑥1 = 1, 𝑦1 = 0. Then 𝑥1, 𝑦1 are integers � 𝑌40𝑔2 𝛿 , not both zero, and are solutions
to (65). Let 𝑥0 = 𝑥1/gcd(𝑥1, 𝑦1) and 𝑦0 = 𝑦1/gcd(𝑥1, 𝑦1). There then exist integers 𝑥2, 𝑦2 � 𝑌40𝑔2 𝛿

such that

{𝑒1, . . . , 𝑒𝑔, 𝑥0𝑒𝑔+1 + 𝑦0𝑒𝑔+2, 𝑥2𝑒𝑔+1 + 𝑦2𝑒𝑔+2, 𝑒𝑔+3, . . . , 𝑒𝑛}

forms an integral basis for Z𝑛+1 such that the first 𝑔 + 1 vectors generate a primitive lattice isotropic
with respect to A and B, and the first 𝑔 + 2 vectors generate a primitive lattice isotropic with respect to
B. That is, we compute the |𝑞 |-invariant of (𝐴, 𝐵) using this basis. When so expressed, the top right
(𝑔 + 1) × (𝑔 + 2) blocks of the Gram matrices of A and B have the form

𝐴top =

	



�
0 ♭ · · · ♭
...
...
. . .

...
0 ♭ · · · ♭
♭ ∗ · · · ∗

��
, 𝐵top =

	



�
0 ♭ · · · ♭
...
...
. . .

...
0 ♭ · · · ♭
0 ∗ · · · ∗

��
,

where entries labeled ‘0’ are 0, entries labeled ‘♭’ are 𝑂 (𝑌1355𝑔5 𝛿), and entries labeled ‘∗’ are
𝑂 (𝑌 (𝑛+1)/2+83𝑔2 𝛿). Let 𝑀1 denote the (𝑔 + 2) × (𝑔 + 2) matrix whose ith row consists of the coef-
ficients of det(𝐴𝑖𝑥 − 𝐵𝑖𝑦), where 𝐴𝑖 and 𝐵𝑖 are the (𝑔 + 1) × (𝑔 + 1) matrices formed by removing the
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i-th columns from 𝐴top and 𝐵top, respectively. Then 𝑀1 is of the form

𝑀1 =

	



�
∗ · · · ∗ ∗
♯ · · · ♯ 0
...
. . .

...
...

♯ · · · ♯ 0

��
,

where entries labeled ‘0’ are 0, entries labeled ‘♯’ are 𝑂 (𝑌2710𝑔6 𝛿), and entries labeled ‘∗’ are
𝑂 (𝑌 (𝑛+1)/2+1438𝑔6 𝛿), where the top right coefficient 𝑚′ of 𝑀1 is the determinant of the top right
(𝑔 + 1) × (𝑔 + 1) block 𝐵′ of 𝐵top, up to sign. Thus,

|𝑞 | (𝐴, 𝐵) = |𝑄 | (𝐴, 𝐵)
| det(𝐵′) | =

| det(𝑀1) |
|𝑚′ | = | det(𝑀 ′

1) |,

where 𝑀 ′
1 is the bottom left (𝑔 + 1) × (𝑔 + 1) block of 𝑀1. Since the coefficients of 𝑀 ′

1 are � 𝑌2710𝑔6 𝛿 ,
it follows that |𝑞 | (𝐴, 𝐵) � 𝑋2710𝑔6 (𝑔+1) 𝛿/(𝑛+1) � 𝑋1355𝑔6 𝛿 . �

We now return to the proof of Lemma 6.21. For any (𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀), since
|𝑞 | (𝐴, 𝐵) > 𝑀 > 𝑋 𝜂 , we may assume that 𝑏𝑔+1,𝑔+1, 𝑏𝑔+1,𝑔+2, and 𝑏𝑔+2,𝑔+2 are not all 0 since 𝛿 <
𝜂/(1355𝑔6).

We now fix 𝑏𝑖 𝑗 for 1 ≤ 𝑖 ≤ 𝑔, 𝑔 + 3 ≤ 𝑗 ≤ 𝑛 + 1, and 𝑖 = 𝑔 + 1, 𝑔 + 2, 𝑗 = 𝑔 + 1, 𝑔 + 2. We consider
the number of pairs (𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀) with these prescribed coefficients by viewing
det(𝐵) as a polynomial F in 𝑏𝑖 𝑗 for 𝑔 + 1 ≤ 𝑖 ≤ 𝑛 + 1 and 𝑔 + 3 ≤ 𝑗 ≤ 𝑛 + 1. Note that all of these
remaining coefficients have range at least

𝑌 (𝑛+1)/2+43𝑔2 𝛿
𝑛∏

𝑖=𝑔+3
𝑠−(𝑛+1)
𝑖 .

Hence, to complete the proof of Lemma 6.21, it remains to prove that F is a nonzero polynomial, for
then we would have, using (63), that

#
(
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀)

)
𝛿(𝑠) � 𝑌 (𝑛+1)2+1027𝑔4 𝛿−(𝑛+1)/2−43𝑔2 𝛿

𝑔∏
𝑖=1

𝑠−(2𝑖−1) (𝑛+1)
𝑔+2+𝑖

� 𝑋𝑛+1+514𝑔3 𝛿−1/2.

We may assume that the top right 𝑔 × (𝑔 + 1) block of B has full rank, for otherwise the kernel of B
would be isotropic with respect to A forcing Δ (𝐴, 𝐵) = 0 by Lemma 6.4. Hence, we may also assume
that the top right 𝑔 × (𝑔 + 1) block of B equals (𝐼𝑔 0), where 𝐼𝑔 denotes the 𝑔 × 𝑔 identity matrix. Then

det(𝐵) = det 	
�
𝑏𝑔+1,𝑔+1 𝑏𝑔+1,𝑔+2 𝑏𝑔+1,𝑛+1
𝑏𝑔+2,𝑔+1 𝑏𝑔+2,𝑔+2 𝑏𝑔+2,𝑛+2
𝑏𝑛+1,𝑔+1 𝑏𝑛+1,𝑔+2 𝑏𝑛+1,𝑛+1

�� .
Since (

𝑏𝑔+1,𝑔+1 𝑏𝑔+1,𝑔+2
𝑏𝑔+2,𝑔+1 𝑏𝑔+2,𝑔+2

)
≠ 0,

we see that det(𝐵) is a nonzero polynomial in 𝑏𝑔+1,𝑛+1, 𝑏𝑔+2,𝑛+1, and 𝑏𝑛+1,𝑛+1. �
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6.4. Bounding the number of distinguished elements in the deep cusp

In this subsection, we bound the number of elements with large q-invariant that lie in the deep cusp.

Theorem 6.24. We have Idcusp
𝑋 (L(𝑀)) = 𝑂

(
𝑋𝑛+1+ 1

2 𝜅

𝑀 log2𝑛 𝑋
)
.

Recall from (40) that

Idcusp
𝑋 (L(𝑀)) �

∑
𝐿

∑
Z:𝑎𝑔+1,𝑔+1∈Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋);

here, the first sum is over r-tuples 𝐿 = (𝐿1, . . . , 𝐿𝑟 ) with 𝐿1 ≤ 𝐿2 ≤ · · · ≤ 𝐿𝑛 that partition the region
{(𝜇1, . . . , 𝜇𝑟 ) ∈ [𝑌−Θ1 , 𝑌Θ2 ]𝑟 : 𝜇1 ≤ . . . ≤ 𝜇𝑟 } into dyadic ranges, and the second sum is over saturated
subsets Z of K ∪M, where

𝑁 (L(𝑀), 𝐿,Z , 𝑋) =
∫
𝑇Z (𝐿,𝑌 )

#
{
(𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀) : 𝐵 ∈ S (𝐿, 𝑠)

}
𝛿(𝑠)𝑑×𝑠.

The set S (𝐿, 𝑠) is the union over Λ ∈ Σ(𝐿, 𝑠) of 𝑆(Λ), where 𝑆(Λ) denotes the lattice of integral
symmetric matrices whose row space is contained in Λ ⊗ R, and Σ(𝐿, 𝑠) denotes the set of primitive
lattices Λ ∈ Z𝑛+1 of rank n such that the successive minima 𝜇1, . . . , 𝜇𝑛 of 𝑠−1(Λ) satisfy 𝐿𝑖 ≤ 𝜇𝑖 < 2𝐿𝑖

for each 𝑖 ∈ {1, . . . , 𝑛}. Finally, recall from §6.1 and Proposition 5.4 that

𝑤(ℓ𝑔+1,𝑔+1)2 = 𝐿2
𝑔+1𝑡

−2
𝑔+1 ≤ 𝑐1𝑌𝑡

−2
𝑔+1 = 𝑐1𝑌𝑤(𝑎𝑔+1,𝑔+1) < 𝑐1𝑐𝑔+1,𝑔+1 < 𝑐

′ 2
𝑔+1

for every 𝑠 ∈ 𝑇Z (𝑌, 𝐿). Hence, we may assume that ℓ𝑔+1,𝑔+1 ∈ Z .
The deep cusp contains � 𝑋𝑛+1 elements, and we obtain a saving because the elements we are

counting have q-invariant greater than M. To make use of this condition, we require an upper bound on
the size of the |𝑞 |-invariant of elements in (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1). To accomplish this, we have the
following preliminary result.

Lemma 6.25. Let (𝐴, 𝐵) ∈ (𝑌D ×𝑌D) ∩𝑊0 (R) be such that Δ (𝐴, 𝐵) > 𝑋2𝑛−2−𝜅 . Denote the top right
(𝑔 + 1) × (𝑔 + 2) block of B by 𝐵top. Then

det(𝐵top(𝐵top)𝑡 ) � 𝑌2(𝑔+1)−(𝑛+1)𝜅 .

Proof. Let (𝐴′, 𝐵′) = 𝑌−1 (𝐴, 𝐵) ∈ (D ×D) ∩𝑊0(R). Then it suffices to prove that

det(𝐵′ top (𝐵′ top)𝑡 ) � 𝑌−(𝑛+1)𝜅 .

Since |Δ (𝐴, 𝐵) | > 𝑋2𝑛−2−𝜅 , we have |Δ (𝐴′, 𝐵′) | > 𝑋−𝜅 . By Proposition 3.6, there is a polynomial
𝑃 ∈ Z[𝑊0] such that

Δ (𝐴′′, 𝐵′′) = 𝑃(𝐴′′, 𝐵′′) det(𝐵′′ top (𝐵′′ top)𝑡 )

for any (𝐴′′, 𝐵′′) ∈ 𝑊0 (R). Since (𝐴′, 𝐵′) ∈ D × D, which is an absolutely bounded region, we have
|𝑃(𝐴′, 𝐵′) | � 1. Hence,

det(𝐵′ top (𝐵′ top)𝑡 ) = Δ (𝐴′, 𝐵′)
𝑃(𝐴′, 𝐵′) � 𝑋−𝜅 ,

as desired. �

Next, we have the following upper bound on the |𝑞 |-invariant.
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Proposition 6.26. Let Z ⊂ Z1 be a saturated set containing 𝑎𝑔+1,𝑔+1 and ℓ𝑔+1,𝑔+1. Let 𝐿 = (𝐿1, . . . , 𝐿𝑛)
be a sequence of nondecreasing positive real numbers. Then for any 𝑠 ∈ 𝑇Z (𝐿,𝑌 ) and (𝐴, 𝐵) ∈
(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1), we have

|𝑞 | (𝐴, 𝐵) � 𝑌 (𝑔+1)2+ 𝑛+1
2 𝜅

𝑔+1∏
𝑖=1

𝐿𝑖 . (66)

Proof. Suppose (𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(1). Since 𝑎𝑔+1,𝑔+1 ∈ Z , we have (𝐴, 𝐵) ∈ 𝑊0(Z).
By Lemma 6.4, ker(𝐵) is 1-dimensional and does not lie inside Span{𝑒1, . . . , 𝑒𝑔+1} as this (𝑔 + 1)-
plane is isotropic with respect to A. Let 𝑤1 ∈ SpanZ{𝑒𝑔+2, . . . , 𝑒𝑛+1} be a primitive vector so that
{𝑒1, . . . , 𝑒𝑔+1, 𝑤1} forms a basis for the primitive lattice in SpanR{𝑒1, . . . , 𝑒𝑔+1} +ker(𝐵). Complete 𝑤1
to an integral basis {𝑤1, . . . , 𝑤𝑔+2} for SpanZ{𝑒𝑔+2, . . . , 𝑒𝑛+1}. We can now use the integral basis

{𝑒1, . . . , 𝑒𝑔+1, 𝑤1, . . . , 𝑤𝑔+2} (67)

of Z𝑛+1 to compute the |𝑞 |-invariant of (𝐴, 𝐵), as the first 𝑔 + 1 vectors generate a primitive lattice
isotropic with respect to A and B, and the first 𝑔 + 2 vectors generate a primitive lattice isotropic
with respect to B. Note also that with respect to the standard inner product on R𝑛+1, since 𝑤1 ∈
SpanR{𝑒1, . . . , 𝑒𝑔+1} + ker(𝐵), we have

𝑤1 ⊥
(
SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} ∩ 𝐶 (𝐵)

)
, (68)

where 𝐶 (𝐵) denotes the column space of B.
Let 𝐴′ and 𝐵′ be the Gram matrices of the quadratic forms defined by A and B with respect to this

new basis (67). Since the first 𝑔 + 1 vectors of this basis are part of the standard basis, we see that (𝐴, 𝐵)
and (𝐴′, 𝐵′) are 𝐺0 (Z)-equivalent, where 𝐺0 is defined in §3.1. Hence,

|𝑄 | (𝐴′, 𝐵′) = |𝑄 | (𝐴, 𝐵) � 𝑌 (𝑔+1) (𝑔+2)
𝑔+1∏
𝑘=1

𝑡−1
𝑘 .

Let 𝐵′′ denote the top right (𝑔 + 1) × (𝑔 + 1) block of 𝐵′. Then, by the definition of q, we have

|𝑞 | (𝐴, 𝐵) = |𝑞 | (𝐴′, 𝐵′) = |𝑄 | (𝐴′, 𝐵′)
| det(𝐵′′) | � 1

| det(𝐵′′) |𝑌
(𝑔+1) (𝑔+2)

𝑔+1∏
𝑘=1

𝑡−1
𝑘 . (69)

We now work towards proving a lower bound on | det(𝐵′′) |. Let 𝑝1 (resp., 𝑝2) denote the projection
of R𝑛+1 onto the first 𝑔 + 1 coefficients (resp., the last 𝑔 + 2 coefficients). Let 𝐵top (resp., 𝐵′top) denote
the top right (𝑔 + 1) × (𝑔 + 2) block of B (resp., 𝐵′). Then by (68), we have 𝐵top𝑝2 (𝑤1) = 0. Consider
the following two (𝑔 + 2) × (𝑔 + 2) matrices in block form:

𝐵∗ =

(
𝐵top

𝑝2 (𝑤1)𝑡
)
, 𝛾 =

(
𝑝2 (𝑤1) · · · 𝑝2 (𝑤𝑔+2)

)
.

Then

𝐵∗𝛾 =

(
0 𝐵′′

|𝑤1 |2 ∗

)
.

Let Λ2 denote the rank 𝑔 + 1 lattice in Z𝑔+2 spanned by the rows of 𝐵top. Then | det(𝐵∗) | = 𝑑 (Λ2) |𝑤1 |.
Since {𝑝2(𝑤1), . . . , 𝑝2 (𝑤𝑔+2)} is an integral basis for Z𝑔+2, we have det 𝛾 = ±1, and so
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| det(𝐵′′) | = | det(𝐵∗) det 𝛾 |
|𝑤1 |2

=
𝑑 (Λ2) |𝑤1 | · 1

|𝑤1 |2
=
𝑑 (Λ2)
|𝑤1 |

.

We now use the fact that 𝐵 ∈ S (𝐿, 𝑠). This means that the row span of B lies in an n-dimensional
primitive lattice Λ ⊂ Z𝑛+1 with basis of the form {𝑠ℓ1, . . . , 𝑠ℓ𝑛} where 𝐿𝑖 ≤ |ℓ𝑖 | < 2𝐿𝑖 and {ℓ1, . . . , ℓ𝑛}
are reduced. By assumption, ℓ𝑔+1,𝑔+1 ∈ Z , and hence, ℓ𝑖, 𝑗 ∈ Z for all 𝑖 ≤ 𝑔 + 1 and 𝑗 ≤ 𝑔 + 1. Thus,
the first 𝑔 + 1 coefficients of 𝑠ℓ1, . . . , 𝑠ℓ𝑔+1 are all 0, and {𝑠ℓ1, . . . , 𝑠ℓ𝑔+1} forms an integral basis of
a primitive lattice Λ1 of rank 𝑔 + 1 in SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1}. By (68), 𝑤1 is a primitive vector in
SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} orthogonal to Λ1. Hence,

|𝑤1 | = 𝑑 (Λ1).

By (68), we have SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} ∩ 𝐶 (𝐵) ≠ SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1}, and so

SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} ∩ 𝐶 (𝐵) = Λ1 ⊗ R.

In particular, since Λ1 is primitive, the first 𝑔 + 1 columns of B belong to Λ1. That is, there is a
(𝑔 + 1) × (𝑔 + 1) matrix C (with integer coefficients) such that

𝐵top = 𝐶
	

�
𝑝2 (𝑠ℓ1)𝑡

...
𝑝2 (𝑠ℓ𝑔+1)

��
and so

| det(𝐶) | = 𝑑 (Λ2)
𝑑 (𝑝2 (Λ1))

=
𝑑 (Λ2)
|𝑤1 |

= | det(𝐵′′) |. (70)

To obtain a lower bound on | det(𝐶) |, we write

𝑠 =

(
𝐴1 0
0 𝐴2

)
with 𝐴1 =

	

�
𝑡−1
1

. . .

𝑡−1
𝑔+1

�� , 𝐴2 =
	

�
𝑡−1
𝑔+2

. . .

𝑡−1
𝑛+1

�� .
Let 𝑀 top denote the (𝑔 + 1) × (𝑔 + 2) matrix with rows 𝑝2 (ℓ1)𝑡 , . . . , 𝑝2 (ℓ𝑔+1)𝑡 . Then

𝐶𝑀 top𝐴2 = 𝐵top.

Consider the pair (𝐴0, 𝐵0) := 𝑠−1(𝐴, 𝐵) ∈ (𝑌D × 𝑌D) ∩𝑊0,𝑛+1 (R) satisfying

|Δ (𝐴0, 𝐵0) | = |Δ (𝐴, 𝐵) | > 𝑋2𝑛−2−𝜅

since (𝐴, 𝐵) ∈ L(1). The top right (𝑔 + 1) × (𝑔 + 2) block 𝐵top
0 of 𝐵0 satisfies

𝐴1𝐵
top
0 𝐴2 = 𝐵top,

and so

𝐶𝑀 top = 𝐴1𝐵
top
0 .
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The rows of 𝑀 top form a reduced basis for a lattice Λ3 ⊂ Z𝑔+2 with 𝐿𝑖 ≤ |𝑝2 (ℓ𝑖) | < 2𝐿𝑖 . Thus,

det(𝐵′′)2 = det(𝐶)2 =
det(𝐴1𝐵

top
0 (𝐵top

0 )𝑡 𝐴1)
det(𝑀 top (𝑀 top)𝑡 ) �

𝑡−2
1 · · · 𝑡−2

𝑔+1

𝐿2
1 · · · 𝐿

2
𝑔+1

det(𝐵top
0 (𝐵top

0 )𝑡 ). (71)

By Equations (69) and (69),

|𝑞 | (𝐴, 𝐵) � 𝑌 (𝑔+1) (𝑔+2) 𝐿1 · · · 𝐿𝑔√
det(𝐵top

0 (𝐵top
0 )𝑡 )

.

The result now follows from Lemma 6.25. �

Proof of Theorem 6.24. We write

Idcusp
𝑋 (L(𝑀)) �

∑
𝐿

∑
Z

𝑎𝑔+1,𝑔+1∈Z
ℓ𝑔+1,𝑔+1∈Z

𝑁 (L(𝑀), 𝐿,Z , 𝑋), (72)

and obtain upper bounds on 𝑁 (L(𝑀), 𝐿,Z , 𝑋) for each Z ⊂ Z1 with 𝑎𝑔+1,𝑔+1, ℓ𝑔+1,𝑔+1 ∈ Z . Fix such
a set Z with 𝑁 (L(𝑀), 𝐿,Z , 𝑋) > 0 and an element 𝑠 ∈ 𝑇Z (𝐿,𝑌 ). Then

(𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀) ⊂ (𝑠(𝑌D) ∩ 𝑆(Z)) × (𝑠(𝑌D) ∩ S (𝐿, 𝑠).

We begin by bounding the number of elements in #(𝑠(𝑌D) ∩ 𝑆(Z)). Let Kdist := {𝑎𝑖 𝑗 | 1 ≤ 𝑖 ≤ 𝑗 ≤
𝑔 + 1}. By assumption, Kdist is a subset of Z ∩K. Define 𝜋K : Z1 ∩K → K\Z1 by

𝜋K (𝑎𝑖 𝑗 ) := 𝑎𝑛+1− 𝑗 , 𝑗 .

This agrees with the 𝜋𝑘 as defined in §6.3.1 when restricted to K. For any 𝛼 ∈ Z1 ∩ K, we have
𝑌𝑤(𝜋K (𝛼)) � 1 and 𝑤(𝜋K (𝛼)) � 𝑤(𝛼). For any 𝑎𝑖 𝑗 ∈ (Z1 ∩K)\Kdist, we have 𝑖 < 𝑔 + 1 < 𝑗 . Thus,∏

𝛼∈(Z∩K)\Kdist

𝑤(𝜋K (𝛼))
𝑤(𝛼) �

∏
𝛼∈(Z1∩K)\Kdist

𝑤(𝜋K (𝛼))
𝑤(𝛼) =

∏
1≤𝑖<𝑔+1< 𝑗

𝑖+ 𝑗≤𝑛

𝑡𝑖
𝑡𝑛+1− 𝑗

=
∏

1≤𝑖≤ 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗
.

Therefore,

#
(
𝑠(𝑌D) ∩ 𝑆(Z)

)
� 𝑌 (𝑛+1) (𝑛+2)/2−#(Z∩K)

∏
𝛼∈Z∩K

1
𝑤(𝛼)

� 𝑌 (𝑛+1) (𝑛+2)/2−#(Z∩K)
( ∏
𝛼∈Kdist

1
𝑤(𝛼)

) ( ∏
𝛼∈(Z∩K)\Kdist

𝑌𝑤(𝜋𝑞 (𝛼))
𝑤(𝛼)

)
� 𝑌 (𝑛+1) (𝑛+2)/2

𝑌#Kdist

( ∏
1≤𝑖≤ 𝑗≤𝑔+1

𝑡𝑖𝑡 𝑗

) ( ∏
1≤𝑖≤ 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗

)
=
𝑌 (𝑛+1) (𝑛+2)/2

𝑌 (𝑔+1) (𝑔+2)/2 (𝑡1 · · · 𝑡𝑔+1)𝑔+2
( ∏

1≤𝑖≤ 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗

)
. (73)

We now obtain an upper bound on #(𝑠(𝑌D) ∩ S (𝐿, 𝑠)). Recall that

#
(
𝑠(𝑌D) ∩ S (𝐿, 𝑠)

)
=

∑
Λ∈Σ (𝐿,𝑠)

#
(
𝑌D ∩ 𝑠−1𝑆(Λ)

)
. (74)
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Let Λ ∈ Σ(𝐿, 𝑠) be a lattice such that 𝑠−1(Λ) has reduced basis {ℓ1, . . . , ℓ𝑛} with 𝐿𝑖 ≤ |ℓ𝑖 | < 2𝐿𝑖 for
each 𝑖 = 1, . . . , 𝑛. Suppose there exists (𝐴, 𝐵) ∈ (𝑠(𝑌D) × 𝑠(𝑌D)) ∩ L(𝑀) with 𝐵 ∈ 𝑠(𝑌D) ∩ 𝑆(Λ).
By Proposition 6.26,

𝑀 � 𝑌 (𝑔+1)2+ 𝑛+1
2 𝜅

𝑔+1∏
𝑖=1

𝐿𝑖 . (75)

Recall also from the proof of Proposition 6.26 that

SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} ∩ 𝐶 (𝐵) = SpanR{𝑠ℓ1, . . . , 𝑠ℓ𝑔+1}.

Hence,

SpanR{𝑒𝑔+2, . . . , 𝑒𝑛+1} ∩ SpanR{𝑠ℓ𝑔+2, . . . , 𝑠ℓ𝑛} = {0}.

It follows that the set {𝑝1 (𝑠ℓ𝑔+2), . . . , 𝑝1 (𝑠ℓ𝑛)}, and thus the set {𝑝1 (ℓ𝑔+2), . . . , 𝑝1 (ℓ𝑛)}, are both linearly
independent. There then exist vectors 𝑣𝑔+2, . . . , 𝑣𝑛 ∈ SpanR{𝑒1, . . . , 𝑒𝑔+1} such that

(𝑣𝑔+2 · · · 𝑣𝑛)𝑡 (ℓ𝑔+2 · · · ℓ𝑛) = 𝐼𝑔+1

is the identity matrix. Let 𝐵′ ∈ 𝑠(𝑌D) ∩ 𝑆(Λ) be any element and write

𝑠−1𝐵′ =
∑

1≤𝑖≤ 𝑗≤𝑛

𝛽𝑖 𝑗ℓ𝑖 ∗ ℓ 𝑗 ,

where ℓ𝑖 ∗ ℓ 𝑗 is as defined in (23). Then for 𝑔 + 2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, since 𝑣𝑖 , 𝑣 𝑗 ⊥ ℓ1, . . . , ℓ𝑔+2, we have

𝑣𝑡𝑖 (𝑠
−1𝐵′)𝑣 𝑗 =

{
2𝛽𝑖 𝑗 if 𝑖 ≠ 𝑗 ,

𝛽𝑖𝑖 if 𝑖 = 𝑗
.

Since the top left (𝑔 + 1) × (𝑔 + 1) block of 𝐵′ ∈ 𝑠(𝑌D) ∩ 𝑆(Λ) is 0, the same is true for 𝑠−1𝐵′. Hence,
𝛽𝑖 𝑗 = 0 whenever 𝑔 + 2 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. In other words,

𝑌D ∩ 𝑠−1𝑆(Λ) ⊂ SpanZ{ℓ𝑖 ∗ ℓ 𝑗 | 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and 𝑖 ≤ 𝑔 + 1}.

By Proposition 5.2, we have

#(𝑌D ∩ 𝑠−1𝑆(Λ)) �
∏

1≤𝑖≤ 𝑗≤𝑛
𝑖≤𝑔+1

𝐿𝑖𝐿 𝑗�𝑌

𝑌

𝐿𝑖𝐿 𝑗

�
( ∏

1≤𝑖≤ 𝑗≤𝑛
𝑖≤𝑔+1

𝑌

𝐿𝑖𝐿 𝑗

) ∏
1≤𝑖≤ 𝑗≤𝑛
𝑖≤𝑔+1

𝐿𝑖𝐿 𝑗�𝑌

( 𝐿𝑖𝐿 𝑗

𝑌

𝑌

𝐿𝑛+1− 𝑗𝐿 𝑗

)

� 𝑌𝑛(𝑛+1)/2

(𝐿1 · · · 𝐿𝑛)𝑛+1
(𝐿𝑔+2 · · · 𝐿𝑛)𝑔+2

𝑌 (𝑔+1) (𝑔+2)/2

∏
1≤𝑖≤ 𝑗≤𝑛
𝑖≤𝑔+1

𝐿𝑖

𝐿𝑛+1− 𝑗

� 𝑌𝑛(𝑛+1)/2

(𝐿1 · · · 𝐿𝑛)𝑛+1
(𝐿𝑔+2 · · · 𝐿𝑛)𝑔+2

𝑌 (𝑔+1) (𝑔+2)/2

∏
1≤𝑖< 𝑗≤𝑔+1

𝐿 𝑗

𝐿𝑖
, (76)

where the second bound follows since 𝐿𝑛+1− 𝑗𝐿 𝑗 � 𝑌 for all j by Proposition 5.4; and the last bound
follows because the map from {(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and 𝑖 ≤ 𝑔 + 1} to {(𝑘, ℓ)} sending (𝑖, 𝑗) to
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(𝑛 + 1 − 𝑗 , 𝑖) is one-to-one with its image contained within the set of pairs (𝑘, ℓ) with 𝑘 < ℓ ≤ 𝑔 + 1,
and because the 𝐿𝑖’s are nondecreasing.

To obtain a bound on the size of Σ(𝐿, 𝑠), we use (43):

#Σ(𝐿, 𝑠) � (𝐿1𝐿2 · · · 𝐿𝑛)𝑛+1
( ∏

1≤𝑖< 𝑗≤𝑛

𝐿𝑖

𝐿 𝑗

) ( ∏
𝛼∈Z∩M

1
𝑤(𝛼)

)
.

Let Mdist = {ℓ𝑖, 𝑗 | 1 ≤ 𝑖 ≤ 𝑔 + 1, 1 ≤ 𝑗 ≤ 𝑔 + 1}. Recall that elements ℓ𝑖, 𝑗 ∈ Z1 satisfy 𝑖 + 𝑗 ≤ 𝑛 + 1.
Hence, for any ℓ𝑖 𝑗 ∈ (Z1 ∩M)\Mdist, exactly one of i and j is ≤ 𝑔 + 1. Define

𝜋M : (Z1 ∩M)\Mdist → M

𝜋M (ℓ𝑖, 𝑗 ) =

{
ℓ𝑖,𝑛+2−𝑖 if 𝑖 ≤ 𝑔 + 1;
ℓ𝑛+1− 𝑗 , 𝑗 if 𝑗 ≤ 𝑔 + 1.

We claim that the image of 𝜋M is disjoint from Z . Indeed, when 𝑖 ≤ 𝑔 + 1, we have 𝜋M (ℓ𝑖, 𝑗 ) ∉ Z1,
and when 𝑗 ≤ 𝑔 + 1, we have 𝜋M (ℓ𝑖, 𝑗 ) ∉ Z by Lemma 6.5 and the fact that 𝑎𝑔+1,𝑔+1 ∈ Z . Thus,
𝑤(𝜋M (𝛼)) � 1 and 𝑤(𝜋M (𝛼)) � 𝑤(𝛼) for every 𝛼 ∈ (Z1 ∩M)\Mdist. It follows that∏

𝛼∈ZM

1
𝑤(𝛼) �

( ∏
ℓ∈Mdist

1
𝑤(ℓ)

) ( ∏
(Z1∩M)\Mdist

𝑤(𝜋(ℓ))
𝑤(ℓ)

)
�

(𝑡1 · · · 𝑡𝑔+1)𝑔+1

(𝐿1 · · · 𝐿𝑔+1)𝑔+1

( ∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

) ( ∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝐿 𝑗

𝐿𝑖

)
,

so that

#Σ(𝐿, 𝑠) � (𝐿1 · · · 𝐿𝑛)𝑛+1 (𝑡1 · · · 𝑡𝑔+1)𝑔+1

(𝐿1 · · · 𝐿𝑔+1)𝑔+1

( ∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

) ( 𝑔+1∏
𝑖=1

𝑛∏
𝑗=𝑖

𝐿𝑖

𝐿 𝑗

)
. (77)

Combining (74), (76) and (77) and the identity( ∏
1≤𝑖< 𝑗≤𝑔+1

𝐿 𝑗

𝐿𝑖

) ( 𝑔+1∏
𝑖=1

𝑛∏
𝑗=𝑖

𝐿𝑖

𝐿 𝑗

)
=

(𝐿1 · · · 𝐿𝑔+1)𝑔+1

(𝐿𝑔+2 · · · 𝐿𝑛)𝑔+1

now yields

#
(
𝑠(𝑌D) ∪ S (𝐿, 𝑠)

)
� 𝑌𝑛(𝑛+1)/2

(𝐿1 · · · 𝐿𝑛)𝑛+1
(𝐿𝑔+2 · · · 𝐿𝑛)𝑔+2

𝑌 (𝑔+1) (𝑔+2)/2

( ∏
1≤𝑖< 𝑗≤𝑔+1

𝐿 𝑗

𝐿𝑖

)
· (𝐿1 · · · 𝐿𝑛)𝑛+1 (𝑡1 · · · 𝑡𝑔+1)𝑔+1

(𝐿1 · · · 𝐿𝑔+1)𝑔+1

( ∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

) ( 𝑔+1∏
𝑖=1

𝑛∏
𝑗=𝑖

𝐿𝑖

𝐿 𝑗

)
=

𝑌𝑛(𝑛+1)/2

𝑌 (𝑔+1) (𝑔+2)/2 (𝑡1 · · · 𝑡𝑔+1)𝑔+1(𝐿𝑔+2 · · · 𝐿𝑛)
∏

𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

� 𝑌𝑛(𝑛+1)/2

𝑌 (𝑔+1) (𝑔+2)/2 (𝑡1 · · · 𝑡𝑔+1)𝑔+1(𝐿𝑔+2 · · · 𝐿𝑛)
( ∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

) ( 𝑛∏
𝑗=𝑔+2

𝑌

𝐿 𝑗𝐿𝑛+1− 𝑗

)
=
𝑌𝑛(𝑛+1)/2+𝑔+1

𝑌 (𝑔+1) (𝑔+2)/2
(𝑡1 · · · 𝑡𝑔+1)𝑔+1

𝐿1 · · · 𝐿𝑔+1

∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗
, (78)
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where the fourth line follows since 𝐿𝑛+1− 𝑗𝐿 𝑗 � 𝑌 for all j by Proposition 5.4. Finally, note that

(𝑡1 · · · 𝑡𝑔+1)2𝑔+3
∏

1≤𝑖< 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗

∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

=
(𝑡1 · · · 𝑡𝑔+1)𝑔+2

(𝑡𝑔+2 · · · 𝑡𝑛+1)𝑔+1

∏
1≤𝑖< 𝑗≤𝑔+1

𝑡𝑖
𝑡 𝑗

∏
𝑔+2≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

=
∏

1≤𝑖< 𝑗≤𝑛+1

𝑡𝑖
𝑡 𝑗

= 𝛿(𝑠)−1.

Therefore, combining (73), (75) and (78) gives

𝑁 (L(𝑀), 𝐿,Z , 𝑋) �
∫
𝑇Z (𝐿,𝑌 )

#
(
𝑠(𝑌D) ∩ 𝑆(Z)

)
· #
(
𝑠(𝑌D) ∩ S (𝐿, 𝑠)

)
𝛿(𝑠)𝑑×𝑠

� 𝑌 (𝑛+1)2−(𝑔+1)2

𝐿1 · · · 𝐿𝑔+1

∫
𝑇Z (𝐿,𝑌 )

𝑑×𝑠

� 𝑋 (𝑛+1)+ 1
2 𝜅

𝑀
log𝑛 𝑌 .

Theorem 6.24 now follows immediately from (72) by summing over the𝑂 (1) different possible Z’s and
the 𝑂 (log𝑛 𝑌 ) different possible L’s. �

6.5. Proof of the main uniformity estimates

Proof of Theorem 5. Case (a) of Theorem 5 follows from an application of the quantitative version
of the Ekedahl geometric sieve developed in [4, Theorem 3.3]. Case (b) follows from (14), (16), and
Theorem 4.2.

We now use the results of this section to prove the most intricate case – namely, Case (c). For any
prime p, the number binary n-ic forms mod 𝑝2 having discriminant 0 mod 𝑝2 is𝑂 (𝑝2𝑛) since the p-adic
densities of these forms is𝑂 (1/𝑝2) by Proposition A.1. For any squarefree m, we then have𝑂 𝜖 (𝑚2𝑛−𝜖 )
binary n-ic forms mod 𝑚2 having discriminant 0 mod 𝑚2. Hence, for any squarefree 𝑚 ≤ 𝑋1/2, we have
the bound

#{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋} �𝜖 𝑚

2𝑛−𝜖 (𝑋/𝑚2)𝑛+1 = 𝑋𝑛+1/𝑚2−𝜖 .

Using this bound for 𝑚 ≤ 𝑋1/2, we may assume that 𝑀 > 𝑋1/2. We note next that from (35), (37), and
Lemmas 6.1 and 6.2, we have

#
⋃

𝑚>𝑀
𝑚 squarefree

{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋} � I𝑋 (L(

√
𝑀)) + 𝑋

𝑛+1
√
𝑀

+ 𝑋𝑛 + 𝑋𝑛+1− 𝜅
2𝑛−2 .

Applying Theorems 6.6, 6.11 and 6.24, we obtain

I𝑋 (L(
√
𝑀)) = Imain

𝑋 (L(
√
𝑀)) + Iscusp

𝑋 (L(
√
𝑀)) + Idcusp

𝑋 (L(
√
𝑀))

� 𝑋𝑛+1−1/(4𝑛)+𝜖 + 𝑋𝑛+1−1/(88𝑛6) + 𝑋
𝑛+1+ 1

2 𝜅

√
𝑀

log2𝑛 𝑋.

Setting 𝜅 = (2𝑛 − 2)/(88𝑛6) yields the desired result. �

Theorem 5 has the following immediate consequence. For a positive squarefree integer m, let W𝑚

denote the set of integral binary n-ic forms whose discriminants are divisible by 𝑚2.
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Corollary 6.27. For a positive integer 𝑁 ≥ 3, and positive real numbers M and X, we have∑
𝑚>𝑀

𝑚 squarefree

#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝑋} �𝜖
𝑋𝑛+1+𝜉𝑛+𝜖

𝑀 𝛿𝑛
+ 𝑋𝑛+1−𝜂𝑛+𝜖 ,

where 𝛿𝑛 = 1/2, 𝜉𝑛 = 0, 𝜂𝑛 = 1/(2𝑛) when n is odd and 𝛿𝑛 = 1/3, 𝜉𝑛 = 1/(88𝑛5), 𝜂𝑛 = 1/(88𝑛6)
when n is even.

Proof. Suppose 𝑓 ∈ W𝑚 for some squarefree 𝑚 > 𝑀 . Note that for a fixed f, the number of such
𝑚 > 𝑀 such that 𝑓 ∈ W𝑚 is �𝜖 𝑋

𝜖 . Hence, it suffices to consider the cardinality of the union over
squarefree 𝑚 > 𝑀 . Let 𝑚1 be the product of primes 𝑝 | 𝑚 such that 𝑓 ∈ W (1)

𝑝 . Let 𝑚2 be the product
of primes 𝑝 | 𝑚 such that 𝑓 ∈ W (2)

𝑝 . Then 𝑚1𝑚2 = 𝑚. For any positive real numbers 𝑀1, 𝑀2 such that
𝑀1𝑀2 = 𝑀 , we have either 𝑚1 > 𝑀1 or 𝑚2 > 𝑀2, and so

#
⋃

𝑚>𝑀
𝑚 squarefree

#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝑋} ≤ #
⋃

𝑚>𝑀1
𝑚 squarefree

#{ 𝑓 ∈ W (1)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋},

#
⋃

𝑚>𝑀
𝑚 squarefree

#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝑋} ≤ #
⋃

𝑚>𝑀2
𝑚 squarefree

#{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝑋}.

Optimizing, we take 𝑀1 = 𝑀2 =
√
𝑀 when n is odd, and take 𝑀1 = 𝑀1/3, 𝑀2 = 𝑀2/3 when n is even.

A direct application of Theorem 5 now yields the result. �

7. Proofs of the main results

We begin by proving a more general form of Theorem 6. Let N be a positive squarefree integer, and
for each 𝑝 | 𝑁 , let Σ𝑝 ⊂ 𝑉𝑛 (Z/𝑝2Z) be a nonempty subset. Denote the collection (Σ𝑝)𝑝 |𝑁 by Σ. Let
𝑉𝑛 (Σ) be the set of all 𝑓 ∈ 𝑉𝑛 (Z) such that the reduction of f modulo 𝑝2 lies in Σ𝑝 for all 𝑝 | 𝑁 . For
𝑝 | 𝑁 , let 𝛼𝑛 (Σ, 𝑝) (resp., 𝛽𝑛 (Σ, 𝑝)) denote the density of elements 𝑓 ∈ 𝑉𝑛 (Z) such that 𝑝2 � Δ ( 𝑓 )
(resp., 𝑅 𝑓 is maximal at p) and such that the reduction of f modulo 𝑝2 lies in Σ𝑝 . For 𝑝 � 𝑁 , simply set
𝛼𝑛 (Σ, 𝑝) = 𝛼𝑛 (𝑝) and 𝛽𝑛 (Σ, 𝑝) = 𝛽𝑛 (𝑝). Finally, define

𝛼𝑛 (Σ) =
∏
𝑝

𝛼𝑛 (Σ, 𝑝); 𝛽𝑛 (Σ) =
∏
𝑝

𝛽𝑛 (Σ, 𝑝).

We are now ready to carry out our sieve.

Theorem 7.1. We have

#{ 𝑓 ∈ 𝑉𝑛 (Σ) : 𝐻 ( 𝑓 ) < 𝑋 and Δ ( 𝑓 ) squarefree}= 𝛼𝑛 (Σ) (2𝑋)𝑛+1 +𝑂 𝜖 (E (𝑋, 𝑁, 𝜖)),

#{ 𝑓 ∈ 𝑉𝑛 (Σ) : 𝐻 ( 𝑓 ) < 𝑋 and 𝑅 𝑓 maximal} = 𝛽𝑛 (Σ) (2𝑋)𝑛+1 +𝑂 𝜖 (E (𝑋, 𝑁, 𝜖)),

where the error term is given by

E (𝑋, 𝑁, 𝜖) := 𝑋𝑛+1−𝜂𝑛+𝜖 + 𝑁2𝑋𝑛+3(𝜂𝑛+𝜉𝑛)+𝜖 + 𝑁2𝑛+2𝑋 (6𝑛+3) (𝜂𝑛+𝜉𝑛)+𝜖 ,

where 𝜂𝑛 = 1/(2𝑛), 𝜉𝑛 = 0 when n is odd, and 𝜂𝑛 = 1/(88𝑛6), 𝜉𝑛 = 1/(88𝑛5) when n is even.

Proof. For any squarefree integer m that is relatively prime to N, let W𝑚 (Σ) denote the set of elements
𝑓 ∈ 𝑉 (Z) such that 𝑚2 | Δ ( 𝑓 ), and such that the reduction of f modulo 𝑝2 belongs to Σ𝑝 for every
𝑝 | 𝑁 . Note that W𝑚 (Σ) is a union of
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𝛾(Σ, 𝑁, 𝑚) := 𝑁2𝑛+2𝑚2𝑛+2
∏
𝑝 |𝑚

( #Σ𝑝

𝑝2𝑛+2 − 𝛼𝑛 (Σ, 𝑝)
)
= 𝑂 𝜖 (𝑁2𝑛+2𝑚2𝑛+𝜖 )

translates of 𝑚2𝑁2𝑉 (Z). By inclusion-exclusion and Corollary 6.27, we have for any 𝑀 > 0,

#{ 𝑓 ∈ 𝑉𝑛 (Σ) : 𝐻 ( 𝑓 ) < 𝑋 and Δ ( 𝑓 ) squarefree}

=
∑

(𝑚,𝑁 )=1
𝑚≤𝑀

𝜇(𝑚)#{ 𝑓 ∈ W𝑚(Σ) : 𝐻 ( 𝑓 ) < 𝑋} +𝑂 𝜖

( 𝑋𝑛+1+𝜉𝑛+𝜖

𝑀 𝛿𝑛
+ 𝑋𝑛+1−𝜂𝑛+𝜖

)
=

∑
(𝑚,𝑁 )=1
𝑚≤𝑀

𝜇(𝑚)𝛾(Σ, 𝑁, 𝑚)
( 2𝑋
𝑁2𝑚2 +𝑂 (1)

)𝑛+1
+𝑂 𝜖

( 𝑋𝑛+1+𝜉𝑛+𝜖

𝑀 𝛿𝑛
+ 𝑋𝑛+1−𝜂𝑛+𝜖

)
=

∑
(𝑚,𝑁 )=1
𝑚≤𝑀

(
(2𝑋)𝑛+1𝜇(𝑚)

∏
𝑝 |𝑚

( #Σ𝑝

𝑝2𝑛+2 − 𝛼𝑛 (Σ, 𝑝)
)
+𝑂

(
𝑁2𝑋𝑛𝑚 𝜖 + 𝑁2𝑛+2𝑚2𝑛+𝜖

))

+ 𝑂 𝜖

( 𝑋𝑛+1+𝜉𝑛+𝜖

𝑀 𝛿𝑛
+ 𝑋𝑛+1−𝜂𝑛+𝜖

)
= (2𝑋)𝑛+1𝛼𝑛 (Σ) +𝑂

( 𝑋𝑛+1

𝑀1−𝜖
+ 𝑁2𝑀1+𝜖 𝑋𝑛 + 𝑁2𝑛+2𝑀2𝑛+1+𝜖 + 𝑋

𝑛+1+𝜉𝑛+𝜖

𝑀 𝛿𝑛
+ 𝑋𝑛+1−𝜂𝑛+𝜖

)
.

Recalling that 𝛿𝑛 = 1/2 or 1/3, we may take 𝑀 = 𝑋3𝜂𝑛+3𝜉𝑛 to obtain the first claim in Theorem 7.1.
The second claim follows identically. �

Taking 𝑁 = 1 in Theorem 7.1 yields Theorem 6. Theorems 1 and 2 are then immediate consequences
of Theorem 6.

Next, we prove lower bounds on the number of 𝑆𝑛-fields having bounded discriminant. Let 𝑓 (𝑥, 𝑦) =
𝑎0𝑥

𝑛 + 𝑎1𝑥
𝑛−1𝑦 + · · · + 𝑎𝑛𝑦𝑛 be a real binary n-ic form with 𝑎0 ≠ 0 and nonzero discriminant. Let 𝜃 be

the image of x in R[𝑥]/( 𝑓 (𝑥, 1)), and write 𝑅 𝑓 for the lattice spanned by

1, 𝜁1 = 𝑎0𝜃, 𝜁2 = 𝑎0𝜃
2 + 𝑎1𝜃, . . . , 𝜁𝑛−1 = 𝑎0𝜃

𝑛−1 + · · · + 𝑎𝑛−1

in R[𝑥]/( 𝑓 (𝑥, 1)). Here, we identify R[𝑥]/( 𝑓 (𝑥, 1)) with R𝑛 via its real and complex embeddings and
by identifying C = R ⊕ 𝑖R with R2.

We say that 𝑓 (𝑥, 𝑦) is Minkowski-reduced if the basis {1, 𝜁1, . . . , 𝜁𝑛−1} of 𝑅 𝑓 is Minkowski-reduced.
We say that 𝑓 (𝑥, 𝑦), or its SL2(Z)-orbit, is quasi-reduced if there exists 𝛾 ∈ SL2 (Z) such that 𝛾. 𝑓 is
Minkowski-reduced. We add the prefix ‘strongly’ if the relevant lattice has a unique Minkowski-reduced
basis. The relevance of being strongly quasi-reduced is contained in the following lemma.

Lemma 7.2. Let 𝑛 ≥ 3 and let 𝑓 (𝑥, 𝑦) and 𝑓 ∗(𝑥, 𝑦) be strongly quasi-reduced integral binary n-ic
forms. Suppose the corresponding rank-n rings 𝑅 𝑓 and 𝑅 𝑓 ∗ are isomorphic. Then 𝑓 (𝑥, 𝑦) and 𝑓 ∗(𝑥, 𝑦)
are SL2 (Z)-equivalent.

Proof. It suffices to assume 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + · · · + 𝑎𝑛𝑦𝑛 and 𝑓 ∗(𝑥, 𝑦) = 𝑎∗0𝑥

𝑛 + · · · + 𝑎∗𝑛𝑦𝑛 are strongly
Minkowski-reduced with 𝑅 𝑓  𝑅 𝑓 ∗ . We show 𝑓 (𝑥, 𝑦) = 𝑓 ∗(𝑥, 𝑦). Let 𝜙 : 𝑅 𝑓 → 𝑅 𝑓 ∗ be a ring isomor-
phism. By the uniqueness of Minkowski-reduced bases, 𝜙 must map the basis elements 1, 𝜁1, . . . , 𝜁𝑛−1
for 𝑅 𝑓 to the corresponding basis elements 1, 𝜁∗1 , . . . , 𝜁

∗
𝑛−1 for 𝑅 𝑓 ∗ . Let 𝜃 denote the image of x in

Q[𝑥]/( 𝑓 (𝑥, 1)) and 𝜃∗ the image of x in Q[𝑥]/( 𝑓 ∗ (𝑥, 1)). Then 𝜙(𝑎0𝜃) = 𝑎∗0𝜃
∗ and

𝑎∗0𝜃
∗2 + 𝑎∗1𝜃

∗ = 𝜙(𝑎0𝜃
2 + 𝑎1𝜃) = (𝑎∗2

0 /𝑎0)𝜃∗2 + (𝑎1𝑎
∗
0/𝑎0)𝜃∗.
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Since 𝜃∗ and 𝜃∗2 are linearly independent, we have 𝑎0 = 𝑎∗0, 𝑎1 = 𝑎∗1, and 𝜙(𝜃) = 𝜃∗, where we extend 𝜙
naturally to 𝑅 𝑓 ⊗Q = Q[𝑥]/( 𝑓 (𝑥, 1)). Then since 𝜙(𝜁𝑛−1) = 𝜁∗𝑛−1, we have 𝑎𝑖 = 𝑎∗𝑖 for 𝑖 = 0, . . . , 𝑛− 2.
Finally, 𝜙(−𝑎𝑛−1𝜃−𝑎𝑛) = 𝜙(𝜃𝜁𝑛−1) = 𝜙(𝜃∗𝜁∗𝑛−1) = −𝑎∗𝑛−1𝜃

∗−𝑎∗𝑛. Hence, 𝑎𝑛−1 = 𝑎∗𝑛−1 and 𝑎𝑛 = 𝑎∗𝑛. �

Proof of Theorem 3. The condition of being strongly quasi-reduced is open in 𝑉𝑛 (R). Therefore, given
a strongly quasi-reduced element 𝑓 ∈ 𝑉𝑛 (R), there exists an open neighbourhood B of f in which every
element is strongly quasi-reduced. Moreover, since the action of SL2 (Z) on 𝑉𝑛 (R) is discrete, we may
ensure that no two elements of B are SL2 (Z)-equivalent. We may further scale B in order to assume
that every element in B has discriminant bounded by 1.

Consider the set B𝑋 := 𝑋1/(2𝑛−2) · B. No two elements in it are SL2 (Z)-equivalent, and every
element in it is strongly quasi-reduced. Therefore, the rings corresponding to any two elements in B𝑋

are nonisomorphic. However, applying Theorem 7.1, we see that � 𝑋 (𝑛+1)/(2𝑛−2) integral elements in
B𝑋 have discriminant less than X and correspond to maximal orders in degree-n number fields. Since
these rings are pairwise nonisomorphic, so are their fields of fractions. Hence, we have constructed
� 𝑋 (𝑛+1)/(2𝑛−2) nonisomorphic degree-n number fields of absolute discriminant less than X. Restricting
to counting forms that have squarefree discriminant yields � 𝑋 (𝑛+1)/(2𝑛−2) nonisomorphic 𝑆𝑛-number
fields. �

We note that Theorem 7.1 also allows us to construct � 𝑋 (𝑛+1)/(2𝑛−2)𝑆𝑛-number fields satisfying
any finite set of splitting conditions.

A. Computations of the local densities 𝜶𝒏 ( 𝒑), 𝜷𝒏 ( 𝒑)

Let 𝑛 ≥ 2 be a fixed integer. For a prime p, let 𝛼𝑛 (𝑝) denote the density of the set of binary n-ic forms
having discriminant indivisible by 𝑝2, and let 𝛽𝑛 (𝑝) denote the density of binary n-ic forms whose
associated rank-n rings are maximal at p. In this section, we compute 𝛼𝑛 (𝑝) and 𝛽𝑛 (𝑝) for all integers
𝑛 ≥ 2 and all primes p.

Proposition A.1. We have 𝛼2 (2) = 1/2 and 𝛼𝑛 (2) = 3/8 for 𝑛 ≥ 3. For odd primes p, we have

𝛼𝑛 (𝑝) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝3

)
if 𝑛 = 2,(

1 − 1
𝑝

)2 (
1 + 1

𝑝

)2
if 𝑛 = 3,(

1 − 1
𝑝

)2 (
1 + 2

𝑝
− 2
𝑝4 + 1

𝑝5

)
if 𝑛 = 4,(

1 − 1
𝑝

)2 (
1 + 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝2

)
if 𝑛 ≥ 5.

Proof. For 𝑗 ≥ 0, 𝑛 ≥ 1, and p prime, we let 𝜈 𝑗 (𝑛, 𝑝) denote the density within monic degree-n integer
polynomials of the set of those whose discriminants have p-adic valuation j. Then 𝜈0 (𝑛, 𝑝) and 𝜈1(𝑛, 𝑝)
are computed in [2, Proposition 6.4 and Theorem 6.8]:

𝜈0 (𝑛, 𝑝) =
{

1 if 𝑛 = 1;
1 − 𝑝−1 if 𝑛 ≥ 2.

𝜈1 (𝑛, 𝑝) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if 𝑝 = 2 or 𝑛 = 1;
𝑝−1 (1 − 𝑝−1) if 𝑛 = 2, 𝑝 ≠ 2;
𝑝−1 (1 − 𝑝−1)2 if 𝑛 = 3, 𝑝 ≠ 2;
(1 − 𝑝−1)2(1 − (−𝑝)−𝑛) (1 + 𝑝)−1 if 𝑛 ≥ 4, 𝑝 ≠ 2.
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To compute the densities 𝛼𝑛 (𝑝), we partition the set of integral binary n-ic forms 𝑓 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 +

𝑎1𝑥
𝑛−1𝑦 + · · · + 𝑎𝑛𝑦𝑛 whose discriminants are not divisible by 𝑝2 into three subsets, and compute each

of their densities. For any binary form 𝑓 (𝑥, 𝑦) in Z[𝑥, 𝑦] or in (Z/𝑝2Z) [𝑥, 𝑦], we write 𝑓 (𝑥, 𝑦) for its
reduction modulo p.

Subset 1: The set of 𝑓 (𝑥, 𝑦) with 𝑝 � 𝑎0 and 𝑝2 � Δ ( 𝑓 ). Here, for any fixed leading coefficient
𝑎0 � 0(mod 𝑝), the density of 𝑓 (𝑥, 𝑦) having discriminant indivisible by 𝑝2 is simply given by
𝜈0 (𝑛, 𝑝) + 𝜈1(𝑛, 𝑝). Therefore, the p-adic density of this subset is equal to(

1 − 1
𝑝

) (
𝜈0(𝑛, 𝑝) + 𝜈1(𝑛, 𝑝)

)
.

Subset 2: The set of 𝑓 (𝑥, 𝑦) with 𝑝 | 𝑎0, 𝑝 � 𝑎1, and 𝑝2 � Δ ( 𝑓 ). In this case, we begin by proving
that the density of elements f with fixed 𝑎0 and 𝑎1 and with 𝑝2 � Δ ( 𝑓 ) is the same as the density of
binary (𝑛 − 1)-ic forms g, with fixed leading coefficient 𝑎1 such that 𝑝2 � Δ (𝑔). Indeed, given any
(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1, we write

𝑓𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦) = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1𝑦 + 𝑎2𝑥
𝑛−2𝑦2 + · · · + 𝑎𝑛𝑦𝑛 ∈ (Z/𝑝2Z) [𝑥, 𝑦],

𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦) = 𝑎1𝑥
𝑛−1 + 𝑎2𝑥

𝑛−2𝑦 + · · · + 𝑎𝑛𝑦𝑛−1 ∈ (Z/𝑝2Z) [𝑥, 𝑦] .

Define

𝑆 (1)𝑓 = {(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1 : 𝑝2 strongly divides Δ ( 𝑓𝑎2 ,...,𝑎𝑛 )},

𝑆 (2)𝑓 = {(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1 : 𝑝2 weakly divides Δ ( 𝑓𝑎2 ,...,𝑎𝑛 )},

𝑆 (1)𝑔 = {(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1 : 𝑝2 strongly divides Δ (𝑔𝑎2 ,...,𝑎𝑛 )},

𝑆 (2)𝑔 = {(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1 : 𝑝2 weakly divides Δ (𝑔𝑎2 ,...,𝑎𝑛 )}.

Recall that 𝑝2 strongly divides the discriminant of f if and only if 𝑓 (𝑥, 𝑦) has a factor of the form ℎ(𝑥, 𝑦)3

for some linear form h or a factor of the form 𝑗 (𝑥, 𝑦)2 where j is a binary form of degree at least 2. Since
𝑓𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦) ≡ 𝑦 𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦), and since y does not divide 𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦), we see that 𝑓𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦)
admits such a factor if and only if 𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 𝑦) does. Hence, 𝑆 (1)𝑓 = 𝑆 (1)𝑔 . However, we have

#𝑆 (2)𝑓 = #{(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1\𝑆 (1)𝑓 : ∃𝑟 ∈ Z/𝑝Z, (𝑥 − 𝑟)2 | 𝑓𝑎2 ,...,𝑎𝑛 (𝑥, 1), 𝑝2 | 𝑓𝑎2 ,...,𝑎𝑛 (𝑟, 1)}

=
1
𝑝

#{(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1\𝑆 (1)𝑓 : ∃𝑟 ∈ Z/𝑝Z, (𝑥 − 𝑟)2 | 𝑓𝑎2 ,...,𝑎𝑛 (𝑥, 1), 𝑝 | 𝑓𝑎2 ,...,𝑎𝑛 (𝑟, 1)}

=
1
𝑝

#{(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1\𝑆 (1)𝑔 : ∃𝑟 ∈ Z/𝑝Z, (𝑥 − 𝑟)2 | 𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 1), 𝑝 | 𝑔𝑎2 ,...,𝑎𝑛 (𝑟, 1)}

= #{(𝑎2, . . . , 𝑎𝑛) ∈ (Z/𝑝2Z)𝑛−1\𝑆 (1)𝑔 : ∃𝑟 ∈ Z/𝑝Z, (𝑥 − 𝑟)2 | 𝑔𝑎2 ,...,𝑎𝑛 (𝑥, 1), 𝑝2 | 𝑔𝑎2 ,...,𝑎𝑛 (𝑟, 1)}

= #𝑆 (2)𝑔 .

The density (#𝑆 (1)𝑔 + #𝑆 (2)𝑔 )/𝑝2(𝑛−1) is 𝜈0 (𝑛 − 1, 𝑝) + 𝜈1(𝑛 − 1, 𝑝). Taking into account that 𝑝 | 𝑎0 and
𝑝 � 𝑎1, we see that the density of this second subset is

1
𝑝

(
1 − 1

𝑝

) (
𝜈0 (𝑛 − 1, 𝑝) + 𝜈1(𝑛 − 1, 𝑝)

)
.

Subset 3: The set of 𝑓 (𝑥, 𝑦) with 𝑝 | 𝑎0, 𝑝 | 𝑎1, and 𝑝2 � Δ ( 𝑓 ). Note that we already have 𝑝 | Δ ( 𝑓 )
in this case. To ensure that 𝑝2 � Δ ( 𝑓 ), we must have 𝑝 > 2, 𝑝2 � 𝑎0, and 𝑝 � 𝑎2. Indeed, if 𝑝 = 2, then
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since 2 | Δ ( 𝑓 ), we have 4 | Δ ( 𝑓 ); if 𝑝2 | 𝑎0, then 𝑝2 (weakly) divides Δ ( 𝑓 ); and if 𝑝 | 𝑎2, then 𝑦3 | 𝑓
and so 𝑝2 (strongly) divides Δ ( 𝑓 ). As polynomials in 𝑎0, . . . , 𝑎𝑛, we have

Δ (𝑎0𝑥
𝑛 + · · · + 𝑎𝑛) ≡ −4𝑎0𝑎

3
2Δ (𝑎2𝑥

𝑛−2 + · · · + 𝑎𝑛) (mod 𝑎2
0, 𝑎0𝑎1, 𝑎

2
1).

Hence, if 𝑝 > 2, 𝑝2 � 𝑎0, and 𝑝 � 𝑎2, then 𝑝2 � Δ ( 𝑓 ) if and only if 𝑝 � Δ (𝑎2𝑥
𝑛−2+𝑎3𝑥

𝑛−3𝑦+· · · 𝑎𝑛𝑦𝑛−2).
Hence, the density of this third subset is

1
𝑝2

(
1 − 1

𝑝

)2
𝜈0(𝑛 − 2, 𝑝).

Adding together these three densities yields the proposition. �

Next, we compute the value of 𝛽𝑛 (𝑝) for integers 𝑛 ≥ 2 and primes p.

Proposition A.2. We have

𝛽𝑛 (𝑝) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
1 − 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝3

)
if 𝑛 = 2;(

1 − 1
𝑝2

) (
1 − 1

𝑝3

)
if 𝑛 ≥ 3.

Proof. The density of monic degree-n integer polynomials that are maximal at p was computed in [2,
Proposition 3.5] to be 1 − 𝑝−2 for all 𝑛 ≥ 2 and all primes p.

We compute 𝛽𝑛 (𝑝) by working over Z𝑝 . Fix a binary n-ic form 𝑓 (𝑥, 𝑦) ∈ 𝑉𝑛 (Z𝑝). Suppose 𝑓 (𝑥, 𝑦)
(mod p) factors as 𝑦𝑘𝑔(𝑥, 𝑦), where 𝑔(𝑥, 𝑦) is a binary (𝑛 − 𝑘)-ic form over F𝑝 with nonzero 𝑥𝑛−𝑘 -
term for some 𝑘 ∈ {0, . . . , 𝑛}. Then, by Hensel’s lemma, 𝑓 (𝑥, 𝑦) factors as ℎ1 (𝑥, 𝑦)ℎ2 (𝑥, 𝑦) where
ℎ1 (𝑥, 𝑦) ∈ Z𝑝 [𝑥] is a binary k-ic form such that ℎ1 (𝑥, 𝑦) (mod p) is 𝑦𝑘 and ℎ2(𝑥, 𝑦) ∈ Z𝑝 [𝑥] is a binary
(𝑛 − 𝑘)-ic such that ℎ2 (𝑥, 𝑦) (mod p) is 𝑔(𝑥, 𝑦). By scaling ℎ1 and ℎ2, we may further assume that the
leading coefficient of ℎ2 (𝑥, 𝑦) is 1.

Since ℎ1 (𝑥, 𝑦) and ℎ2 (𝑥, 𝑦) share no common factors (mod p), the rank-n ring over Z𝑝 associated
to 𝑓 (𝑥, 𝑦) is isomorphic to the product of the rings associated to ℎ1 (𝑥, 𝑦) and ℎ2 (𝑥, 𝑦). Since ℎ1 (𝑥, 𝑦)
reduces to a unit times 𝑦𝑘 modulo p, the rank-k ring associated to ℎ1 (𝑥, 𝑦) is always maximal when
𝑘 ≤ 1 and is maximal when 𝑘 ≥ 2 if and only if 𝑝2 does not divide the 𝑥𝑘 -coefficient. However, ℎ2 (𝑥, 𝑦)
is monic, and so the probability that it is maximal is exactly 1 − 𝑝−2 when 𝑛 − 𝑘 ≥ 2, and 1 when
𝑛 − 𝑘 = 1. When 𝑘 = 𝑛, 𝑓 (𝑥, 𝑦) is a multiple of p and is automatically nonmaximal. Summing over k,
we have for 𝑛 ≥ 3,

𝛽𝑛 (𝑝) =
1∑

𝑘=0

1
𝑝𝑘

(
1 − 1

𝑝

) (
1 − 1

𝑝2

)
+

𝑛−2∑
𝑘=2

1
𝑝𝑘

(
1 − 1

𝑝

)2 (
1 − 1

𝑝2

)
+

𝑛∑
𝑘=𝑛−1

1
𝑝𝑘

(
1 − 1

𝑝

)2

=
(
1 − 1

𝑝2

) (
1 − 1

𝑝3

)
.

When 𝑛 = 2, we have

𝛽2 (𝑝) =
(
1 − 1

𝑝

) (
1 − 1

𝑝2

)
+ 1
𝑝

(
1 − 1

𝑝

)
+ 1
𝑝2

(
1 − 1

𝑝

)2
=
(
1 − 1

𝑝

) (
1 + 1

𝑝
− 1
𝑝3

)
.

This concludes the proof of Proposition A.2. �
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