Bull. Austral. Math. Soc. Vol. 55 (1997) [497-501]

A CHARACTERISATION OF WEAK COMPACTNESS IN BANACH SPACES

WARREN B. MOORS

In this short note we give a new characterisation of weak compactness.

The primary purpose of this paper is to provide a proof of the 'Note added in proof' in [3]. In doing so, we shall also derive a new characterisation of weak compactness in Banach spaces.

For a Banach space X with closed unit ball B(X), we shall denote by $\operatorname{ext} B(X^*)$, the set of all extreme points of the dual ball $B(X^*)$ and we shall denote by σ_e , the weak topology on X generated by $\operatorname{ext} B(X^*)$.

Observe that the σ_e -topology on X is Hausdorff and that the closed unit ball B(X) is also closed in the σ_e -topology. Both of these observations follow from the fact that for each $x \in X$, there exists an element $e \in \operatorname{ext} B(X^*)$ such that e(x) = ||x||. In the case when $X \equiv C(K) - (K \text{ compact and Hausdorff and } B(X) \text{ is the supremum norm ball})$, the σ_e -topology is the pointwise topology on C(K). In the case of a Banach space X, whose dual ball $B(X^*)$ is rotund, the σ_e -topology is the weak topology on X.

THEOREM 0.1. (Rainwater's theorem, [5]) Let X be a Banach space and let $\{x_n : n \in N\}$ be a bounded sequence in X. Then $\{x_n : n \in N\}$ converges weakly to x if and only if $\{x_n : n \in N\}$ converges to x in the σ_e -topology.

COROLLARY 0.1. A bounded sequence in a Banach space X is weakly Cauchy if and only if it is σ_e -Cauchy.

PROOF: It need only be observed that a sequence $\{x_n : n \in N\}$ is weakly Cauchy if and only if for each pair $\{k_n : n \in N\}$ and $\{j_n : n \in N\}$ of increasing sequences of natural numbers, the sequence $\{x_{k_n} - x_{j_n} : n \in N\}$ converges weakly to 0.

THEOREM 0.2. Let F be an infinite bounded subset of a Banach space X. Then there exists a countably infinite subset E of F such that $\overline{co}^{\sigma_e} E = \overline{co} E$. In particular,

Received 9th July, 1996.

Research supported by a New Zealand Science and Technology Post-Doctoral Fellowship.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

every bounded sequence $\{x_n : n \in N\}$ in X possesses a subsequence $\{x_{n_k} : k \in N\}$ such that $\overline{co}^{\sigma_e}\{x_{n_k} : k \in N\} \subseteq \overline{co}\{x_n : n \in N\}.$

PROOF: Suppose that this is not the case. Then for each countably infinite subset E of F there exists an element $z \in \overline{co}^{\sigma_e} E \setminus \overline{co} E$. Using this, let us show that for any infinite sequence $\{x_n : n \in N\}$ in F, there exists an element

$$z \in \left(\bigcap_{n=1}^{\infty} \overline{co}^{\sigma_e} \{x_k : k \ge n\}\right) \setminus \overline{co} \{x_n : n \in N\}$$

We begin by observing that since B(X) is σ_e -closed and convex, we have that diam $F = \text{diam } \overline{co}^{\sigma_e} F$. So, in particular, we have that $\overline{co}^{\sigma_e} F$ is also bounded. Let $\{x_n : n \in N\}$ be an infinite sequence in F. By our assumption, the Bishop-Phelps theorem and a separation argument, there exists $f \in X^*$ and $z \in \overline{co}^{\sigma_e} \{x_n : n \in N\}$ such that

$$f(z) = \max f(\overline{co}^{\sigma_e}\{x_n : n \in N\}) > \sup f(\overline{co}\{x_n : n \in N\}).$$

We claim that

$$z \in \bigcap_{n=1}^{\infty} \overline{co}^{\sigma_e} \{ x_k : k \ge n \}.$$

To see this, we note that for each $n \in N$,

$$\overline{co}^{\sigma_e}\{x_k: k \in N\} = co(\overline{co}^{\sigma_e}\{x_k: k > n\} \cup co\{x_1, x_2, \dots, x_n\})$$

Therefore, for each $n \in N$, there exists $\lambda_n \in [0,1]$, $z_n \in \overline{co}^{\sigma_e}\{x_k : k > n\}$ and $y_n \in co\{x_1, x_2, ..., x_n\}$ such that $z = \lambda_n z_n + (1 - \lambda_n)y_n$. It now follows that for each $n \in N$, $\lambda_n = 1$ and $z = z_n \in \overline{co}^{\sigma_e}\{x_k : k > n\}$ and so

$$z \in \left(\bigcap_{n=1}^{\infty} \overline{co}^{\sigma_e} \{x_k : k \ge n\}\right) \setminus \overline{co} \{x_n : n \in N\}.$$

Let $\{x_n : n \in N\}$ be an arbitrary sequence of distinct elements of F. We shall show that $\{x_n : n \in N\}$ contains a weakly Cauchy subsequence. Let $Y \equiv \overline{sp}\{x_n : n \in N\} \subseteq X$ and denote by $E_Y \equiv \operatorname{ext} B(Y^*)$. Since $(B(Y^*), \operatorname{weak}^*)$ is separable and metrisable so is $(E_Y, \operatorname{weak}^*)$. Let $\{e_Y^n : n \in N\}$ be a dense subset of E_Y . Since for each $m \in N$, the sequence $\{e_Y^m(x_n) : n \in N\}$ is bounded, we may apply a Cantor diagonalisation argument to extract a subsequence $\{x_{n_k} : k \in N\}$ of $\{x_n : n \in N\}$ such that

 $\lim_{k\to\infty} e_Y^m(x_{n_k}) \text{ exists for each } m \in N.$

We claim that the sequence $\{x_{n_k} : k \in N\}$ is weakly Cauchy. To see this, we consider the following. For each $k \in N$, define $\hat{x}_{n_k} : E_Y \to R$ by $\hat{x}_{n_k}(e_Y) \equiv e_Y(x_{n_k})$.

Weak compactness

Clearly, each \hat{x}_{n_k} is continuous on $(E_Y, \text{ weak}^*)$. We shall show that the sequence $\{\widehat{x}_{n_k}: k \in N\}$ is pointwise convergent to some continuous function \widehat{z}_0 on $(E_Y, \text{ weak}^*)$; and then apply Rainwater's theorem. Now, for each $x \in \overline{co}^{\sigma_e}\{x_n : n \in N\}$ we may define a continuous 'lift' \hat{x} of x onto E_Y in the following manner. Define $\hat{x}: E_Y \to R$, by $\widehat{x}(e_Y) \equiv e(x)$ where e is any member of $B(X^*)$ such that $e|_Y \equiv e_Y$. Our first task is to show that \hat{x} is well-defined. For each $e_Y \in E_Y$, let $HB(e_Y) \equiv \{e \in B(X^*) : e|_Y = e_Y\}$. It is not too hard to show that the set-valued mapping $e_Y \to HB(e_Y)$ is a weak^{*} cusco on E_Y , that is, for each $e_Y \in E_Y$, $HB(e_Y)$ is non-empty, weak* compact and convex and $e_Y \to HB(e_Y)$ is weak* upper semi-continuous. Furthermore, it is not too hard to see that each $HB(e_Y)$ is an extremal subset of $B(X^*)$ and so ext $HB(e_Y) \subseteq \operatorname{ext} B(X^*)$. Let us also note that by the Krein-Milman theorem, $HB(e_Y) = \overline{co}^{w^*} \operatorname{ext} HB(e_Y)$, for each $e_Y \in E_Y$. So to show that \hat{x} is well-defined it suffices to show that if e_1 and $e_2 \in \operatorname{ext} HB(e_Y)$ then $e_1(x) = e_2(x)$ or, equivalently, show that $x \in \ker(e_1 - e_2)$. However, this is obvious since $\{x_n : n \in N\} \subseteq \ker(e_1 - e_2)$ and $\ker(e_1 - e_2)$ is σ_e closed and convex. The fact that \hat{x} is continuous on $(E_Y, \text{ weak}^*)$ follows directly from the fact that $e_Y \to HB(e_Y)$ is a weak^{*} cusco on E_Y . Choose

$$z_0 \in \left(\bigcap_{m=1}^{\infty} \overline{co}^{\sigma_e} \{ x_{n_k} : k \ge m \} \right) \setminus \overline{co} \{ x_{n_k} : k \in N \}.$$

We shall show that $\{\hat{x}_{n_k} : k \in N\}$ converges pointwise to \hat{z}_0 on E_Y . Let us first observe that for each $e_Y \in E_Y$

$$\widehat{z}_0(e_Y) \in \bigcap_{m=1}^{\infty} \overline{co} \{ \widehat{x}_{n_k}(e_Y) : k \ge m \}.$$

Hence, for each $m \in N$,

$$\widehat{z}_0(e_Y^m) = \lim_{k \to \infty} \widehat{x}_{n_k}(e_Y^m).$$

Next, suppose that for some $e'_Y \in E_Y$,

$$\lim_{k\to\infty}\widehat{x}_{n_k}(e'_Y)\neq\widehat{z}_0(e'_Y).$$

Then there exists an $\varepsilon > 0$ and a subsequence $\{x_{n_{k_l}} : l \in N\}$ of $\{x_{n_k} : k \in N\}$ such that $\left|\hat{z}_0(e'_Y) - \hat{x}_{n_{k_l}}(e'_Y)\right| > \varepsilon$ for all $l \in N$. Moreover, by possibly replacing e'_Y by $-e'_Y$ and passing to a subsequence, we may assume that $\hat{z}_0(e'_Y) < \hat{x}_{n_{k_l}}(e'_Y) - \varepsilon$ for each $l \in N$. Now choose

$$x_0 \in \left(\bigcap_{m=1}^{\infty} \overline{co}^{\sigma_e} \{x_{n_{k_l}} : l \ge m\}\right) \setminus \overline{co} \{x_{n_{k_l}} : l \in N\}.$$

As before, we have that

$$\widehat{x}_0(e_Y) \in \bigcap_{m=1}^{\infty} \overline{\omega} \{ \widehat{x}_{n_{k_l}}(e_Y) : l \ge m \}.$$

Therefore $\hat{x}_0(e'_Y) \ge \hat{z}_0(e'_Y) + \varepsilon$ while $\hat{x}_0(e^m_Y) = \hat{z}_0(e^m_Y)$ for each $m \in N$. But this is not possible, since both \hat{x}_0 and \hat{z}_0 are continuous on $(E_Y, \text{ weak}^*)$. Hence we must have that \hat{z}_0 is the pointwise limit of the sequence $\{\hat{x}_{n_k} : k \in N\}$. Therefore, by Corollary 0.1, $\{x_{n_k} : k \in N\}$ is weakly Cauchy in Y and so weakly Cauchy in X. The next and penultimate step is to show that the sequence $\{x_{n_k} : k \in N\}$ converges weakly to z_0 . We know from Rainwater's theorem that to do this we need only show that

$$\lim_{k\to\infty} e(x_{n_k}) = e(z_0) \quad \text{for each } e \in \operatorname{ext} B(X^*).$$

To this end, let $e \in \text{ext } B(X^*)$. Now, $\{e(x_{n_k}) : k \in N\}$ is a Cauchy sequence in R and

$$e(z_0) \in \bigcap_{m=1}^{\infty} \overline{co} \{ e(x_{n_k}) : k \ge m \}.$$

Therefore,

$$e(z_0) = \lim_{k \to \infty} e(x_{n_k}).$$

This shows that z_0 is the weak limit of $\{x_{n_k} : k \in N\}$. The final step is to observe that this gives rise to our desired contradiction, since we chose $z_0 \notin \overline{co}\{x_{n_k} : k \in N\}$.

COROLLARY 0.2. Every bounded sequence $\{x_n : n \in N\}$ in a Banach space X contains a subsequence $\{x_{n_k} : k \in N\}$ such that

$$\bigcap_{m=1}^{\infty} \overline{co}^{\sigma_e} \{ x_{n_k} : k \ge m \} \subseteq \bigcap_{m=1}^{\infty} \overline{co} \{ x_n : n \ge m \}.$$

PROOF: This follows from the previous theorem and a diagonalisation argument. \Box

The next corollary improves the main result in [1].

COROLLARY 0.3. A bounded subset F of a Banach space X is relatively weakly compact if and only if for each sequence $\{x_n : n \in N\}$ in F

$$\bigcap_{n=1}^{\infty} \overline{co}^{\sigma_e} \{ x_n : n \ge m \} \neq \emptyset.$$

In particular, F is relatively weakly compact if and only if F is relatively σ_e -countably compact.

PROOF: The proof of this follows from Corollary 0.2 and the fact that F is relatively weakly compact if and only if for each sequence $\{x_n : n \in N\}$ in F

$$\bigcap_{m=1}^{\infty} \overline{co} \{ x_n : n \ge m \} \neq \emptyset.$$

REMARK. The author benefitted greatly by having an acquaintance with the manuscript [4], which contains a simplification of the main result in [2].

References

- J. Bourgain and M. Talagrand, 'Compacité Extrêmale', Proc. Amer. Math. Soc. 80 (1980), 68-70.
- [2] S.S. Khurana, 'Pointwise compactness on extreme points', Proc. Amer. Math. Soc. 83 (1981), 347-348.
- [3] W.B. Moors, 'A selection theorem for weak upper semi-continuous set-valued mappings', Bull. Austral. Math. Soc. 53 (1996), 213-227.
- [4] I. Namioka, 'A simplification of Khurana's proof', (unpublished manuscript, 1981).
- [5] J. Rainwater, 'Weak convergence of bounded sequences', Proc. Amer. Math. Soc. 14 (1963), p. 999.

Department of Mathematics The University of Auckland Private Bag 92019 Auckland New Zealand