BuLL. AUSTRAL. MATH. SocC. 46A55, 46A50, 46B20
VoL. 55 (1997) [497-501]

A CHARACTERISATION OF
WEAK COMPACTNESS IN BANACH SPACES

WARREN B. MOORsS

In this short note we give a new characterisation of weak compactness.

The primary purpose of this paper is to provide a proof of the ‘Note added in proof’
in [3]. In doing so, we shall also derive a new characterisation of weak compactness in
Banach spaces.

For a Banach space X with closed unit ball B(X), we shall denote by ext B(X*),
the set of all extreme points of the dual ball B(X*) and we shall denote by o, the
weak topology on X generated by ext B(X*).

Observe that the o.-topology on X is Hausdorff and that the closed unit ball
B(X) is also closed in the g.-topology. Both of these observations follow from the fact
that for each z € X, there exists an element e € ext B(X*) such that e(z) = ||z||. In
the case when X = C(K) — (K compact and Hausdorff and B(X) is the supremum
norm ball), the o.-topology is the pointwise topology on C(K). In the case of a Banach
space X, whose dual ball B(X*) is rotund, the o.-topology is the weak topology on
X.

THEOREM 0.1. (Rainwater’s theorem, [5]) Let X be a Banach space and let
{zn : n € N} be a bounded sequence in X . Then {z, : n € N} converges weakly to =
if and only if {z, : n € N} converges to = in the o.-topology.

CoroLLARY O.1. A bounded sequence in a Banach space X is weakly Cauchy
if and only if it is o.-Cauchy.

ProOF: It need only be observed that a sequence {z, : n € N} is weakly Cauchy
if and only if for each pair {k, : n € N} and {jn : n € N} of increasing sequences of
natural numbers, the sequence {z, — z;, : n € N} converges weakly to 0. 1]

THEOREM 0.2. Let F be an infinite bounded subset of a Banach space X . Then
there exists a countably infinite subset E of F such that ¢o°¢E = ¢oFE . In particular,
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every bounded sequence {z, : n € N} in X possesses a subsequence {zn, : k € N}
such that ¢’¢{z,, : k € N} C co{z, : n € N}.
PRrOOF: Suppose that this is not the case. Then for each countably infinite subset

E of F there exists an element z € co®¢ E\@oE. Using this, let us show that for any
infinite sequence {z, : n € N} in F, there exists an element

o0

z€ (ﬂ o {zk: k> n})\w{x,1 :n € N}
n=1

We begin by observing that since B(X) is o.-closed and convex, we have that diam F =

diam €67¢F. So, in particular, we have that ¢’ F is also bounded. Let {z,:n € N}

be an infinite sequence in F. By our assumption, the Bishop-Phelps theorem and a

separation argument, there exists f € X* and z € €6°¢{z, : n € N} such that

f(z) = max f(¢o°*{z, : n € N}) > sup f(co{z, : n € N}).

We claim that

To see this, we note that for each n € N,
co’¢{zk : k € N} = co(co”{zk : k > n} Uco{z1,Z2,...,Tn}).

Therefore, for each n € N, there exists A\, € [0,1], 2, € €0°¢{zx : k > n} and
Yn € co{T1,Z2, , ,Tn} such that z = A,z, + (1 — A\n)yn. It now follows that for each
ne€N, \y,=1and z =2, €@’ {zx: k> n} and so

zZ € (ﬁ co’¢{zy 1 k> n})\w{zn:ne N}.

n=1

Let {z, : n € N} be an arbitrary sequence of distinct elements of F. We shall
show that {z, : n € N} contains a weakly Cauchy subsequence. Let Y = 35p{z, :
n € N} C X and denote by Ey = ext B(Y*). Since (B(Y*), weak®) is separable and
metrisable so is (Fy, weak®). Let {e} : n € N} be a dense subset of Ey. Since for
each m € N, the sequence {e}*(z,) : n € N} is bounded, we may apply a Cantor
diagonalisation argument to extract a subsequence {z,, : k € N} of {z, : n € N}
such that

Jim e (zs, ) exists for each m € N.
—o00

We claim that the sequence {z,, : k € N} is weakly Cauchy. To see this, we
consider the following. For each k € N, define Z,, : Ey — R by Zp, (ey) = ey (zn,) -
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Clearly, each Z,, is continuous on (Ey, weak®). We shall show that the sequence
{Zn, : k € N} is pointwise convergent to some continuous function Z; on (Ey, weak®);
and then apply Rainwater’s theorem. Now, for each z € ¢6%¢{z, : n € N} we may de-
fine a continuous ‘lift’ T of = onto Ey in the following manner. Define Z: Ey — R, by
Z(ey) = e(z) where e is any member of B(X*) such that e|y = ey . Our first task is to
show that Z is well-defined. For each ey € Ey,let HB(ey) = {e € B(X*) : e|ly = ey}.
It is not too hard to show that the set-valued mapping ey — HB(ey) is a weak™ cusco
on Ey, that is, for each ey € Ey, HB(ey) is non-empty, weak* compact and convex
and ey — HB(ey) is weak* upper semi-continuous. Furthermore, it is not too hard to
see that each H B(ey) is an extremal subset of B(X*) and so ext HB(ey) C ext B(X*).
Let us also note that by the Krein-Milman theorem, HB(ey) = co® ext HB(ey), for
each ey € Ey. So to show that Z is well-defined it suffices to show that if e; and
e; € ext HB(ey) then ei(z) = ez(z) or, equivalently, show that z € ker(e; — e3).
However, this is obvious since {z, : n € N} C ker(e; — e2) and ker (e1 — e3) is 0.-
closed and convex. The fact that Z is continuous on (Ey, weak®) follows directly from
the fact that ey — HB(ey) is a weak* cusco on Ey. Choose

2o € ( n 0% {zn, : k> m})\%{:ﬂnk :ke N}
m=1

We shall show that {Z,, : K € N} converges pointwise to Zp on Ey. Let us first
observe that for each ey € Fy

[ o]

Zo(ey) € () @{Zn,(ey) : k > m}.

m=1
Hence, for each m € N,
Zo(ey’) = lim Z, (ef).
k—o0
Next, suppose that for some e}, € Ey,
lim Z,,, (e} Zo(ey).
Jim 7, (e,) # Bo(ey)

Then there exists an € > 0 and a subsequence {-"’nk, :l € N} of {z,, : k € N} such

that |Zo(ey) — :?,,k’ (e’y)l > ¢ for all I € N. Moreover, by possibly replacing e}, by
—ey and passing to a subsequence, we may assume that Zp(e} ) < ':E,,kl (ey) —¢ for each
€ N. Now choose

To € ( ﬁ 0" {Tn,, 11 2 m})\w{xnk, :le N}

m=1
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As before, we have that

>}

fo(ey) € ﬂ E{Enk‘ (ey) > m}

m=1
Therefore Zo(ey) > Zo(e} ) +¢ while Zo(e}?) = Zp(e?) for each m € N. But this is not
possible, since both Zp and Z; are continuous on (Ey, weak®). Hence we must have
that Zp is the pointwise limit of the sequence {Z,, : k € N}. Therefore, by Corollary
0.1, {zn, : k € N} is weakly Cauchy in Y and so weakly Cauchy in X. The next and
penultimate step is to show that the sequence {z,, : k € N} converges weakly to z.
We know from Rainwater’s theorem that to do this we need only show that

kllg)lo e(zn,) = e(20) for each e € ext B(X™).

To this end, let e € ext B(X*). Now, {e(zn,) : kK € N} is a Cauchy sequence in R and

o0

e(z) € ﬂ co{e(zn,) : k = m}.

m=1
Therefore,
e(z0) = kll’rgo e(zn,).
This shows that zp is the weak limit of {z,, : k € N}. The final step is to observe that
this gives rise to our desired contradiction, since we chose z9 & €0{zn, : k € N}. 1]

COROLLARY 0.2. Every bounded sequence {z, : n € N} in a Banach space X
contains a subsequence {zn, : k € N} such that

[o o] [o ]
ﬂ 0’ {zpn, : k2 m} C ﬂ @0{zp :n 2> m}.
m=1 m=1

PROOF: This follows from the previous theorem and a diagonalisation argument. [
The next corollary improves the main result in [1].

COROLLARY 0.3. A bounded subset F of a Banach space X is relatively weakly
compact if and only if for each sequence {z, :n € N} in F

[e o]

ﬂc—o‘“{xn:n}m};&@.

m=1
In particular, F is relatively weakly compact if and only if F is relatively o.-countably
compact.

PROOF: The proof of this follows from Corollary 0.2 and the fact that F is rela-
tively weakly compact if and only if for each sequence {z, :n € N} in F

ﬁ o{zn:n>m} #0.
m=1 ﬂ
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REMARK. The author benefitted greatly by having an acquaintance with the manuscript
[4], which contains a simplification of the main result in [2].

(2]
(3]

(4]
(5]
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