SOME INTERTWINING RELATIONS MODULO OPERATOR IDEALS

FUAD KITTANEH

Department of Mathematics, University of Jordan, Amman, Jordan e-mail: fkitt@ju.edu.jo

(Received 2 June, 2005; accepted 12 November, 2005)

Abstract. Let B(H) denote the algebra of all bounded linear operators on a separable, infinite-dimensional, complex Hilbert space H. Let I be a two-sided ideal in B(H). For operators A, B and $X \in B(H)$, we say that Xintertwines A and B modulo I if $AX - XB \in I$. It is easy to see that if X intertwines A and B modulo I, then it intertwines A^n and B^n modulo I for every integer n > 1. However, the converse is not true. In this paper, sufficient conditions on the operators A and B are given so that any operator X which intertwines certain powers of A and B modulo I also intertwines A and B modulo J for some two-sided ideal $J \supseteq I$.

2000 Mathematics Subject Classification. 47A53, 47B10, 47B15, 47B20, 47B47.

1. Introduction. Let *H* be a separable infinite-dimensional complex Hilbert space. Let $B(H) \supset K(H) \supset F(H)$ denote, respectively, the algebra of all bounded linear operators, the two-sided ideal of compact operators, and the two-sided ideal of finite rank operators on *H*. For any compact operator *T*, let $s_1(T), s_2(T) \dots$ be the eigenvalues of $|T| = (T^*T)^{1/2}$, arranged in decreasing order and repeated according to multiplicity. A compact operator *T* is said to be in the *Schatten p-class* $C_p(0 if <math>\Sigma_i s_i(T)^p < \infty$. For $p \ge 1$, the Schatten *p*-norm of *T* is defined by $||T||_p = (\Sigma_i s_i(T)^p)^{1/p}$. This norm makes C_p into a Banach space. For all p > 0, C_p is a two-sided ideal in B(H). Hence, C_1 is the trace class and C_2 is the Hilbert-Schmidt class. It is reasonable to let C_∞ denote the ideal of compact operators K(H) and $|| \cdot ||_\infty$ stand for the usual operator norm. We refer to [7] for the general theory of the Schatten *p*-classes.

Throughout this paper, every ideal in B(H) is assumed to be two-sided and proper. It is well known that if *I* is a non-trivial ideal in B(H), then $F(H) \subseteq I \subseteq C_{\infty}$.

Let *I* be an ideal in B(H); let *A*, *B* and $X \in B(H)$. We say that *X* intertwines *A* and *B* modulo *I* if $AX - XB \in I$. If *X* intertwines *A* and *B* modulo the trivial ideal, i.e., if AX - XB = 0, then we simply say that *X* intertwines *A* and *B*. It is easy to see that if *X* intertwines *A* and *B* modulo *I*, then it intertwines A^n and B^n modulo *I* for every integer n > 1. Of course, the converse is not true. Consider, for example, the case in which *A* and *B* are non-zero nilpotent operators.

It is the object of this paper to present some sufficient conditions on the operators A and B so that any operator X which intertwines certain powers of A and B modulo I, also intertwines A and B modulo J, where J is an ideal in B(H) such that $I \subseteq J$. Our results generalize earlier results on this problem by Al-Moajil [1], Duggal [5], and the author [10].

FUAD KITTANEH

2. Intertwining relations modulo arbitrary ideals. In [8], extending a result of Al-Moajil [1], the author has proved the following results.

THEOREM A. Let A, B and $X \in B(H)$, where A and B^* are subnormal. If $A^2X = XB^2$ and $A^3X = XB^3$, then AX = XB.

THEOREM B. Let A, B and $X \in B(H)$, where A and B^* are subnormal. If $A^2X - XB^2 \in F(H)$ and $A^3X - XB^3 \in F(H)$, then $AX - XB \in F(H)$.

THEOREM C. Let A, B and $X \in B(H)$, where A and B^* are subnormal. If $A^2X - XB^2 \in C_p$ and $A^3X - XB^3 \in C_p$, for some p with $1 \le p \le \infty$, then $AX - XB \in C_{8p}$.

By a slight modification of the proof of Theorem C given in [10], Duggal [5, Theorem 5] has extended this result to relatively prime powers other than 2 and 3.

The purpose of this section is to extend these results to larger classes of operators and to relatively prime powers other than 2 and 3. In fact, these theorems follow as immediate consequences of a general result (Theorem 1), which is valid for arbitrary ideals in B(H).

The following lemma, which is in the spirit of Lemma 1.1 in [1], indicates that in order to generalize Theorems A, B and C cited above, it is sufficient to consider two consecutive powers rather than two relatively prime powers.

LEMMA 1. Let I be an ideal in B(H). If A, B and $X \in B(H)$ are such that $A^m X - XB^m \in I$ and $A^n X - XB^n \in I$, for some relatively prime positive integers m and n, then $A^k X - XB^k \in I$ and $A^{k+l}X - XB^{k+1} \in I$, for some integer k > 1.

Proof. Since *m* and *n* are relatively prime positive integers, there exist integers *s* and *t* such that sm + tn = 1 and st is negative; say *s* is negative and *t* is positive. The assumptions $A^mX - XB^m \in I$ and $A^nX - XB^n \in I$ imply that $A^{-ms}X - XB^{-ms} \in I$ and $A^{nt}X - XB^{nt} \in I$. Since nt = -ms + 1, the result now follows by letting k = -ms.

The following elegant factorization result, which is due to Douglas [4], will be essential for us to accomplish our goal.

LEMMA 2. Let $T, S \in B(H)$. Then the following conditions are equivalent:

- (a) ran $T \subseteq$ ran S, where ran T denotes the range of T;
- (b) $TT^* \leq cSS^*$, for some constant c > 0;
- (c) T = SR, for some $R \in B(H)$.

It follows immediately from Lemma 2 that if $T \in B(H)$ is hyponormal, i.e., if $TT^* \leq T^*T$, then ran $T \subseteq$ ran T^* . Also, if ran $T \subseteq$ ran T^* , then $T = T^*R$ for some $R \in B(H)$, and hence $T^* = R^*T$. Thus, if ran $T \subseteq$ ran T^* , if $X \in B(H)$, and if I is an ideal in B(H), then $TX \in I$ implies $T^*X \in I$. The particular case, that hyponormal operators have this property, has been observed by Weiss in [12].

If *I* and *J* are ideals in B(H), let *I*. *J* denote the ideal generated by products of the form *TS* with $T \in I$ and $S \in J$. Hence, by induction, I^n is defined as $I^n = I^{n-1}$. *I* for every integer n > 1. It is well known (using the polar decomposition) that every ideal *I* in B(H) is self-adjoint; i.e., $T \in I$ if and only if $T^* \in I$. Also, $|T|^2 \in I^2$ if and only if $|T| \in I$, and $|T| \in I$ if and only if $T \in I$. Consequently, $T^*T \in I$ if and only if $T \in I^{1/2}$, where $I^{1/2}$ is the unique ideal whose square is *I*. For any integer n > 1, $I^{1/n}$ is defined in the obvious way.

We are now in a position to prove the main result of this section.

THEOREM 1. Let I be an ideal in B(H). Let A, B and $X \in B(H)$ with ran $A \subseteq$ ran A^* and ran $B^* \subseteq$ ran B. If $A^n X - X B^n \in I$ and $A^{n+1} X - X B^{n+1} \in I$, for some integer n > l, then $AX - XB \in I^{1/2^{n+1}}$.

Proof. Let *C* = *AX* − *XB*. Then simple algebra shows that *AⁿC* ∈ *I* and *CBⁿ* ∈ *I*. Since ran *A* ⊆ ran *A*^{*}, and since *AⁿC* ∈ *I*, it follows that *A^{*}Aⁿ⁻¹C* ∈ *I*. Thus, $(A^{n-1}C)^*(A^{n-1}C) \in I$, and so $A^{n-1}C \in I^{1/2}$. Continuing down in this way, we obtain that *AC* ∈ *I*^{1/2ⁿ⁻¹}. Again, the assumption ran *A* ⊆ ran *A*^{*} implies that *A^{*}C* ∈ *I*^{1/2ⁿ⁻¹}. Similarly, since ran *B^{*}* ⊆ ran B, and since *B^{*n}C^{*}* = (*CBⁿ*)^{*} ∈ *I*, it follows that *B^{*}C^{*}* ∈ *I*^{1/2ⁿ⁻¹}. Hence, *BC^{*}* ∈ *I*^{1/2ⁿ⁻¹}, and so *CB^{*}* ∈ *I*^{1/2ⁿ⁻¹}. But then *CC^{*}C* = *C*(*X^{*}A^{*}* − *B^{*}X^{*}*)*C* = *CX^{*}A^{*}C* − *CB^{*}X^{*}C* ∈ *I*^{1/2ⁿ⁻¹}. Hence, (*C^{*}C*)² ∈ *I*^{1/2ⁿ⁻¹}, which implies that *C^{*}C* ∈ *I*^{1/2ⁿ}, and so *C* ∈ *I*^{1/2ⁿ⁺¹}. This completes the proof.

An important special case of the range inclusion requirement in Theorem 1 is that A and B^* are hyponormal operators (in particular subnormal operators). The most interesting ideals for which Theorem 1 is applied are $\{0\}$, F(H) and $C_p(0 . Hence, Theorems A, B and C can be obtained as corollaries of Theorem 1 upon considering the following cases:$

(a) $I = \{0\}$, and so $I^{1/2^{n+1}} = \{0\}$, (b) I = F(H), and so $I^{1/2^{n+1}} = F(H)$, (c) $I = C_p$, and so $I^{1/2^{n+1}} = C_{2^{n+1}p}$ (0 .

Here we have, respectively, used the facts that T = 0 if and only $T^*T = 0$, $T \in F(H)$ if and only if $T^*T \in F(H)$, and $T \in C_{2p}$ if and only if $T^*T \in C_p(0 .$

We should like to close this section by remarking that if $I = \{0\}$ then, in Theorem 1, the conditions that ran $A \subseteq$ ran A^* and ran $B^* \subseteq$ ran B can be weakened so that ran $A \subseteq \overline{ran} A^*$ and $\overline{ran} B^* \subseteq \overline{ran} B$, or equivalently, (by taking orthogonal complements) ker $A \subseteq$ ker A^* and ker $B^* \subseteq$ ker B, where ker A and $\overline{ran} A$ denote the kernel of A and the closure (in the usual Hilbert space topology) of ran A, respectively. However, these conditions cannot be replaced by the symmetric conditions that ran $A \subseteq$ ran A^* and ran $B \subseteq$ ran B^* , or even more strongly, that A and B are hyponormal operators. This may be concluded from Remark 3.2 (a) in [1] or by considering the following example.

EXAMPLE 1. Let $\{e_n\}_{n=1}^{\infty}$ be an orthonormal basis for H. Let U be the unilateral shift operator defined by $Ue_n = e_{n+1}$, for all n, and let P be the orthogonal projection on the subspace spanned by e_1 and e_2 ; i.e., $Pe_1 = e_1$, $Pe_2 = e_2$ and $Pe_n = 0$ for n > 2. On $H \oplus H$, let $T = \begin{bmatrix} 0 & 0 \\ 0 & U \end{bmatrix}$ and $X = \begin{bmatrix} 0 & p \\ 0 & 0 \end{bmatrix}$. Then T is hyponormal, $T^2X = XT^2$ and $T^3X =$ XT^3 , but $TX \neq XT$. In fact, every product involved here is zero except $XT = \begin{bmatrix} 0 & pU \\ 0 & 0 \end{bmatrix}$, which is non-zero because $PUe_1 = e_2$.

3. Intertwining relations modulo non-trivial ideals. In [5], Duggal has proved the following two results.

THEOREM D. Let A, B and $X \in B(H)$ such that A is semi-Fredholm with ind $A \leq 0$ or B is semi-Fredholm with ind $B \geq 0$. If $A^m X - XB^m \in C_p$ and $A^n X - XB^n \in C_p$, for some relatively prime positive integers m and n, and some p with $1 \leq p \leq \infty$, then $AX - XB \in C_p$.

THEOREM E. Let A, B and $X \in B(H)$ such that $1 - A^*A \in C_p$ or $1 - B^*B \in C_p$, for some p with $1 \le p \le \infty$. If $A^mX - XB^m \in C_p$ and $A^nX - XB^n \in C_p$, for some relatively prime positive integers m and n, then $AX - XB \in C_p$.

FUAD KITTANEH

Theorem D is a generalization of Theorem 7 in [10]. It should be mentioned here that the condition $1 - B^*B \in C_p$ in Theorem E should be replaced by $1 - BB^* \in C_p$. To see this, let $H^{(\infty)} = \bigoplus_{n=1}^{\infty} H_n$, where $H_n = H$ for all n, and let B be the operator valued weighted shift

$$B = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

 $A = B^*$ and

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Then $1 - AA^* = 1 - B^*B = 0 \in C_p$ for all p with 0 , and

$$\mathbf{1} - A^* A = \mathbf{1} - BB^* = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \notin C_p$$

for all p with $0 . Moreover, <math>A^2 X = XB^2 = A^3 X = XB^3 = 0$ and

$$AX - XB = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots \\ -1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \notin C_{\mu}$$

for all *p* with 0 .

In this section we refine these results by extending them in two directions: to larger classes of operators and to all non-trivial ideals in B(H).

Note that $A \in B(H)$ is a *semi-Fredholm operator* if ran A is closed and either ker A or ker A^* is finite-dimensional. It is well known that ran A is closed if and only if ran A^* is closed. Thus, A is a semi-Fredholm operator if and only if A^* is semi-Fredholm. The index of a semi-Fredholm operator A is given by ind $A = \dim \ker A - \dim \ker A^*$. Hence, ind $A^* = -\operatorname{ind} A$. A semi-Fredholm operator A is a *Fredholm operator* if $-\infty < \operatorname{ind} A < \infty$; i.e., A is a Fredholm operator if ran A is closed and both ker A and ker A^* are finite-dimensional. An operator $A \in B(H)$ is said to be *left invertible modulo an ideal I* in B(H), if there exists an operator $B \in B(H)$ such that $1 - BA \in I$; i.e., the coset v(A) is left invertible in the quotient algebra B(H)/I, where v is the canonical homomorphism of B(H) onto B(H)/I. The (two-sided) invertibility modulo I is defined in the obvious way. It has been shown in [6, Theorem 1.1] that for $A \in B(H)$, ran A is closed and ker A is finite-dimensional if and only if A is left invertible modulo C_{∞} . The following lemma asserts that in this characterization C_{∞} can be replaced by any non-trivial ideal in B(H).

LEMMA 3. Let I be a non-trivial ideal in B(H). Then for $A \in B(H)$, ran A is closed and ker A is finite-dimensional if and only if A is left invertible modulo I.

Proof. Since $I \subseteq C_{\infty}$, the "if" part follows by Theorem 1.1 in [6]. Now we prove the "only if" part. Assume that ran A is closed and ker A is finite-dimensional. Then ind $A \neq \infty$. If ind A is finite, then A is a Fredholm operator. Hence, by Atkinson's theorem [8, p. 96], A is invertible modulo F(H). Since I is non-trivial, and hence $F(H) \subseteq I$, it follows that A is invertible modulo I. If, on the other hand, ind $A = -\infty$, then it follows from Proposition XI.3.21 in [3] that there exists a finite rank operator $F \in F(H)$ such that T = A + F is left invertible. Let $S \in B(H)$ be a left inverse of T. Then SA + SF = 1, and so $1 - SA \in F(H)$. Consequently, $1 - SA \in I$. Thus, in either case A is left invertible modulo I and the proof is complete.

One version of our main result of this section can be stated as follows.

THEOREM 2. Let I be a non-trivial ideal in B(H). Let A, B and $X \in B(H)$, where either ran A is closed and ker A is finite-dimensional or ran B is closed and ker B^* is finite-dimensional. If $A^nX - XB^n \in I$ and $A^{n+l}X - XB^{n+l} \in I$, for some integer n > 1, then $AX - XB \in I$.

Proof. As in the proof of Theorem 1, let C = AX - XB. Then $A^n C \in I$ and $CB^n \in I$. If ran A is closed and ker A is finite-dimensional then, by Lemma 3, A is left invertible modulo I, and so there exists an operator $S \in B(H)$ such that $1 - SA \in I$. But then $1 - S^n A^n \in I$. This, together with $A^n C \in I$, implies that $C \in I$. On the other hand, if ran B is closed (and hence ran B^* is closed) and ker B^* is finite-dimensional then, by Lemma 3, B^* is left invertible modulo I. In view of this, $B^{*n}C^* = (CB^n)^* \in I$ now implies that $C^* \in I$. Hence, $C \in I$, and the proof is complete.

In terms of the index function, the hypotheses on A and B in Theorem 2 can be restated so that either A is semi-Fredholm with ind $A \neq \infty$ or B is semi-Fredholm with ind $B \neq -\infty$. Now, in view of Lemma 3, Theorem D and the corrected version of Theorem E follow as special cases of Theorem 2.

At the end of this section, we should like to give the following example, which shows that Theorem 2 is not valid for the trivial ideal $I = \{0\}$.

EXAMPLE 2. Let U and P be the operators defined in Example 1. On $H \oplus H$, let $T = \begin{bmatrix} U & 0 \\ 0 & U^* \end{bmatrix}$ and $X = \begin{bmatrix} 0 & 0 \\ P & 0 \end{bmatrix}$. Then ran T is closed and both ker T and ker T^* are onedimensional subspaces of $H \oplus H$; i.e., T is a Fredholm operator with ind T = 0. Since $U^{*2}P = PU^2 = 0$ and $U^*P \neq PU$, simple matrix computations show that $T^2 X = XT^2 = 0$, and so $T^3X = XT^3 = 0$, but $TX \neq XT$.

4. Intertwining relations modulo the trivial ideal. This section is mainly devoted to the case $I = \{0\}$. Let $A \in B(H)$ and let $\sigma(A)$ denote its spectrum. Then, by the Riesz functional calculus, any $X \in B(H)$ that commutes with A also commutes with f(A) for every function f that is analytic on some neighbourhood of $\sigma(A)$ Recall that the operator f(A) is defined by $f(A) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(z - A)^{-1} dz$, where Γ is any Jordan system in the domain of f that contains $\sigma(A)$ in its 'inside'.

For the reader's convenience, a proof of the following "folk" result is included.

FUAD KITTANEH

THEOREM 3. Let $A, X \in B(H)$. If f is a function that is one-to-one and analytic on some neighbourhood of $\sigma(A)$, then f(A)X = Xf(A) if and only if AX = XA.

Proof. We have only to prove the "only if" part. Assume that f(A)X = Xf(A) and let Ω be the domain of analyticity of f such that $\sigma(A) \subset \Omega$. Then f^{-1} is one-to-one and analytic on $f(\Omega)$. By the spectral mapping theorem, $\sigma(f(A)) = f(\sigma(A)) \subset f(\Omega)$. Now f(A)X = Xf(A) implies that $f^{-1}(f(A))X = Xf^{-1}(f(A))$. But the basic properties of the Riesz functional calculus show that $A = f^{-1}(f(A))$. Hence, AX = XA, as required.

An intertwining version of Theorem 3 is now presented.

THEOREM 4. Let A, B and $X \in B(H)$. If f is a function that is one-to-one and analytic on some neighbourhood of $\sigma(A) \cup \sigma(B)$, then f(A)X = Xf(B) if and only if AX = XB.

Proof. Define operators T and Y on the Hilbert space $H \oplus H$ by $T = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$, $Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}$. Then $\sigma(T) = \sigma(A) \cup \sigma(B)$ and $f(T) = \begin{bmatrix} f(A) & 0 \\ 0 & f(B) \end{bmatrix}$. Since, by simple algebra, AX = XB if and only if TY = YT, and f(A)X = Xf(B) if and only if f(T)Y = Yf(T), the result now follows by applying Theorem 3 to the operators T and Y.

For our purpose, the most interesting cases of Theorem 4 are demonstrated in the following corollaries.

COROLLARY 1. Let A, B and $X \in B(H)$, where A and B are self-adjoint. Then, for every odd positive integer n, $A^n X = XB^n$ if and only if AX = XB.

The requirement that n is an odd positive integer in Corollary 1 can be dropped, if the condition on A and B is strengthened as follows.

COROLLARY 2. Let A, B and $X \in B(H)$, where A and B are positive. Then, for every positive real number r, $A^r X = XB^r$ if and only if AX = XB.

Using the simple (but very useful) observation that, for any $A \in B(H)$, the matrix $\begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$ defines a self-adjoint operator on $H \oplus H$, enables us to prove the main result of this section.

THEOREM 5. Let A, B and $X \in B(H)$. Then, for every positive integer n, $(AA^*)^n AX = X(BB^*)^n B$ and $(A^*A)^n A^*X = X(B^*B)^n B^*$ if and only if AX = XB and $A^*X = XB^*$.

Proof. On $H \oplus H$, let $T = \begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$, $S = \begin{bmatrix} 0 & B \\ B^* & 0 \end{bmatrix}$ and $Y = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix}$. Then T and S are self-adjoint. Simple algebra shows that

$$T^{2n+1} = \begin{bmatrix} 0 & (AA^*)^n A \\ (A^*A)^n A^* & 0 \end{bmatrix} \text{ and } S^{2n+1} = \begin{bmatrix} 0 & (BB^*)^n B \\ (B^*B)^n B^* & 0 \end{bmatrix}.$$

Now the conditions $(AA^*)^n AX = X(BB^*)^n B$ and $(A^*A)^n A^*X = X(B^*B)^n B^*$ are equivalent to saying that $T^{2n+1}Y = YS^{2n+1}$. But this last condition is equivalent, by Corollary 1, to saying that TY = YS, which is also equivalent to saying that AX = XB and $A^*X = XB^*$. The proof is now complete.

COROLLARY 3. Let A, B and $X \in B(H)$, where A and B are normal. Then, for every positive integer n, $(AA^*)^n AX = X(BB^*)^n B^*$ if and only if AX = XB.

Proof. We first observe that the adjoint of $(AA^*)^n A$ is $(A^*A)^n A^*$. Now the result follows from Theorem 4 and the Fuglede-Putnam theorem.

The normality assumption in Corollary 3 is essential, even in the finite-dimensional setting. For example, consider $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ and $X = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$ acting on a two-dimensional Hilbert space. Then $(AA^*A)X = X(AA^*A)$, but $AX \neq XA$.

If, in Corollary 3, we take X to be the identity operator, then we have the following generalization of a finite-dimensional result of Khatri [9, Theorem 3(iii)].

COROLLARY 4. Let $A, B \in B(H)$. Then, for every positive integer n, $(AA^*)^n A = (BB^*)^n B$ if and only if A = B. In particular, $(AA^*)^n A = (A^*A)^n A^*$ if and only if $A = A^*$; i.e., $(AA^*)^n A$ is self-adjoint if and only if A is self-adjoint.

Proof. If $(AA^*)^n A = (BB^*)^n B$ then, by taking the adjoints of both sides of this equation, we also have $(A^*A)^n A^* = (B^*B)^n B^*$. The result now follows from Theorem 5.

We conclude with the following two remarks concerning Section 4.

REMARKS. (1) The intertwining relations in this section can also be taken modulo C_{∞} . Just consider the Calkin algebra $B(H)/C_{\infty}$, which is a C*-algebra, and hence it can be represented as an operator algebra.

(2) It follows from Theorem 3 in [2] that if $A, B \in B(H)$ are self-adjoint, and if $X \in B(H)$ is such that $A^n X - XB^n \in C_p$, for some odd positive integer *n* and some *p* with $1 \le p \le \infty$, then $AX - XB \in C_{np}$. It also follows from Theorem 7 in [2] that if $A, B \in B(H)$ are positive, and if $X \in B(H)$ is such that $A^r X - XB^r \in C_p$, for some real number $r \ge 1$ and some *p* with $1 \le p \le \infty$, then $AX - XB \in C_{rp}$. Moreover, it follows from Theorem 3.1 in [11] that if either *A* or *B* is invertible, then $AX - XB \in C_p$.

REFERENCES

1. A. H. Al-Moajil, The commutants of relatively prime powers in Banach algebras, *Proc. Amer. Math. Soc.* **57** (1976), 243–249.

2. R. Bhatia and F. Kittaneh, Some inequalities for norms of commutators, *SIAM J. Matrix Anal. Appl.* **18** (1997), 258–263.

3. J. B. Conway, A course in functional analysis (Springer-Verlag, 1985).

4. R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, *Proc. Amer. Math. Soc.* **17** (1966), 413–415.

5. P. B. Duggal, The commutant modulo C_p of co-prime powers of operators on a Hilbert space, *J. Math. Anal. Appl.* **263** (2001), 110–120.

6. P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, *Acta Sci. Math. (Szeged)* 33 (1972), 179–192.

7. I. C. Gohberg and M. G. Krein, *Introduction to the theory of linear nonself-adjoint operators*, Transl. Math. Monographs, Vol. 18 (Amer. Math. Soc., Providence, R. I., 1969).

8. P. R. Halmos, A Hilbert space problem book (Springer-Verlag, 1982).

9. C. G. Khatri, Powers of matrices and idempotency, *Linear Algebra Appl.* 33 (1980), 57–65.

10. F. Kittaneh, On the commutants modulo C_p of A^2 and A^3 , J. Austral. Math. Soc. Ser. A 41 (1986), 47–50.

11. F. Kittaneh and H. Kosaki, Inequalities for the Schatten *p*-norm V, *Publ. RIMS, Kyoto Univ.* **23** (1987), 433–443.

12. G. Weiss, The Fuglede commutativity theorem modulo operator ideals, *Proc. Amer. Math. Soc.* 83 (1981), 113–118.