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Abstract. Let B(H) denote the algebra of all bounded linear operators on a
separable, infinite-dimensional, complex Hilbert space H. Let I be a two-sided ideal in
B(H). For operators A, B and X ∈ B(H), we say that Xintertwines A and B modulo I
if AX − XB ∈ I . It is easy to see that if X intertwines A and B modulo I , then it
intertwines An and Bn modulo I for every integer n >1. However, the converse is not
true. In this paper, sufficient conditions on the operators A and B are given so that any
operator X which intertwines certain powers of A and B modulo I also intertwines A
and B modulo J for some two-sided ideal J ⊇ I .

2000 Mathematics Subject Classification. 47A53, 47B10, 47B15, 47B20, 47B47.

1. Introduction. Let H be a separable infinite-dimensional complex Hilbert space.
Let B(H) ⊃ K(H) ⊃ F(H) denote, respectively, the algebra of all bounded linear
operators, the two-sided ideal of compact operators, and the two-sided ideal of
finite rank operators on H. For any compact operator T , let s1(T), s2(T) . . . be the
eigenvalues of |T | = (T∗T)1/2, arranged in decreasing order and repeated according to
multiplicity. A compact operator T is said to be in the Schatten p-class Cp(0 < p < ∞) if
�isi(T)p < ∞. For p ≥1, the Schatten p-norm of T is defined by ‖T‖p = (�isi(T)p)1/p.
This norm makes Cp into a Banach space. For all p > 0, Cp is a two-sided ideal in
B(H). Hence, C1 is the trace class and C2 is the Hilbert-Schmidt class. It is reasonable
to let C∞ denote the ideal of compact operators K(H) and || · ||∞ stand for the usual
operator norm. We refer to [7] for the general theory of the Schatten p-classes.

Throughout this paper, every ideal in B(H) is assumed to be two-sided and proper.
It is well known that if I is a non-trivial ideal in B(H), then F(H) ⊆ I ⊆ C∞.

Let I be an ideal in B(H); let A, B and X ∈ B(H). We say that X intertwines A
and B modulo I if AX − XB ∈ I . If X intertwines A and B modulo the trivial ideal,
i.e., if AX − XB = 0, then we simply say that X intertwines A and B. It is easy to see
that if X intertwines A and B modulo I , then it intertwines An and Bn modulo I for
every integer n >1. Of course, the converse is not true. Consider, for example, the case
in which A and B are non-zero nilpotent operators.

It is the object of this paper to present some sufficient conditions on the operators
A and B so that any operator X which intertwines certain powers of A and B modulo
I , also intertwines A and B modulo J, where J is an ideal in B(H) such that I ⊆ J. Our
results generalize earlier results on this problem by Al-Moajil [1], Duggal [5], and the
author [10].
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2. Intertwining relations modulo arbitrary ideals. In [8], extending a result of
Al-Moajil [1], the author has proved the following results.

THEOREM A.. Let A, B and X ∈ B(H), where A and B∗ are subnormal. If A2X = XB2

and A3X = XB3, then AX = XB.

THEOREM B.. Let A, B and X ∈ B(H), where A and B∗ are subnormal. If A2X −
XB2 ∈ F(H) and A3X − XB3 ∈ F(H), then AX − XB ∈ F(H).

THEOREM C.. Let A, B and X ∈ B(H), where A and B∗ are subnormal. If A2X −
XB2 ∈ Cp and A3X − XB3 ∈ Cp, for some p with 1 ≤ p ≤ ∞, then AX − XB ∈ C8p.

By a slight modification of the proof of Theorem C given in [10], Duggal
[5, Theorem 5] has extended this result to relatively prime powers other than 2 and 3.

The purpose of this section is to extend these results to larger classes of operators
and to relatively prime powers other than 2 and 3. In fact, these theorems follow as
immediate consequences of a general result (Theorem 1), which is valid for arbitrary
ideals in B(H).

The following lemma, which is in the spirit of Lemma 1.1 in [1], indicates that in
order to generalize Theorems A, B and C cited above, it is sufficient to consider two
consecutive powers rather than two relatively prime powers.

LEMMA 1.. Let I be an ideal in B(H). If A, B and X ∈ B(H) are such that AmX −
XBm ∈ I and AnX − XBn ∈ I, for some relatively prime positive integers m and n, then
AkX − XBk ∈ I and Ak+lX − XBk+1 ∈ I, for some integer k > 1.

Proof. Since m and n are relatively prime positive integers, there exist integers s
and t such that sm + tn = 1 and st is negative; say s is negative and t is positive. The
assumptions AmX − XBm ∈ I and AnX − XBn ∈ I imply that A−msX − XB−ms ∈ I
and AntX − XBnt ∈ I . Since nt = −ms + 1, the result now follows by letting k = −ms.

The following elegant factorization result, which is due to Douglas [4], will be
essential for us to accomplish our goal.

LEMMA 2.. Let T, S ∈ B(H). Then the following conditions are equivalent:
(a) ran T ⊆ ran S, where ran Tdenotes the range of T ;
(b) TT∗ ≤ cSS∗, for some constant c > 0;
(c) T = SR, for some R ∈ B(H).

It follows immediately from Lemma 2 that if T ∈ B(H) is hyponormal, i.e., if
TT∗ ≤ T∗T , then ran T ⊆ ran T∗. Also, if ran T ⊆ ran T∗, then T = T∗R for some
R ∈ B(H), and hence T∗ = R∗T . Thus, if ran T ⊆ ran T∗, if X ∈ B(H), and if I is an
ideal in B(H), then TX ∈ I implies T∗X ∈ I . The particular case, that hyponormal
operators have this property, has been observed by Weiss in [12].

If I and J are ideals in B(H), let I. J denote the ideal generated by products of the
form TS with T ∈ I and S ∈ J. Hence, by induction, In is defined as In = In−1. I for
every integer n >1. It is well known (using the polar decomposition) that every ideal
I in B(H) is self-adjoint; i.e., T ∈ I if and only if T∗ ∈ I . Also, |T |2 ∈ I2 if and only if
|T | ∈ I , and |T | ∈ I if and only if T ∈ I . Consequently, T∗T ∈ I if and only if T ∈ I1/2,
where I1/2 is the unique ideal whose square is I . For any integer n >1, I1/n is defined
in the obvious way.

We are now in a position to prove the main result of this section.
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THEOREM 1.. Let I be an ideal in B(H). Let A, B and X ∈ B(H) with ran A ⊆ ran
A∗ and ran B∗ ⊆ ran B. If AnX − XBn ∈ I and An+1X − XBn+1 ∈ I, for some integer
n >1, then AX − XB ∈ I1/2n+1

.

Proof. Let C = AX − XB. Then simple algebra shows that AnC ∈ I and CBn ∈ I .
Since ran A ⊆ ran A∗, and since AnC ∈ I , it follows that A∗An−1C ∈ I . Thus,
(An−1C)∗(An−1C) ∈ I , and so An−1C ∈ I1/2. Continuing down in this way, we obtain
that AC ∈ I1/2n−1

. Again, the assumption ran A ⊆ ran A∗ implies that A∗C ∈
I1/2n−1

. Similarly, since ran B∗ ⊆ ran B, and since B∗nC∗ = (CBn)∗ ∈ I , it follows
that B∗C∗ ∈ I1/2n−1

. Hence, BC∗ ∈ I1/2n−1
, and so CB∗ ∈ I1/2n−1

. But then CC∗C =
C(X∗A∗ − B∗X∗)C = CX∗A∗C − CB∗X∗C ∈ I1/2n−1

. Hence, (C∗C)2 ∈ I1/2n−1
, which

implies that C∗C ∈ I1/2n
, and so C ∈ I1/2n+1

. This completes the proof.

An important special case of the range inclusion requirement in Theorem 1 is that
A and B ∗ are hyponormal operators (in particular subnormal operators). The most
interesting ideals for which Theorem 1 is applied are {0}, F(H) and Cp(0 < p ≤ ∞).
Hence, Theorems A, B and C can be obtained as corollaries of Theorem 1 upon
considering the following cases:

(a) I = {0}, and so I1/2n+1 = {0},
(b) I = F(H), and so I1/2n+1 = F(H),
(c) I = Cp, and so I1/2n+1 = C2n+1p (0 < p ≤ ∞).

Here we have, respectively, used the facts that T = 0 if and only T∗T = 0, T ∈ F(H)
if and only if T∗T ∈ F(H), and T ∈ C2p if and only if T∗T ∈ Cp(0 < p ≤ ∞).

We should like to close this section by remarking that if I = {0} then, in Theorem 1,
the conditions that ran A ⊆ ran A∗ and ran B∗ ⊆ ran B can be weakened so that ran
A ⊆ ran A∗ and ran B∗ ⊆ ran B, or equivalently, (by taking orthogonal complements)
ker A ⊆ ker A∗ and ker B∗ ⊆ ker B, where ker A and ran A denote the kernel of A and
the closure (in the usual Hilbert space topology) of ran A, respectively. However, these
conditions cannot be replaced by the symmetric conditions that ran A ⊆ ran A∗ and
ran B ⊆ ran B∗, or even more strongly, that A and B are hyponormal operators. This
may be concluded from Remark 3.2 (a) in [1] or by considering the following example.

EXAMPLE 1. Let {en}∞n=1 be an orthonormal basis for H. Let U be the unilateral shift
operator defined by Uen = en+1, for all n, and let P be the orthogonal projection on
the subspace spanned by e1 and e2; i.e., Pe1 = e1, Pe2 = e2 and Pen = 0 for n > 2. On
H ⊕ H, let T = [ 0

0
0
U ] and X = [ 0

0
p
0 ]. Then T is hyponormal, T2X = XT2 and T3X =

XT3, but TX �= XT . In fact, every product involved here is zero except XT = [ 0
0

pU
0 ],

which is non-zero because PUe1 = e2.

3. Intertwining relations modulo non-trivial ideals. In [5], Duggal has proved the
following two results.

THEOREM D. Let A, B and X ∈ B(H) such that A is semi-Fredholm with ind A ≤ 0
or B is semi-Fredholm with ind B ≥ 0. If AmX − XBm ∈ Cp and AnX − XBn ∈Cp, for
some relatively prime positive integers m and n, and some p with 1 ≤ p ≤ ∞, then AX −
XB ∈ Cp.

THEOREM E. Let A, B and X ∈ B(H) such that 1 − A∗A ∈ Cp or 1 − B∗B ∈ Cp, for
some p with 1 ≤ p ≤ ∞. If AmX − XBm ∈ Cp and AnX − XBn ∈ Cp, for some relatively
prime positive integers m and n, then AX − XB ∈ Cp.
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Theorem D is a generalization of Theorem 7 in [10]. It should be mentioned here
that the condition 1 − B∗B ∈ Cp in Theorem E should be replaced by 1 − BB∗ ∈ Cp.
To see this, let H(∞) = ⊕∞

n=1 Hn, where Hn = H for all n, and let B be the operator
valued weighted shift

B =




0 0 0 0 · · ·
1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 1 0 · · ·
...

...
. . .

. . .
. . .




,

A = B∗ and

X =




1 0 0 0 · · ·
0 1 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
...




.

Then 1 − AA∗ = 1−B∗B = 0 ∈ Cp for all p with 0 < p ≤ ∞, and

1 − A∗A = 1 − BB∗ =




1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
...




/∈ Cp

for all p with 0 < p ≤ ∞. Moreover, A2X = XB2 = A3X = XB3 = 0 and

AX − XB =




0 1 0 0 · · ·
−1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
...




/∈ Cp

for all p with 0 < p ≤ ∞.
In this section we refine these results by extending them in two directions: to larger

classes of operators and to all non-trivial ideals in B(H).
Note that A ∈ B(H) is a semi-Fredholm operator if ran A is closed and either ker A

or ker A∗ is finite-dimensional. It is well known that ran A is closed if and only if ran
A∗ is closed. Thus, A is a semi-Fredholm operator if and only if A∗ is semi-Fredholm.
The index of a semi-Fredholm operator A is given by ind A = dim ker A−dim ker A∗.
Hence, ind A∗ = −ind A. A semi-Fredholm operator A is a Fredholm operator if
−∞ < ind A < ∞; i.e., A is a Fredholm operator if ran A is closed and both ker A
and ker A∗ are finite-dimensional. An operator A ∈ B(H) is said to be left invertible
modulo an ideal I in B(H), if there exists an operator B ∈ B(H) such that 1 − BA ∈ I ;
i.e., the coset ν(A) is left invertible in the quotient algebra B(H)/I, where ν is the
canonical homomorphism of B(H) onto B(H)/I . The (two-sided) invertibility modulo
I is defined in the obvious way. It has been shown in [6, Theorem 1.1] that for A ∈ B(H),
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ran A is closed and ker A is finite-dimensional if and only if A is left invertible modulo
C∞. The following lemma asserts that in this characterization C∞ can be replaced by
any non-trivial ideal in B(H).

LEMMA 3. Let I be a non-trivial ideal in B(H). Then for A ∈ B(H), ran A is closed
and ker A is finite-dimensional if and only if A is left invertible modulo I.

Proof. Since I ⊆ C∞, the “if” part follows by Theorem 1.1 in [6]. Now we prove
the “only if” part. Assume that ran A is closed and ker A is finite-dimensional. Then
ind A �= ∞. If ind A is finite, then A is a Fredholm operator. Hence, by Atkinson’s
theorem [8, p. 96], A is invertible modulo F(H). Since I is non-trivial, and hence
F(H) ⊆ I , it follows that A is invertible modulo I . If, on the other hand, ind A = −∞,
then it follows from Proposition XI.3.21 in [3] that there exists a finite rank operator
F ∈ F(H) such that T = A + F is left invertible. Let S ∈ B(H) be a left inverse of T.

Then SA + SF = 1, and so 1 − SA ∈ F(H). Consequently, 1 − SA ∈ I . Thus, in either
case A is left invertible modulo I and the proof is complete.

One version of our main result of this section can be stated as follows.

THEOREM 2. Let I be a non-trivial ideal in B(H). Let A, B and X ∈ B(H), where
either ran A is closed and ker A is finite-dimensional or ran B is closed and ker B∗ is
finite-dimensional. If AnX − XBn ∈ I and An+l X − XBn+l ∈ I, for some integer n > 1,

then AX − XB ∈ I.

Proof. As in the proof of Theorem 1, let C = AX − XB. Then AnC ∈ I and CBn ∈ I .
If ran A is closed and ker A is finite-dimensional then, by Lemma 3, A is left invertible
modulo I , and so there exists an operator S ∈ B(H) such that 1 − SA ∈ I . But then
1 − SnAn ∈ I . This, together with AnC ∈ I , implies that C ∈ I . On the other hand, if
ran B is closed (and hence ran B∗ is closed) and ker B∗ is finite-dimensional then,
by Lemma 3, B∗ is left invertible modulo I . In view of this, B∗nC∗ = (CBn)∗ ∈ I now
implies that C∗ ∈ I . Hence, C ∈ I , and the proof is complete.

In terms of the index function, the hypotheses on A and B in Theorem 2 can be
restated so that either A is semi-Fredholm with ind A �= ∞ or B is semi-Fredholm
with ind B �= −∞. Now, in view of Lemma 3, Theorem D and the corrected version
of Theorem E follow as special cases of Theorem 2.

At the end of this section, we should like to give the following example, which
shows that Theorem 2 is not valid for the trivial ideal I = {0}.

EXAMPLE 2. Let U and P be the operators defined in Example 1. On H ⊕ H, let
T = [ U

0
0

U∗ ] and X = [ 0
P

0
0 ]. Then ran T is closed and both ker T and ker T∗ are one-

dimensional subspaces of H ⊕ H; i.e., T is a Fredholm operator with ind T = 0.
Since U∗2P = PU2 = 0 and U∗P �= PU, simple matrix computations show that
T2 X = XT2 = 0, and so T3X = XT3 = 0, but TX �= XT.

4. Intertwining relations modulo the trivial ideal. This section is mainly devoted
to the case I = {0}. Let A ∈ B(H) and let σ (A) denote its spectrum. Then, by the Riesz
functional calculus, any X ∈ B(H) that commutes with A also commutes with f (A)
for every function f that is analytic on some neighbourhood of σ (A) Recall that the
operator f (A) is defined by f (A) = 1

2π i

∫
�

f (z)(z − A)−1dz, where � is any Jordan system
in the domain of f that contains σ (A) in its ‘inside’.

For the reader’s convenience, a proof of the following “folk” result is included.
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THEOREM 3. Let A, X ∈ B(H). If f is a function that is one-to-one and analytic on
some neighbourhood of σ (A), then f (A)X = Xf (A) if and only if AX = XA.

Proof. We have only to prove the “only if” part. Assume that f (A)X = Xf (A) and
let � be the domain of analyticity of f such that σ (A) ⊂ �. Then f −1 is one-to-one and
analytic on f (�). By the spectral mapping theorem, σ (f (A)) = f (σ (A)) ⊂ f (�). Now
f (A)X = Xf (A) implies that f −1(f (A))X = Xf −1(f (A)). But the basic properties of the
Riesz functional calculus show that A = f −1(f (A)). Hence, AX = XA, as required.

An intertwining version of Theorem 3 is now presented.

THEOREM 4. Let A, B and X ∈ B(H). If f is a function that is one-to-one and analytic
on some neighbourhood of σ (A) ∪ σ (B), then f (A)X = Xf (B) if and only if AX = XB.

Proof. Define operators T and Y on the Hilbert space H ⊕ H by T = [ A
0

0
B ], Y =

[ 0
0

X
0 ]. Then σ (T) = σ (A) ∪ σ (B) and f (T) = [ f (A)

0
0

f (B) ]. Since, by simple algebra, AX =
XB if and only if TY = YT, and f (A)X = Xf (B) if and only if f (T)Y = Yf (T), the
result now follows by applying Theorem 3 to the operators T and Y.

For our purpose, the most interesting cases of Theorem 4 are demonstrated in the
following corollaries.

COROLLARY 1. Let A, B and X ∈ B(H), where A and B are self-adjoint. Then, for
every odd positive integer n, AnX = XBn if and only if AX = XB.

The requirement that n is an odd positive integer in Corollary 1 can be dropped,
if the condition on A and B is strengthened as follows.

COROLLARY 2. Let A, B and X ∈ B(H), where A and B are positive. Then, for every
positive real number r, ArX = XBr if and only if AX = XB.

Using the simple (but very useful) observation that, for any A ∈ B(H), the matrix
[ 0

A∗
A
0 ] defines a self-adjoint operator on H ⊕ H, enables us to prove the main result of

this section.

THEOREM 5. Let A, B and X ∈ B(H). Then, for every positive integer n, (AA∗)nAX =
X(BB∗)n B and (A∗A)n A∗X = X(B∗B)nB∗ if and only if AX = XB and A∗X = XB∗.

Proof. On H ⊕ H, let T = [ 0
A∗

A
0 ], S = [ 0

B∗
B
0 ] and Y = [ X

0
0
X ] . Then T and S are

self-adjoint. Simple algebra shows that

T2n+1 =
[

0 (AA∗)nA
(A∗A)nA∗ 0

]
and S2n+1 =

[
0 (BB∗)nB

(B∗B)nB∗ 0

]
.

Now the conditions (AA∗)nAX = X(BB∗)nB and (A∗A)nA∗X = X(B∗B)nB∗ are
equivalent to saying that T2n+1Y = YS2n+1. But this last condition is equivalent, by
Corollary 1, to saying that TY = YS, which is also equivalent to saying that AX = XB
and A∗X = XB∗. The proof is now complete.

COROLLARY 3. Let A, B and X ∈ B(H), where A and B are normal. Then, for every
positive integer n, (AA∗)n AX = X(BB∗)nB∗ if and only if AX = XB.

Proof. We first observe that the adjoint of (AA∗)n A is (A∗A)n A∗. Now the result
follows from Theorem 4 and the Fuglede-Putnam theorem.
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The normality assumption in Corollary 3 is essential, even in the finite-dimensional
setting. For example, consider A = [ 1

−1
1
0 ] and X = [ 1

−1
1

−1 ] acting on a two-dimensional
Hilbert space. Then (AA∗A)X = X(AA∗A), but AX �= XA.

If, in Corollary 3, we take X to be the identity operator, then we have the following
generalization of a finite-dimensional result of Khatri [9, Theorem 3(iii)].

COROLLARY 4. Let A, B ∈ B(H). Then, for every positive integer n, (AA∗)n A =
(BB∗)n B if and only if A = B. In particular, (AA∗)n A = (A∗A)n A∗ if and only if A = A∗;
i.e., (AA∗)n A is self-adjoint if and only if A is self-adjoint.

Proof. If (AA∗)nA = (BB∗)n B then, by taking the adjoints of both sides of
this equation, we also have (A∗A)nA∗ = (B∗B)nB∗. The result now follows from
Theorem 5.

We conclude with the following two remarks concerning Section 4.

REMARKS. (1) The intertwining relations in this section can also be taken modulo
C∞. Just consider the Calkin algebra B(H)/C∞, which is a C∗-algebra, and hence it
can be represented as an operator algebra.

(2) It follows from Theorem 3 in [2] that if A, B ∈ B(H) are self-adjoint, and if
X ∈ B(H) is such that AnX − XBn ∈ Cp, for some odd positive integer n and some p
with 1 ≤ p ≤ ∞, then AX − XB ∈ Cnp. It also follows from Theorem 7 in [2] that if
A, B ∈ B(H) are positive, and if X ∈ B(H) is such that ArX − XBr ∈ Cp, for some real
number r ≥ 1 and some p with 1 ≤ p ≤ ∞, then AX − XB ∈ Crp. Moreover, it follows
from Theorem 3.1 in [11] that if either A or B is invertible, then AX − XB ∈ Cp.
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