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ON BERNSTEIN'S INEQUALITY 

A. GIROUX, Q. I. RAHMAN AND G. SCHMEISSER 

1. Introduction and statement of results. If pn(z) is a polynomial of 
degree at most n, then according to a famous result known as Bernstein's 
inequality (for references see [4]) 

(1) max|2|=1 \pn'(z)\ ^ nmax|2 i=i \pn(z)\. 

Here equality holds if and only if pn{z) has all its zeros at the origin and so it is 
natural to seek for improvements under appropriate assumptions on the zeros 
of pn(z). Thus, for example, it was conjectured by P. Erdôs and later proved by 
Lax [2] that if pn(z) does not vanish in \z\ < 1, then (1) can be replaced by 

(2) max|2i=i \pn'(z)\ g 0 / 2 ) maxH==i \pn(z)\. 

On the other hand, Turân [5] showed that if pn(z) is a polynomial of degree n 
having all its zeros in \z\ rg 1, then 

(3) max|2i=i \pn(z)\ ^ 0 / 2 ) max,z\==1 \pn(z)\. 

Thus in (2) as well as in (3) equality holds for those polynomials of degree n 
which have all their zeros on \z\ = 1. These results were extended by Malik [3] 
who proved that if pn(z) does not vanish in \z\ < K, where K ^ 1, then 

71 

(4) maxM = i \pn'(z)\ ^ y-q—^maxw-i \pn(z)\, 

whereas 
71 

(5) max|2l=i \pn'(z)\ ^ j - q ^ m a x i ^ i \pn(z)\ 

provided pn(z) is a polynomial of degree n having all its zeros in \z\ ^ k ^ 1. 
In this connection E. B. Saff mentioned to us the following: 

Problem. Let 

(6) pn(z) = IT (z - zv) 

be a polynomial having all its zeros in Re z ^ 1. Is it true that 

n Y 

(7) maxi^ilA/fc)! ^ Z) r j r p 7 T " m a x i 2 i = 1 \P*(Z)\ ? 
v=\ 1 i- Ke zv 

Here equality must hold if in addition the zeros are all real. 
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The interesting fact about this problem is that in (7) each zero is supposed 
to make a contribution which is independent of the other zeros as well as of the 
degree of the polynomial. This is rather surprising in view of (2), (3), and a 
result of Giroux and Rahman [1] according to which there exists a polynomial 
pn(z) of degree n, satisfying pn(l) = 0 and 

(8) max|f|_i \pn(z)\ ^ »(1 - c/n2) maxM = i |£„(z)|, 

where c is a constant independent of n. Thus, for large n the influence of all the 
zeros together may be much stronger than n times the contribution of a single 
zero. This indicates that the rôle of each individual zero cannot be independent 
of the others unless their location is somehow restricted. 

Although the above problem appears to have been around for some time no 
contribution to it has appeared in print so far. Here we prove 

THEOREM 1. For 1 ^ n S 2 the answer in the above problem is affirmative. 

We have no idea whether (7) is true or not for n ^ 3 but we can prove con
siderably more if pn(z) happens to be real for real z. 

THEOREM 2. If the polynomial pn(z) in (6) is real for real z, then 

(9) max|2,=i \pn(z)\ ^ ] £ 7~T~ÏTi maxM==i \P*(Z)\ 
y«=l 1 T" \Zv\ 

provided all the zeros lie in 

D = {z G C : Res ^ 0, \z\ ^ 1}. 

The example pi{z) = (z + l)(z — 3) shows that (9) may not hold if the 
zeros are not required to lie in D. 

We also prove 

THEOREM 3. Provided pn
f (z) is real for real z the answer in the above problem is 

affirmative if only Re zv ^ 0, v = 1, 2, . . . , n. 

Next we present an inequality in the opposite direction. 

THEOREM 4. Let the polynomial (6) have all its zeros in Re z ^ 1. Then 

(10) max,,,.! \pn'(z)\ è n f [ (1 + Res , ) 1 / n max M = 1 \pn(z)\l-(2,n). 

Equality holds if in addition pn(z) is real for real z and there is a X ^ 1 such that 
all the zeros lie in 

(11) {z : \z - X + 1| ^ X} H {z : Re z ^ 1}. 

Applying Theorem 2 to the polynomial znpn(l/z) we can easily deduce that if 
the polynomial (6) is real for real z then 

(12) max,,,^1 \pn(z)\ è £ r X T T T " ^ ^ i * ^ 1 \P*(Z)\ 
v=l 1 - t" \ZV\ 
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provided all the zeros lie in 

E = {z tC'.Rez^O, \z\ S 1}. 

However, we observe that (12) holds under a considerably weaker hypothesis. 

THEOREM 5. Inequality (12) holds if all the zeros of pn(z) lie in \z\ ^ 1. There 
is equality if the zeros are all positive. 

From Theorem 5 we deduce the following refinement of Malik's result (5). 

COROLLARY. If all the zeros of the polynomial (6) lie in \z\ ^ 1 and 
p = (1/n) YA M I then 

n 
(13) max|2|=i \pn(z)\ è T-T—max,8 |=i \pn(z)\. 

1 T- P 

2. Proofs. Proof of Theorem 1. The case n = 1 presents no difficulties. 
Now let 

(14) p(z) = (z - zt)(z - z2) 

where %\ = %\ + iyi, z2 = x2 + iy2, Xi ^ 1, x2 ^ 1, yi, j 2 6 R. Then £'(z) 
vanishes at f + irç, where 

f = (*i + x2)/2, r; = (yi + y2)/2. 

Here we may assume that rj ̂  0 and Xi ^ x2. In order to prove (7) it is clearly 
enough to show that 

(15) max,,,.! \p'(z)\/\p(-l)\ ^ 1/(1 + xi) + 1/(1 + x2). 

For fixed Xi, x2 and rj consider the family 

&xux2,v = {/A60 = {z-x,- i(rj - \))(z - x2 - ^ + X)) : X Ç R} 

Note that p(z) belongs to the family &X\,X<L,T\ and max,2,=i \f\ (z)\ is the same 
for each member f\(z) of the family. It is therefore sufficient to prove (15) for 
the polynomial f\(z) in &Xi,xi,-n for which |/x( —1)| is smallest. Setting 

A(\) = \V(i + x1y+ (n - x)2i, B(\) = \va + x2y+ (v + \)2\ 
we see that |/x( —1)| is smallest when 

B(\)(v - \)/A(\) = A(\)(v + X)/5(X), 

i.e. (see Fig. 1) 

B(\) sin <pi = A (X) sin <p2 = n (say). 

In other words, the line passing through the points Qi = A(X)ei<p2—l, 
£22 = B(\)ei(pl — 1 should be parallel to the real axis. Let the points Zu Z2j M, 
A, 0, Xi, N and X2 of the complex plane correspond to x\ + i(rj — X), 
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%2 + i(y + X), (xi + x2)/2 + irj, — 1, 0, Xi, (xi + x2)/2 and x2 respectively. 
If we denote by \C, D\ the distance between two points C, D, then we have to 
prove that 

(M, 0\ + |0, M\)/\A, Zi| • \A, Z2\ ^ (\A, 0\ + \0, X,\/2 + |0, Z 2 | /2 ) 

or equivalently 

(16) cos ?! cos «>2(|4, 0| + \0, M\)/(\A, 0\ + |0, N\) £ 1. 

Since |^4, Xi | ^ 1 we may write \A,0\ = cr|̂ 4, Xx\ for some c g J and (16) 
becomes 

(17) cos n cos <p2(<rU, Xx\ + VIM, iV|2 + (\A, N\ - <r\A, X^)2) 
/\A,N\ S 1. 

But clearly 

|^4, fi2| = jix/sin <pi, |Z2, X2 | = /x sin (£2/sin <pi, |^4, X2\ = M COS <p2/sin <plf 

\A, fii| = pi/sin <̂ 2, |Zi, JY\| = /x sin <pi/sin <p2, \A, X\\ = JU cos <pi/s'm cp2, 

\M, N\ = (n/2) (sin <p2/sin <pi + sin <^i/sin <p2), \A, N\ 

= (ju/2) (cos <£>2/sin <px + cos <pi/sin <p2). 
Hence (17) is equivalent to 

(18) F(<pi, <p2l a): = cos <px cos <p2 

X (2(7 sin 2<̂ i + \/4(sin2 <̂ i + sin2 (p2)
2 + (sin 2<£>i + sin 2<p2 — 2o- sin 2<^i)2) 

/(sin 2<̂ i + sin 2<p2) ^ 1. 

Calculating àF/àa we see that the left-hand side of (18) is increased if we 
replace a by | . Hence, it will be enough to prove the inequality 

cos <pi cos <p2(sin 2<pi + 2 Vsin2 <p2 + 2 sin2 <px sin2 <p2 + sin4 ^i) 

/(sin 2<̂ i + sin 2<̂ 2) ^ 1 
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which is equivalent to 

(19) ^(sin 2<pi sin 2<p2)
2 + (sin 2<pi sin ci cos <p2)

2 ^ sin2 2̂ ?i 

X (1 — cos <pi cos (f2)
2 + 2 sin 2cpi sin 2<p2(l — cos <pi cos ^2) 

+ (sin 2<p2 sin <pi)2. 
This latter inequality will be proved if we show that 

(20) (sin 2<pi sin cpi cos <p2)
2 ^ (sin 2cp2 sin <pi)2 

and 

(21) J (sin 2(fi sin 2^2)2 ^ 2 sin 2<pi sin 2<p2(l — cos <pi cos ^2). 

In fact, the sum of the left-hand sides of (20), (21) is equal to the left-hand 
side of (19) whereas the sum of the right-hand sides of (20), (21) is smaller than 
the right-hand side of (19). Now, as far as inequality (20) is concerned it is 
obvious. As for inequality (21) it is equivalent to 

cos <pi cos <p2(l + sin <pi sin <p2) ^ 1 

or in turn to 

{cos (<pi - <p2) + l} 2 - {cos (<p! + <p2) - l} 2 ^ 4 

which is certainly true. With this the proof of Theorem 1 is complete. 

Proof of Theorem 2. The polynomial pn'(z) is also real for real z, so that its 
complex zeros occur in conjugate pairs. Besides, they (the zeros of pn

f(z)) all 
lie in the right half-plane. Hence max|2|=i \pn (z)\ is attained at the point —1. 
To every factor z — zv in (6) where zv is non-real there corresponds a factor 
z — zv, and therefore we may rearrange the factors to write 

m n 

pn(z) = n Î (2 - *,)(* - «0} n (2 - *o 
v=l v=2m+l 

where z2m+i, z2m+2, • • • > zn a r e real and ^ 1. Thus 
max,,,.! !/>„'(«)| = | />. ' (-1) | = \pn(-D\\ Z 7 { ( - 1 - 2,)-1 

+ ( - 1 - i,)-M + Z L + l ( " I - 2K)"1! 

g m a x , l M \pn(z)\ TA 1(1 + 2,)"1 + (1 + 2,)"1! + Z L + i (1 + 2,)"1-

Now we note that 

\(1+Z,)~1+ (1+2,)-1! £2/(l + \z,\) 

if z, 6 D and hence the desired result follows. 

Proof of Theorem 3. Under the assumptions of Theorem 3 we obviously have 

max,,,.! \p»'(z)\ = \p„'(-l)\. 

Hence 

max,„_i |/>,'(«)|/max|„_i \pn(z)\ ^ \pn'(-l)\/\Pn(-l)\ 

= IE" (-1 - x, - iyr)~
l\ ^ E" (1 + x,)-1. 
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Proof of Theorem 4. Without loss of generality we may assume that 
max|Z|=i \pn(z)\ is attained at a point —ei(p where 0 ^ <p < ir/2. Putting 

t(0) = \pn(-e^+e))\2 

we must have t'(0) = 0 or equivalently 

(22) Im e^Pn'i-e^/Pni-e**) = 0. 

Using the abbreviation 

Av = (cos (p + xv)
2 + (sin <p + yv)

2 

we deduce from (22) 

(23) -e^Pn'i-e^/Pni-e**) = E? U + xvcos<p + yw sin <p)/A, 

and 

(24) 0 = E i (X» s m <P — y y cos <p)/Av. 

These relations can also be written as 

(23') -e+p^-e+yp^-e**) = E i (1 + x,)/A, 

- 2 sin dp/2) E i (*»sin (*>/2) - y„ cos (<p/2))/Av 

and 

(240 tan *> = (EÏ y ,A4,) / (E? ^ r ) , 

respectively. Since tan (<p/2) ̂  tan <p for 0 ^ <p < ir/2 we deduce from (24') 

E i (*,sin (<p/2) - yvcos (<p/2))/Av ^ 0. 

Hence it follows from (23') that 

\pn'(-e**)/Pn(-é*)\ ^ TA (1 + *,)A4,. 

Now using the well-known inequality between the harmonic and the geometric 
mean, namely 

(aia2 . . . anY
/n è n/iar1 + ar1 + . . . + an^) 

valid for positive numbers av (v = 1, 2, . . . , n), we finally obtain 

k ^ ( - ^ ) / ^ ' ( - ^ ) | ^ OIï 4 ,/(l+*,))"» 
= |^(-e^)|2/vnHi+^)1/"; 

that is, 

max,2|=1 |£n '(*)| ^ | A / ( - ^ > ) | 

è * I I î (1 + x,)1/n • max,2i=1 |^(3)|H«/*), 

Case 0/ equality. If £n(z) is real for real z, then 

max|2 |=i \pn(z)\ = \pn( — l)\ and max | 2 h l \pn (z)\ = \pn'(-l)\. 

https://doi.org/10.4153/CJM-1979-039-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-039-3


BERSTEIN'S INEQUALITY 353 

Moreover, if all the zeros of pn{z) belong to the set (11), then 

(1 + xv)/Av = 1/2X for all * = 1, 2, . . . , n. 

Hence under these conditions there is equality throughout the whole proof. 

Proof of Theorem 5. For all 6 Ç R we have 

Re e"fc/(«")/*>,(«") = Re E? «" / («" - *>) è Z Ï (1 + I*,!)"1, 

so that 

\pn'(ei9)\ ^ U (1 + \z,\Yl\p.{e»)\. 

From this we readily obtain the desired result. 

Proof of the corollary. Since the function / : x —» (1 + x) _ 1 is convex for 
x ^ Owe have 

«-1 EÏ (i + M J-1 = w-1 Zï/(|«,|) ^ /(«-1 Tï M) = (i + P)-1 

and hence (13) follows from Theorem 5. 
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