ON STALLINGS' UNIQUE FACTORISATION GROUPS

Donald I. Cartwright and Bernhard Krön

Let Γ be a group and Σ a symmetric generating set for Γ. In 1966, Stallings called Γ a unique factorisation group if each group element may be written in a unique way as a product $a_{1} \ldots a_{m}$, where $a_{i} \in \Sigma$ for each i and $a_{i} a_{i+1} \notin \Sigma \cup\{1\}$ for each $i<m$. In this paper we give a complete combinatorial proof of a theorem, not explicitly stated by Stallings in 1966, characterising all such pairs (Γ, Σ). We also characterise the unique factorisation pairs by a certain tree-like property of their Cayley graphs.

1. Introduction

Let Γ be a group and Σ a generating set for Γ. We always assume that Σ is symmetric $\left(\Sigma^{-1}=\dot{\Sigma}\right)$ and that $1 \notin \Sigma$. We do not assume that Σ is finite. Let Σ^{*} denote the set of all words over Σ. We write $\left(a_{1}, \ldots, a_{m}\right)$ for a word, and $a_{1} \ldots a_{m}$ for the group element this word represents. The empty word represents 1 . Let L_{Σ} denote the set of the words $\left(a_{1}, \ldots, a_{m}\right) \in \Sigma^{*}$ in which $a_{i} a_{i+1} \notin \Sigma \cup\{1\}$ for all $i<m$ (together with the empty word). Given $g \in \Gamma$, any word in Σ^{*} of minimal length representing g is in L_{Σ}. Modifying [7] slightly, we call (Γ, Σ) a unique factorisation pair if for each $g \in \Gamma$ there is only one word in L_{Σ} which represents g. Equivalently:

Definition 1: The pair (Γ, Σ) is called a unique factorisation pair if the map $\left(a_{1}, \ldots, a_{m}\right) \mapsto a_{1} \ldots a_{m}$ is a bijection $L_{\Sigma} \rightarrow \Gamma$.

One goal of this paper is to describe (in Theorem 1 below), up to isomorphism, all possible groups Γ and all possible generating sets Σ on a given group Γ such that (Γ, Σ) is a unique factorisation pair. The relevant notion of isomorphism here is the obvious one: $\left(\Gamma_{1}, \Sigma_{1}\right)$ and $\left(\Gamma_{2}, \Sigma_{2}\right)$ are isomorphic if there is a group isomorphism $f: \Gamma_{1} \rightarrow \Gamma_{2}$ such that $f\left(\Sigma_{1}\right)=\Sigma_{2}$.

A second goal is to characterise (in Theorem 2 below) the Cayley graphs of unique factorisation pairs in terms of a "tree-like" property they have.

We start by listing some examples of unique factorisation pairs (Γ, Σ). We shall check that Examples 2 and 3 are unique factorisation pairs in Lemma 2.6 below.

[^0]Example 1. Let G be a group. Then $(G, G \backslash\{1\})$ is a unique factorisation pair.
Example 2. Let F be a free group, with free generators $y_{k}, k \in K$, for some set K. Write $y_{0}=1$. Let Σ consist of the elements $y_{k}^{-1} y_{\ell}$, where $k, \ell \in K \cup\{0\}, k \neq \ell$. Then it is not hard to show that (F, Σ) is a unique factorisation pair by appealing to the fact that $\left(F, \Sigma_{0}\right)$ is a unique factorisation pair, where $\Sigma_{0}=\left\{y_{k}^{ \pm 1}: k \in K\right\}$.
Example 3. Let G be a group, and let F be as in Example 2. Let Σ denote the set of elements in the free product $G * F$, other than 1 , of the form $y_{k}^{-1} g y_{\ell}$, where $g \in G$ and $k, \ell \in K \cup\{0\}$. Then ($G * F, \Sigma$) is a unique factorisation pair (see Lemma 2.6). Examples 1 and 2 are the special cases $K^{\prime}=\emptyset$ and $G=\{1\}$, respectively, of this example.
Example 4. Let $\left(\Gamma_{j}, \Sigma_{j}\right), j \in J$, be a family of unique factorisation pairs. Let Γ denote the free product of the Γ_{j} 's, and let Σ denote the union of the sets Σ_{j}. Then (Γ, Σ) is a unique factorisation pair. We shall write $(\Gamma, \Sigma)=*_{j \in J}\left(\Gamma_{j}, \Sigma_{j}\right)$.

Theorem 1. Let (Γ, Σ) be any unique factorisation pair. Then (Γ, Σ) is isomorphic to a free product $*_{j \in J}\left(\Gamma_{j}, \Sigma_{j}\right)$, where each $\left(\Gamma_{j}, \Sigma_{j}\right)$ is as in Example 3.

Stallings' paper [7] is mostly concerned with "partial groups" and their "universal groups". It concludes with a terse discussion of the structure of these partial groups, with only a brief proof sketch. From this discussion, using universal groups it is not a large step to arrive at our Theorem 1, though this is not done in [7]. We feel that the result is of sufficient interest to warrant a clear statement and the complete proof we present in Section 2, particularly as there has been renewed interest in these groups amongst people studying random walks on groups; Mairesse and Mathéus [4,5] were able to perform very explicit calculations concerning random walks on these groups in which the transitions are of the form $g \mapsto g a(g \in \Gamma, a \in \Sigma)$. Our proof uses several of the ideas indicated by Stallings [7], but takes a more direct combinatorial group theory approach, rather than using the methods of partial groups and their universal groups.

It follows from Theorem 1 that if (Γ, Σ) is a unique factorisation pair and Σ is finite, then Γ is plain, that is, a free product $G_{1} * \cdots * G_{s} * F_{r}$ of finitely many finite groups G_{1}, \ldots, G_{s} and a free group F_{r} (where $r, s \geqslant 0$). This much had been deduced from Stallings' results and written down explicitly by Haring-Smith [3], and used by him and others subsequently (for example, $[1,2]$). But Theorem 1 provides more, giving precise information about the generating set Σ. In particular, for each plain group Γ, there are, up to isomorphism, only finitely many generating sets Σ for which (Γ, Σ) is a unique factorisation pair.
Example 5. Let $r \geqslant 1$, and let F_{r} denote the free group on r free generators. Given any integers $r_{1} \geqslant \cdots \geqslant r_{k} \geqslant 1$ such that $r_{1}+\cdots+r_{k}=r$, for $j=1, \ldots, k$, let $\Sigma_{r_{j}}$ be the generating set on $F_{r_{j}}$ described in Example 2. Form $*_{j=1}^{k}\left(F_{r_{j}}, \Sigma_{r_{j}}\right)$, in the notation of Example 4. By Example 4, this gives a unique factorisation pair (F_{r}, Σ). By Theorem 1, any generating set Σ on the free group F_{r} such that (F_{r}, Σ) is a unique factorisation
pair is of this type. Since the numbers r_{k} are the sizes of the equivalence classes [a] (see Lemmas 2.3 and 2.6 below), distinct partitions correspond to non-isomorphic unique factorisation pairs. So up to isomorphism, the number of distinct Σ 's on F_{r} is the number of distinct partitions of r. The usual generating set of F_{r} (that is, a set of free generators and their inverses) corresponds to the partition $1+\cdots+1$ of r.

Recall that the Cayley graph Cay (Γ, Σ) of a group Γ with respect to the symmetric generating set Σ, with $1 \notin \Sigma$, is the undirected graph having vertex set $V=\Gamma$, and edge set E consisting of the pairs $\{g, g a\}$, where $g \in \Gamma$ and $a \in \Sigma$. If $g_{1}, g_{2} \in \Gamma$, let $d_{\Sigma}\left(g_{1}, g_{2}\right)$ denote the distance from g_{1} to g_{2} in $\operatorname{Cay}(\Gamma, \Sigma)$.

In Section 3, we shall characterise the Cayley graphs of unique factorisation pairs. As we shall see below, if (Γ, Σ) is a unique factorisation pair, then we obtain an equivalence relation on Σ by writing $a \sim b$ if and only if $a^{-1} b \in \Sigma \cup\{1\}$. This means that the equivalence class $[a]$ of a, together with 1 , spans a complete subgraph of $\operatorname{Cay}(\Gamma, \Sigma)$. Since left multiplication by group elements is a graph automorphism, the family

$$
\begin{equation*}
\mathcal{C}=\{g([a] \cup\{1\}): g \in \Gamma, a \in \Sigma\} \tag{1.1}
\end{equation*}
$$

consists of non-empty subsets C of Γ with the following properties: (i) each edge \{ $x, y\}$ is contained in some $C \in \mathcal{C}$, and (ii) each C spans a complete subgraph.

If $X=(V, E)$ is any connected undirected graph, and if \mathcal{C} is a family of non-empty subsets of V with property (i), then we can form a connected graph $X_{C}=\left(V_{\mathcal{C}}, E_{C}\right)$ with vertex set $V \cup \mathcal{C}$ and edges $\{x, C\}$, where $C \in \mathcal{C}$ and $x \in C$. We shall show in Theorem 2 below that if (Γ, Σ) is a unique factorisation pair then $\operatorname{Cay}(\Gamma, \Sigma)_{c}$ is a tree, and that this property characterises unique factorisation pairs.

The Cayley graph of a unique factorisation pair (Γ, Σ) has other tree-like features. As remarked in [4, Section 3.3], the removal of any vertex disconnects the graph, provided that (Γ, Σ) is not as in Example 1. We shall show in Proposition 2 below that the Cayley graph $\operatorname{Cay}(\Gamma, \Sigma)$ of a unique factorisation pair (Γ, Σ) is " 2 -bounded by a tree". Agostino [2] called a graph $X h$-bounded by a tree if it has a spanning tree T such that the end points of an arbitrary edge of X are at distance at most h in T. Not every pair (Γ, Σ) whose Cayley graph is 2 -bounded by a tree is a unique factorisation pair. For example, $\Gamma=\mathbb{Z}, \Sigma=\{ \pm 1, \pm 2\}$.

Since any word of minimal length representing a given group element is in L_{Σ}, the evaluation map $\left(a_{1}, \ldots, a_{m}\right) \mapsto a_{1} \ldots a_{m}$ from L_{Σ} to Γ is surjective for any (Γ, Σ). It also follows that any unique factorisation pair (Γ, Σ) has the property that each $g \in \Gamma$ is represented by a unique word in Σ^{*} of minimal length. The characterisation of the pairs (Γ, Σ) with this last property remains an open problem (see $[6]$).

2. Proof of Theorem 1

Throughout this section, let (Γ, Σ) be a unique factorisation pair.

LEMMA 2.1. If $a, b, c, a b, b c \in \Sigma \cup\{1\}$ and $b \neq 1$, then $a b c \in \Sigma \cup\{1\}$.
Proof: We may assume that $a, c, a b, b c \neq 1$. If $g=a b c$ were not in $\Sigma \cup\{1\}$, then ($a b, c$) and ($a, b c$) would both be in L_{Σ} and both would represent g.

Lemma 2.2. Let H be a group, and let $f_{0}: \Sigma \cup\{1\} \rightarrow H$ be a map such that $f_{0}(1)=1$ and $f_{0}(a b)=f_{0}(a) f_{0}(b)$ whenever $a, b \in \Sigma$ and $a b \in \Sigma \cup\{1\}$. Then there is a unique group homomorphism $f: \Gamma \rightarrow H$ which extends f_{0}.

Proof: If $w=\left(a_{1}, \ldots, a_{m}\right) \in \Sigma^{*}$, define $f^{*}(w)=f_{0}\left(a_{1}\right) \ldots f_{0}\left(a_{m}\right)$, and define $f^{*}(\emptyset)=1$, where \emptyset denotes the empty word. Now $f^{*}(w)$ depends only on the group element w represents. For w can be reduced to a word in L_{Σ} representing the same element by a succession of steps $w^{\prime} \mapsto w^{\prime \prime}$ in which a subword (a, b) (where $a, b \in \Sigma$) of w^{\prime} is replaced by the word ($a b$) of length. 1 if $a b \in \Sigma$ or by the empty word if $a b=1$. The condition of this lemma implies that $f^{*}\left(w^{\prime}\right)=f^{*}\left(w^{\prime \prime}\right)$. If $w_{1}, w_{2} \in \Sigma^{*}$ both represent $g \in \Gamma$, then the words in L_{Σ} to which they reduce must be the same, by the unique factorisation property. So $f^{*}\left(w_{1}\right)=f^{*}\left(w_{2}\right)$. So we may define $f(g)=f^{*}(w)$ for any $w \in \Sigma^{*}$ which represents g. It is clear that f is a group homomorphism, and is the only one which extends f_{0}.

Definition 2: Let $a, b \in \Sigma$. We write $a \sim b$ if $a^{-1} b \in \Sigma \cup\{1\}$.
Lemma 2.3. The relation \sim is an equivalence relation on Σ.
Proof: If $a \sim b$ and $b \sim c$, then $a^{-1} c=\left(a^{-1}\right)(b)\left(b^{-1} c\right) \in \Sigma \cup\{1\}$ by Lemma 2.1. []
Let X denote the set of distinct equivalence classes $[a]$. Write $[a] \approx[b]$ if $[a]=[b]$ or if there is a $c \in \Sigma$ such that $[a]=[c]$ and $[b]=\left[c^{-1}\right]$. Note that $[a] \approx\left[a^{-1}\right]$.

LEMMA 2.4. The relation \approx is an equivalence relation on X.
Proof: Suppose that $[a] \approx[b]$ and $[b] \approx[c]$, with $[a] \neq[b]$ and $[b] \neq[c]$. Then there exist $u, v \in \Sigma$ such that $[a]=[u],[b]=\left[u^{-1}\right],[b]=[v]$ and $[c]=\left[v^{-1}\right]$. Then $u^{-1} \sim v$, so that $u v \in \Sigma \cup\{1\}$. If $u v=1$, then $[c]=[a]$. If $u v \neq 1$, then $u v \sim u$ and $(u v)^{-1} \sim v^{-1}$ shows that $[a]=[u v]$ and $[c]=\left[(u v)^{-1}\right]$.

Lemma 2.5. Suppose that (Γ, Σ) is a unique factorisation pair. Let $\left[x_{i}\right], i \in I$, be representatives of the distinct \approx classes. Let $\Sigma_{i}=\left\{b \in \Sigma:[b] \approx\left[x_{i}\right]\right\}$. Then each set Σ_{i} is symmetric, and Σ is the disjoint union of the sets Σ_{i}. Let Γ_{i} denote the subgroup of Γ generated by Σ_{i}. Then $\left(\Gamma_{i}, \Sigma_{i}\right)$ is a unique factorisation pair, and (Γ, Σ) is isomorphic to the free product $*_{i \in I}\left(\Gamma_{i}, \Sigma_{i}\right)$.

Proof: If $b \in \Sigma_{i}$, then $\left[b^{-1}\right] \approx[b] \approx\left[x_{i}\right]$, and so $b^{-1} \in \Sigma_{i}$, and Σ_{i} is symmetric. It is clear that the sets Σ_{i} are pairwise disjoint and have union Σ.

Let $w=\left(a_{1}, \ldots, a_{m}\right) \in L_{\Sigma_{i}}$. If $j<m$, then $a_{j} a_{j+1} \neq 1$. If $a_{j} a_{j+1} \in \Sigma$, then $a_{j} a_{j+1} \sim a_{j}$, so that $\left[a_{j} a_{j+1}\right]=\left[a_{j}\right] \approx\left[x_{i}\right]$. Hence $a_{j} a_{j+1} \in \Sigma_{i}$, contradicting $w \in L_{\Sigma_{i}}$. So $L_{\Sigma_{i}} \subset L_{\Sigma}$, and from this it is clear that $\left(\Gamma_{i}, \Sigma_{i}\right)$ is a unique factorisation pair.

To see that (Γ, Σ) is isomorphic to the free product $*_{i \in I}\left(\Gamma_{i}, \Sigma_{i}\right)$, regard $\Sigma \cup\{1\}$ $=\{1\} \cup \bigcup_{i \in I} \Sigma_{i}$ as a subset of $*_{i \in I} \Gamma_{i}$ in the usual way. Let $f_{0}: \Sigma \cup\{1\} \rightarrow *_{i \in I} \Gamma_{i}$ denote the inclusion map. Let us check the condition of Lemma 2.2. Suppose that $a, b \in \Sigma$ and that $a b \in \Sigma \cup\{1\}$. If $a b=1$ and $a \in \Sigma_{i}$, then $b=a^{-1} \in \Sigma_{i}$ too, and $f_{0}(a) f_{0}(b)=a b$ $=1=f_{0}(a b)$. If $a b \in \Sigma$ and $a \in \Sigma_{i}$, then $a b \sim a$ shows that $[a b]=[a] \approx\left[x_{i}\right]$ and $a b \in \Sigma_{i}$. So $(a b)^{-1} \in \Sigma_{i}$, and $b^{-1} \sim b^{-1} a^{-1}$ shows that $\left[b^{-1}\right]=\left[(a b)^{-1}\right] \approx\left[x_{i}\right]$. Thus $b^{-1} \in \Sigma_{i}$, and so $b \in \Sigma_{i}$ too. So $a, b, a b \in \Sigma_{i}$, and $f_{0}(a) f_{0}(b)=a b=f_{0}(a b)$. So by Lemma 2.2, there is a unique homomorphism $f: \Gamma \rightarrow *_{i \in I} \Gamma_{i}$ extending f_{0}.

Let $\Sigma^{\prime}=\bigcup_{i \in I} \Sigma_{i}$, regarded as a subset of $*_{i \in I} \Gamma_{i}$. It is evident (Example 4) that $\left(*_{i \in I} \Gamma_{i}, \Sigma^{\prime}\right)$ is a unique factorisation pair. Let $h_{0}: \Sigma^{\prime} \cup\{1\} \rightarrow \Gamma$ map each $a \in \Sigma_{i}$, regarded as an element of the free product, to a, regarded as an element of Γ. Clearly h_{0} satisfies the condition of Lemma 2.2. The unique extension h of h_{0} to $*_{i \in I} \Gamma_{i}$ is the inverse of f, because of the uniqueness in Lemma 2.2, since $h_{0}{ }^{\circ} f_{0}$ is the identity on Σ and $f_{0} \circ h_{0}$ is the identity on Σ^{\prime}. Notice that $f(\Sigma)=\Sigma^{\prime}$, and so f is an isomorphism of unique factorisation pairs.

Lemma 2.6. The pair $(G * F, \Sigma)$ of Example 3 is a unique factorisation pair, and for any $a, b \in \Sigma$ we have $[a] \approx[b]$. If $G=\{1\}$ and $|K|=r<\infty$, then each $[a]$ has r elements.

Proof: A proof that $(G * F, \Sigma)$ is a unique factorisation pair can be given by showing that $G * F$ is a universal group of the partial group Σ, and appealing to $[7$, Proposition 2.2]. We shall instead give a more direct proof.

Let $\Sigma_{0}=(G \backslash\{1\}) \cup\left\{y_{k}^{ \pm 1}: k \in K\right\}$. By the uniqueness of normal forms in a free product and by the evident fact that ($F,\left\{y_{k}^{ \pm 1}: k \in K\right\}$) is a unique factorisation pair, it is clear that $\left(G * F, \Sigma_{0}\right)$ is a unique factorisation pair.

Let $w=\left(a_{1}, \ldots, a_{m}\right) \in L_{\Sigma}$ represent $g \in G * F$. For each i, write $a_{i}=u_{i}^{-1} g_{i} v_{i}$, where $g_{i} \in G$ and $u_{i}, v_{i} \in\left\{y_{k}: k \in K \cup\{0\}\right\}$ for each i. If $i<m$ then $v_{i} u_{i+1}^{-1} \neq 1$, since otherwise $a_{i} a_{i+1}=u_{i}^{-1} g_{i} g_{i+1} v_{i+1}$ is in $\Sigma \cup\{1\}$. From w, form the word \widetilde{w} $=\left(u_{1}^{-1}, g_{1}, v_{1}, u_{2}^{-1}, g_{2}, \ldots, g_{m}, v_{m}\right)$, which has letters in $\Sigma_{0} \cup\{1\}$. Let $w_{0}=\left(x_{1}, \ldots, x_{\ell}\right)$ be the word obtained from \tilde{w} by discarding all 1 's. We claim that $w_{0} \in L_{\Sigma_{0}}$. Notice that if $a, b \in \Sigma_{0}$ and also $a b \in \Sigma_{0}$, then a, b must both be in $G \backslash\{1\}$. So if $x_{i} x_{i+1} \in \Sigma_{0}$ for some $i<\ell$, then $x_{i}=g_{j}, v_{j}=1, u_{j+1}^{-1}=1$ and $x_{i+1}=g_{j+1}$ for some $j<m$. But this is impossible because $v_{j} u_{j+1}^{-1} \neq 1$. If instead $x_{i} x_{i+1}=1$, then the pair (x_{i}, x_{i+1}) is either $\left(y_{k}, y_{k}^{-1}\right)$ or $\left(y_{k}^{-1}, y_{k}\right)$ for some k, or $\left(g, g^{-1}\right)$ for some $g \in G$, and these possibilities are all excluded because $a_{j} \neq 1$ and $a_{j} a_{j+1} \notin \Sigma \cup\{1\}$ for each j.

Notice that the first letter x_{1} of w_{0} is either u_{1}^{-1} (if $u_{1} \neq 1$), g_{1} (if $u_{1}=1$ and $g_{1} \neq 1$) or v_{1} (if $u_{1}=1$ and $g_{1}=1$).

Suppose that there is an element $g \in G * F$ which is represented by two distinct words, $w=\left(a_{1}, \ldots, a_{m}\right)$ and $w^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{m^{\prime}}^{\prime}\right)$ in L_{Σ}. Write $a_{i}=u_{i}^{-1} g_{i} v_{i}$ and $a_{j}^{\prime}=u_{j}^{\prime-1} g_{j}^{\prime} v_{j}^{\prime}$ as
above. Starting from w and w^{\prime}, we get words $w_{0}=\left(x_{1} \ldots, x_{\ell}\right)$ and $w_{0}^{\prime}=\left(w_{1}, \ldots, w_{\ell^{\prime}}^{\prime}\right)$ in $L_{\Sigma_{0}}$ as above. Choose such a g so that the number $\ell+\ell^{\prime}$ of u_{i} 's, g_{i} 's, et cetera, which are not 1 is minimal. By the unique factorisation property of $\left(G * F, \Sigma_{0}\right)$, we have $w_{0}=w_{0}^{\prime}$. By considering the first letter x_{1} of w_{0}, we see that $u_{1} \neq 1$ if and only if $u_{1}^{\prime} \neq 1$, in which case $u_{1}=u_{1}^{\prime}$. Cancelling u_{1}^{-1} from both a_{1} and a_{1}^{\prime}, we find that $u_{1} g$ is represented by two distinct words in L_{Σ} in which the total number of u_{i} 's, et cetera, is smaller than in w and w^{\prime}, contradicting the minimality in our choice of g. The same contradiction is reached in the case $u_{1}=u_{1}^{\prime}=1$ and $g_{1}, g_{1}^{\prime} \neq 1$ and in the case $u_{1}=u_{1}^{\prime}=1, g_{1}=g_{1}^{\prime}=1$ and $v_{1}, v_{1}^{\prime} \neq 1$. So $(G * F, \Sigma)$ is a unique factorisation pair.

If $G \neq\{1\}$, fix $g_{0} \in G \backslash\{1\}$. If $a \in \Sigma$ has the form $g y_{\ell}$, then $[a]=[g]=\left[g_{0}\right]$. If instead $a=y_{k}^{-1} g y_{\ell}$ where $k \in K$, then $\left[g_{0}\right]=\left[y_{k}\right]$ and $[a]=\left[y_{k}^{-1}\right]$, so that again $[a] \approx\left[g_{0}\right]$. If $G=\{1\}$ but $K \neq \emptyset$, fix $k_{1} \in K$. If $a=y_{\ell}$ for some $\ell \in K$, then $[a]=\left[y_{k_{1}}\right]$. If $a=y_{k}^{-1} y_{\ell}$ with $k \neq 0$, then $[a]=\left[y_{k}^{-1}\right]$ and $\left[y_{k_{1}}\right]=\left[y_{k}\right]$, so that again $[a] \approx\left[y_{k_{1}}\right]$. Since $y_{\ell}^{-1} y_{k} y_{k_{1}} \notin \Sigma \cup\{1\}, a \notin\left[y_{k_{1}}\right]$ in the second case. Hence $\left[y_{k_{1}}\right]$ has exactly r elements if $|K|=r<\infty$. Similarly, each $\left[y_{k}^{-1}\right]$ has r elements.

By Lemma 2.5, to prove Theorem 1 we may suppose that $[a] \approx[b]$ for all $a, b \in \Sigma$. Fix $a_{0} \in \Sigma$. We can choose representatives $x_{k}^{-1}(k \in K$, say $)$ of the distinct classes $[a]$ other than $\left[a_{0}\right]$ such that $\left[a_{0}\right]=\left[x_{k}\right]$ for each k. We also write $x_{0}=1$.

Lemma 2.7. The set $\Pi=\{1\} \cup\left\{a \in \Sigma: a \sim a_{0}\right.$ and $\left.a^{-1} \sim a_{0}\right\}$ is a subgroup of Γ.

Proof: Suppose that $a, b \in \Pi \backslash\{1\}$. Then $a^{-1} \sim a_{0} \sim b$ and so $a b \in \Sigma \cup\{1\}$. If $a b \neq 1$, then $a b \in \Sigma$ and $a b \sim a \sim a_{0}$ and $(a b)^{-1} \sim b^{-1} \sim a_{0}$. So $a b \in \Pi$.

Lemma 2.8. Each $a \in \Sigma$ can be written in a unique way as a product $x_{k}^{-1} g x_{\ell}$, where $k, \ell \in K \cup\{0\}$ and $g \in \Pi$. Moreover, $[a]=\left[x_{k}^{-1}\right]$ if $a \nsim a_{0}$ and $\left[a^{-1}\right]=\left[x_{\ell}^{-1}\right]$ if $a^{-1} \nsim a_{0}$.

Proof: If $a \in \Pi$, take $k=\ell=0$ and $g=a$. If $a \in \Sigma$ satisfies $a \sim a_{0}$ but $a^{-1} \nsim a_{0}$, then there is an $\ell \in K$ such that $\left[a^{-1}\right]=\left[x_{\ell}^{-1}\right]$. Write $g=a x_{\ell}^{-1}$. Then $a=g x_{\ell}=x_{0}^{-1} g x_{\ell}$. Also, $g \sim a \sim a_{0}$ and $g^{-1} \sim x_{\ell} \sim a_{0}$ shows that $g \in \Pi$. Similarly, if $a \nsim a_{0}$ and $a^{-1} \sim a_{0}$, then writing $[a]=\left[x_{k}^{-1}\right]$, we have $a=x_{k}^{-1} g x_{0}$ for some $g \in \Pi$.

If $a \in \Sigma$ and $a, a^{-1} \nsim a_{0}$, then $[a]=\left[x_{k}^{-1}\right]$ and $\left[a^{-1}\right]=\left[x_{\ell}^{-1}\right]$ for some $k, \ell \in K$. Then $a, x_{k}, x_{\ell}, x_{k} a$ and $a x_{\ell}^{-1}$ are in $\Sigma \cup\{1\}$ and $a \neq 1$. Hence $x_{k} a x_{\ell}^{-1}=\left(x_{k} a\right)\left(a^{-1}\right)\left(a x_{\ell}^{-1}\right)$ $\in \Sigma \cup\{1\}$ by Lemma 2.1. Write $x_{k} a x_{\ell}^{-1}=g$. Then $a=x_{k}^{-1} g x_{\ell}$. Also, $g \in \Pi$. For $x_{k}^{-1} g=a x_{\ell}^{-1} \in \Sigma \cup\{1\}$ shows that $g \sim x_{k} \sim a_{0}$, and $g x_{\ell}=x_{k} a \in \Sigma \cup\{1\}$ shows that $g^{-1} \sim x_{\ell} \sim a_{0}$. If also $a=x_{k^{\prime}}^{-1} g^{\prime} x_{\ell^{\prime}}$, and $k^{\prime} \neq 0$, then $x_{k^{\prime}} a=g^{\prime} x_{\ell^{\prime}} \in \Sigma \cup\{1\}$ because $g^{\prime} \sim a_{0} \sim x_{\ell^{\prime}}$ if $g^{\prime} \neq 1$ and $\ell^{\prime} \neq 0$, while $x_{k^{\prime}} a=g^{\prime} x_{\ell^{\prime}} \in \Sigma \cup\{1\}$ is clear if $g^{\prime}=1$ or $\ell^{\prime}=0$. Thus $\left[x_{k}^{-1}\right]=[a]=\left[x_{k^{\prime}}^{-1}\right]$ and $k^{\prime}=k$. If $k^{\prime}=0$, then $a=g^{\prime} x_{\ell^{\prime}} \sim g^{\prime} \sim a_{0}$, contrary to hypothesis. Similarly $\ell^{\prime}=\ell$, and therefore $g^{\prime}=g$. The uniqueness when $a \sim a_{0}$ or $a^{-1} \sim a_{0}$ is shown in a similar way.

Proposition 1. Suppose that (Γ, Σ) is a unique factorisation pair and that $a_{0} \in \Sigma$, with $[a] \approx\left[a_{0}\right]$ for all $a \in \Sigma$. Let Π and $\left\{x_{k}: k \in K\right\}$ be as above. Let F denote the subgroup of Γ generated by the x_{k} 's. Then F is a free group, with free generators x_{k}, $k \in K$, and the pair (Γ, Σ) is isomorphic to the pair of Example 3, where $G=\Pi$ and the y_{k} 's there are the x_{k} 's.

Proof: Let F^{\prime} be a free group on a set $\left\{y_{k}: k \in K\right\}$ of free generators in one to one correspondence with $\left\{x_{k}: k \in K\right\}$. Let $y_{0}=1$. Let Σ^{\prime} denote the generating set of Example 3, where G and F there are Π and F^{\prime}. Define a function $f_{0}: \Sigma \rightarrow \Pi * F^{\prime}$ by writing each $a \in \Sigma$ in its unique form $x_{k}^{-1} g x_{\ell}(k, \ell \in K \cup\{0\}, g \in \Pi)$, and defining $f_{0}(a)=y_{k}^{-1} g y_{\ell}$, regarded as an element of the free product. We now check the condition of Lemma 2.2.

Suppose that $a, b \in \Sigma$ and that $a b \in \Sigma \cup\{1\}$. Write $a=x_{k}^{-1} g x_{\ell}$ and $b=x_{m}^{-1} g^{\prime} x_{n}$ as in Lemma 2.8. Assume first that $\ell, m \neq 0$. Then $x_{\ell}^{-1} \sim a^{-1} \sim b \sim x_{m}^{-1}$, and so $\ell=m$ and $a b=x_{k}^{-1} g g^{\prime} x_{n}$. If $\ell \neq 0$ and $m=0$, then $x_{\ell}^{-1} \sim a^{-1} \sim b=g^{\prime} x_{n} \sim a_{0}$, which is impossible. Similarly, if $\ell=0$ and $m \neq 0$, then $a_{0} \sim g^{-1} x_{k}=a^{-1} \sim b \sim x_{m}^{-1}$ is impossible. Finally, if $\ell=0=m$, then $a b=x_{k}^{-1} g g^{\prime} x_{n}$. Thus in all cases, $\ell=m$ and $a b=x_{k}^{-1} g g^{\prime} x_{n}$. So $f_{0}(a) f_{0}(b)=\left(y_{k}^{-1} g y_{\ell}\right)\left(y_{m}^{-1} g^{\prime} y_{n}\right)=y_{k}^{-1} g g^{\prime} y_{n}=f_{0}(a b)$. By Lemma 2.2, f_{0} lifts uniquely to a group homomorphism $f: \Gamma \rightarrow \Pi * F^{\prime}$. Notice that $f(\Sigma)=\Sigma^{\prime}$.

Let $h_{0}: \Sigma^{\prime} \rightarrow \Gamma$ denote the map which sends each $y_{k}^{-1} g y_{\ell}$ to $x_{k}^{-1} g x_{\ell} \in \Gamma$. As before, one checks that it satisfies the conditions of Lemma 2.2. Since ($\Pi * F^{\prime}, \Sigma^{\prime}$) is a unique factorisation pair by Lemma 2.6, h_{0} extends to a group homomorphism $h: \Pi * F^{\prime} \rightarrow \Gamma$. Since f_{0} and h_{0} are mutually inverse bijections between Σ and Σ^{\prime}, their extensions are mutually inverse group isomorphisms, by the uniqueness part of Lemma 2.2.

3. Cayley graphs of unique factorisation pairs

Throughout this section, let (Γ, Σ) denote a unique factorisation pair, and let $X=\operatorname{Cay}(\Gamma, \Sigma)$ be its Cayley graph.

Lemma 3.1. If $a \in \Sigma$, then $a\left(\left[a^{-1}\right] \cup\{1\}\right)=[a] \cup\{1\}$.
Proof: Let $b \in\left[a^{-1}\right] \cup\{1\}$. We claim that $a b \in[a] \cup\{1\}$. This is clear if $b=1$ or $b=a^{-1}$, so assume otherwise. Then $b \sim a^{-1}$ and so $a b \in \Sigma$. Also, $a^{-1}(a b)=b \in \Sigma$, and so $a b \in[a]$. Hence $a\left(\left[a^{-1}\right] \cup\{1\}\right) \subset[a] \cup\{1\}$. Replacing a by a^{-1}, we get the reverse inclusion.

The fact that \sim is an equivalence relation implies that each set in the family (1.1) spans a complete subgraph of X. The vertices $g, g a$ of any edge in X are both contained in $g([a] \cup\{1\}) \in \mathcal{C}$. The next lemma shows that this is the only $C \in \mathcal{C}$ containing them both.

Lemma 3.2. If $C, D \in \mathcal{C}$ and $|C \cap D| \geqslant 2$, then $C=D$.

Proof: If $g \in \Gamma \backslash\{1\}, a \in \Sigma$ and $1 \in g([a] \cup\{1\})$, then $g^{-1} \in[a]$. So by Lemma 3.1, $g([a] \cup\{1\})=g\left(\left[g^{-1}\right] \cup\{1\}\right)=[g] \cup\{1\}$. Thus the only sets in \mathcal{C} containing 1 are the sets $[a] \cup\{1\}, a \in \Sigma$. Now let $C, D \in \mathcal{C}$ with $|C \cap D| \geqslant 2$. Picking any $g \in C \cap D$, let $C^{\prime}=g^{-1} C$ and $D^{\prime}=g^{-1} D$. Then $1 \in C^{\prime}, D^{\prime} \in \mathcal{C}$, and so $C^{\prime}=[a] \cup\{1\}$ and $D^{\prime}=[b] \cup\{1\}$ for some $a, b \in \Sigma$. Since $\left|C^{\prime} \cap D^{\prime}\right| \geqslant 2$, there is a $c \neq 1$ in $C^{\prime} \cap D^{\prime}$. Hence $a \sim c \sim b$, so that $[a]=[b], C^{\prime}=D^{\prime}$ and $C=D$.

Recall that a circuit in a graph is a path $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ whose vertices are distinct except that $x_{n}=x_{0}$. We shall always assume that $n \geqslant 3$.

Lemma 3.3. Let $\left(g_{0}, g_{1}, \ldots, g_{n}=g_{0}\right)$ be a circuit in X. Then there is a $C \in \mathcal{C}$ which contains each g_{i}. If $S \subset \Gamma$ spans a complete subgraph of X, then $S \subset C$ for some $C \in \mathcal{C}$.

Proof: Let $\pi=\left(g_{0}, g_{1}, \ldots, g_{n}=g_{0}\right)$ be a shortest circuit which is not contained in any $C \in \mathcal{C}$. If $n=3$, then $g_{0}^{-1} g_{1}, g_{1}^{-1} g_{2}, g_{2}^{-1} g_{0} \in \Sigma$, and so $g_{0}^{-1} g_{2}$ and $g_{0}^{-1} g_{1}$ are \sim-equivalent. Hence $g_{0}, g_{1}, g_{2} \in g_{0}\left(\left[g_{0}^{-1} g_{1}\right] \cup\{1\}\right)$. So $n \geqslant 4$ must hold.

If g_{i} and g_{i+2} are adjacent in X for some $i \leqslant n-2$, then ($g_{0}, \ldots, g_{i}, g_{i+2}, \ldots, g_{n}=g_{0}$) and $\left(g_{i}, g_{i+1}, g_{i+2}, g_{i}\right)$ are circuits in X which are shorter than π, and so must be contained in distinct $C, D \in \mathcal{C}$. But $g_{i}, g_{i+2} \in C \cap D$, and so Lemma 3.2 shows that $C=D$, a contradiction.

So g_{i} and g_{i+2} are not adjacent in X for any $i \leqslant n-2$. So $\left(g_{i}^{-1} g_{i+1}\right)\left(g_{i+1}^{-1} g_{i+2}\right) \notin \Sigma \cup\{1\}$ for each $i \leqslant n-2$. This shows that the word $\left(g_{0}^{-1} g_{1}, \ldots, g_{n-1}^{-1} g_{n}\right)$ is in L_{Σ}, even though it represents $g_{0}^{-1} g_{n}=1$. This contradicts the unique factorisation property, and so any circuit in X is contained in some $C \in \mathcal{C}$.

Now let $S \subset \Gamma$ span a complete subgraph of X. We may assume that $|S| \geqslant 3$. Pick any $s_{0}, s_{1} \in S$ and $C \in \mathcal{C}$ containing s_{0}, s_{1}. If $S \not \subset C$, pick $s_{2} \in S \backslash C$. As S spans a complete subgraph, s_{0}, s_{1}, s_{2} are the vertices of a circuit, and so there is a $D \in \mathcal{C}$ containing them all. Then $s_{0}, s_{1} \in C \cap D$, and so $D=C$ by Lemma 3.2. This shows that $s_{2} \in C$, a contradiction. So S must be contained in C.

Definition 3: Let $X=(V, E)$ be any undirected connected graph and let \mathcal{C} be a family of non-empty sets of vertices such that (i) for each edge $\{x, y\}$, there is a $C \in \mathcal{C}$ such that $x, y \in C$, and (ii) each $C \in \mathcal{C}$ spans a complete subgraph of X. We define a graph $X_{\mathcal{C}}$ by setting $V_{\mathcal{C}}=\mathcal{C} \cup V$ and $E_{\mathcal{C}}=\{\{x, C\}: C \in \mathcal{C}, x \in C\}$.

It is easy to see that $X_{\mathcal{C}}$ is connected (hypothesis (ii) is not needed for this).
Thedrem 2. If (Γ, Σ) is a unique factorisation pair, and if

$$
\mathcal{C}=\{g([a] \cup\{1\}): g \in \Gamma, a \in \Sigma\}
$$

is the family defined above, then $\operatorname{Cay}(\Gamma, \Sigma)_{c}$ is a tree. Conversely, if Γ is a group generated by a finite symmetric subset Σ, with $1 \notin \Sigma$, and if $\mathrm{Cay}(\Gamma, \Sigma)_{\mathcal{C}}$ is a tree for some family \mathcal{C}, then (Γ, Σ) is a unique factorisation pair.

Proof: Suppose there is a circuit in $\operatorname{Cay}(\Gamma, \Sigma)_{c}$. Then there is also a circuit of the form

$$
\pi=\left(g_{0}, C_{1}, g_{1}, C_{2}, \ldots, C_{n}, g_{n}=g_{0}\right)
$$

where $n \geqslant 2$ and $g_{i} \in \Gamma$ and $C_{i} \in \mathcal{C}$ for each i. The elements $g_{i}^{-1} g_{i+2}, 0 \leqslant i \leqslant n-2$, cannot be in Σ. For otherwise g_{i}, g_{i+1} and g_{i+2} would be pairwise adjacent, and so in C for some $C \in \mathcal{C}$, by Lemma 3.3. But $\left|C_{i+1} \cap C\right|,\left|C_{i+2} \cap C\right| \geqslant 2$, so that $C_{i+1}=C=C_{i+2}$ by Lemma 3.2. This contradicts π being a circuit. Thus the word ($g_{0}^{-1} g_{1}, g_{1}^{-1} g_{2}, \ldots, g_{n-1}^{-1} g_{n}$) is in L_{Σ}, is nonempty, and represents 1 , contradicting the unique factorisation property.

Conversely, suppose that $X=\operatorname{Cay}(\Gamma, \Sigma)$ is a Cayley graph and that $X_{\mathcal{C}}$ is a tree. Let $g \in \Gamma$ and let $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in L_{\Sigma}$ represent g. For $i=1, \ldots, m$, the vertices $a_{1} \ldots a_{i-1}$ and $a_{1} \ldots a_{i}$ are adjacent in X and so are contained in some $A_{i} \in \mathcal{C}$. Then

$$
\pi=\left(a_{0}=1, A_{1}, a_{1}, A_{2}, a_{1} a_{2}, \ldots, A_{m}, a_{1} a_{2} \ldots a_{m}\right)
$$

is a path $\left(u_{0}, u_{1}, \ldots, u_{2 m}\right)$ in $X_{\mathcal{C}}$. We claim that π is a geodesic. Since $X_{\mathcal{C}}$ is a tree, it is enough to show that $u_{k} \neq u_{k+2}$ for each $k \leqslant 2 m-2$. So suppose that $u_{k}=u_{k+2}$. If $k=2 i$, then $a_{1} \ldots a_{i-1}=a_{1} \ldots a_{i}$, which is impossible, as $a_{i} \neq 1$. If $k=2 i+1$, then $A_{i+1}=A_{i+2}=C$, say, and so $a_{1} \ldots a_{i}, a_{1} \ldots a_{i+1}, a_{1} \ldots a_{i+2}$ are all in C. Now C spans a complete subgraph, by hypothesis, and so $a_{1} \ldots a_{i}$ and $a_{1} \ldots a_{i+2}$ are equal or adjacent in X. But then $a_{i+1} a_{i+2} \in \Sigma \cup\{1\}$, contradicting $\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in L_{\Sigma}$.

Since $X_{\mathcal{C}}$ is a tree, there is only one geodesic from 1 to g. So there is only one word in L_{Σ} representing g, and (Γ, Σ) is a unique factorisation pair.

We conclude this section with a result mentioned in the introduction:
Proposition 2. If (Γ, Σ) is a unique factorisation pair, then $X=\operatorname{Cay}(\Gamma, \Sigma)$ is 2-bounded by a tree.

Proof: Let E_{0} denote the set of all edges $\left\{a_{1} \ldots a_{m-1}, a_{1} \ldots a_{m}\right\}$ of X, where $\left(a_{1}, \ldots, a_{m}\right) \in L_{\Sigma}$ has length $m \geqslant 1$. That is, E_{0} consists of the edges $\{x, y\}$ of X for which $d_{\Sigma}(1, x) \neq d_{\Sigma}(1, y)$. Now $X_{0}=\left(\Gamma, E_{0}\right)$ is a tree. For if $\pi=\left(g_{0}, \ldots, g_{n}=g_{0}\right)$ is a circuit in X_{0}, we may choose the numbering so that $d_{\Sigma}\left(1, g_{0}\right) \geqslant d_{\Sigma}\left(1, g_{i}\right)$ for $i=0, \ldots, n$. But g_{0} has only one neighbour g in X_{0} satisfying $d_{\Sigma}(1, g)<d_{\Sigma}\left(1, g_{0}\right)$, namely $a_{1} \ldots a_{m-1}$ if $\left(a_{1}, \ldots, a_{m}\right)$ represents g_{0}. So $g_{1}=g_{n-1}$, in contradiction to π being a circuit. So X_{0} is a spanning tree for X.

Let $\{x, y\}$ be an edge in X. If $d_{\Sigma}(1, x) \neq d_{\Sigma}(1, y)$, then $\{x, y\} \in E_{0}$ and $d_{X_{0}}(x, y)=1$. If $d_{\Sigma}(1, x)=d_{\Sigma}(1, y)$, then $x=a_{1} \ldots a_{m}$ and $y=a_{1} \ldots a_{m} a$ for some $\left(a_{1}, \ldots, a_{m}\right) \in L_{\Sigma}$ and $a \in \Sigma$ such that $a_{m} a \in \Sigma$. So for $z=a_{1} \ldots a_{m-1},(x, z, y)$ is a path in X_{0} of length 2 , and so $d_{X_{0}}(x, y)=2$. So X is 2 -bounded by a tree.

References

[1] J. Avenhaus, K. Madlener and F. Otto, 'Groups presented by finite two-monadic Church-Rosser Thue systems', Trans. Amer. Math. Soc. 297 (1986), 427-443.
[2] G. D'Agostino, 'Cayley graphs of virtually free groups', Internat. J. Algebra Comput. 3 (1993), 189-199.
[3] R.H. Haring-Smith, 'Groups and simple languages', Trans. Amer. Math. Soc. 279 (1983), 337-356.
[4] J. Mairesse, 'Random walks on groups and monoids with a Markovian harmonic measure', (preprint, 2004) Available at http://ww.liafa.jussieu.fr/~mairesse/Article/ and http://ww.liafa.jussieu.fr/web9/rapportrech/description_en.php? idrapportrech=666.
[5] J. Mairesse and F. Mathéus, 'Random walks on groups with a tree-like Cayley graph', in Mathematics and computer science. III. Algorithms, trees, combinatorics and probabilities pages 445-460, Trends Math. (Birkhäuser Verlag, Basel, 2004).
[6] M. Shapiro, 'Pascal's triangles in Abelian and hyperbolic groups', J. Austral. Math. Soc. Ser. A 63 (1997), 281-288.
[7] J. Stallings, 'A remark about the description of free products of groups', Proc. Cambridge Philos. Soc. 62 (1966), 129-134.

School of Mathematics and Statistics
The University of Sydney
New South Wales 2006
Australia
e-mail: donaldc@maths.usyd.edu.au
bernhard@maths.usyd.edu.au

[^0]: Received 25th July, 2005
 The second author was supported by projects J2245 and P16004-N05 of the Austrian Science Fund (FWF).
 Since completing this paper, we have been informed by Jean Mairesse that a revised version of [4] will contain Theorem 1, stated in the form of an algorithm, which he had independently deduced from [7].
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

